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Abstract. The independence polynomial of a graph G is the function i(G, x) = ∑
k≥0 ik xk , where ik is the

number of independent sets of vertices in G of cardinality k. We prove that real roots of independence polynomials
are dense in (−∞, 0], while complex roots are dense in C, even when restricting to well covered or compara-
bility graphs. Throughout, we exploit the fact that independence polynomials are essentially closed under graph
composition.
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1. Introduction

For a graph G with independence number β, let ik denote the number of independent sets of
vertices of cardinality k in G (k = 0, 1, . . . , β). Several papers exist (cf. [2, 6, 9, 11, 20]) on
the independence sequence (i1, i2, . . . iβ) of a graph (or its complement), exploring various
such problems. The independence polynomial of G,

i(G, x) =
β∑

k=0

ik xk,

is the generating polynomial for the sequence. The path P4 on 4 vertices, for example, has
one independent set of cardinality 0 (the empty set), four independent sets of cardinality 1,
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and three independent sets of cardinality 2; its independence polynomial is then i(P4, x) =
1 + 4x + 3x2.

As is the case with other graph polynomials, such as chromatic polynomials (cf. [7, 28]),
matching polynomials [12, 13], and others, it is natural to consider the nature and location
of the roots. Interesting in their own right, they can shed some light on the underlying
combinatorics as well. One line of research in the roots of chromatic polynomials has been
determining the topological closures of both the real and complex roots of the set of all chro-
matic polynomials. It was shown between the works of Jackson [24] and Thomassen [31]
that the closure of the set of real roots of chromatic polynomials is {0} ∪ {1} ∪ [32/27, ∞).
Until very recently, it was not known if the closure of the set of chromatic roots in the
complex plane has positive measure. Sokal [29] has shown that, in fact, chromatic roots are
dense in the entire complex plane. In this paper, we shall (for the first time) answer these
same questions for the roots of independence polynomials. Further results on independence
sequences and polynomials can be found in [6, 10, 14–19].

We shall exploit the following result, a more general version of which was proved for
dependence polynomials in [10]. For two graphs G and H , let G[H ] be the graph with
vertex set V (G) × V (H ) and such that vertex (a, x) is adjacent to vertex (b, y) if and only
if a is adjacent to b (in G) or a = b and x is adjacent to y (in H ). The graph G[H ] is the
lexicographic product (or composition) of G and H , and can be thought of as the graph
arising from G and H by substituting a copy of H for every vertex of G.

Theorem 1 Let G and H be graphs. Then the independence polynomial of G[H ] is

i(G[H ], x) = i(G, i(H, x) − 1). (1)

Proof: By definition, the polynomial i(G, i(H, x) − 1) is given by

βG∑
k=0

i G
k

(
βH∑
j=1

i H
j x j

)k

, (2)

where i G
k is the number of independent sets of cardinality k in G (similarly for i H

k ).
Now, an independent set in G[H ] of cardinality l arises by choosing an independent set

in G of cardinality k, for some k ∈ {0, 1, . . . l}, and then, within each associated copy of H
in G[H ], choosing a nonempty independent set in H , in such a way that the total number of
vertices chosen is l. But the number of ways of actually doing this is exactly the coefficient
of xl in (2), which completes the proof. �

By applying (1) to the right families of graphs, we will be able to determine the closures
of real and complex ‘independence roots’. Specifically, real independence roots are dense
on the negative real axis, while complex independence roots are dense in the entire complex
plane, even for such restricted families as well covered graphs and comparability graphs.
This is in contrast to independence polynomials of line graphs, which are just matching
generating polynomials (cf. [25]) and thus have only negative real roots.
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We shall have occasion to make use of an easy recursive formula for calculating inde-
pendence polynomials.

Proposition 1 [6, 23] For any vertex v of a graph G,

i(G, x) = i(G − v, x) + x · i(G − [v], x).

where [v], the closed neighbourhood of v, consists of v, together with all vertices incident
with v.

Proof: For k ≥ 1, an independent set of k vertices in G either contains v or does not.
There are i G−[v]

k−1 that do, and i G−v
k that do not. Thus, for each k ≥ 1, the coefficient of xk is

the same in both sides of the above eqnarray; and both sides clearly have constant term 1.
The two polynomials are therefore equal. �

2. Background: Recursive families of polynomials

Before we proceed onto a discussion of the roots of independence polynomials, we need to
state (in detail) an analytic result on particular families of polynomials (namely, recursive
familes). We begin with the following definition.

Definition 1 If { fn(x)} is a family of (complex) polynomials, we say that a number z ∈ C

is a limit of roots of { fn(x)} if either fn(z) = 0 for all sufficiently large n or z is a limit
point of the set R({ fn(x)}), where R({ fn(x)}) is the union of the roots of the fn(x).

Now (as in [3]) a family { fn(x)} of polynomials is a recursive family of polynomials if
the fn(x) satisfy a homogenous linear recurrence

fn(x) =
k∑

i=1

ai (x) fn−i (x), (3)

where the ai (x) are fixed polynomials, with ak(x) �≡ 0. The number k is the order of the
recurrence.

We can form from (3) its associated characteristic equation

λk − a1(x)λk−1 − a2(x)λk−2 − · · · − ak(x) = 0, (4)

whose roots λ = λ(x) are algebraic functions, and there are exactly k of them counting
multiplicity (c.f. [1, 22]).

If these roots, say λ1(x), λ2(x), . . . , λk(x), are distinct, then the general solution to (3) is
known [3] to be

fn(x) =
k∑

i=1

αi (x)λi (x)n, (5)
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with the ‘usual’ variant (cf. [3]) if some of the λi (x) were repeated. The functions α1(x),
α2(x), . . . , αk(x) are determined from the initial conditions, that is, the k linear equations
in the αi (x) obtained by letting n = 0, 1, . . . k −1 in (5) or its variant. The details are found
in [3].

Beraha et al. [3] proved the result below on recursive families of polynomials and their
roots.

Theorem 2 [3] If { fn(x)} is a recursive family of polynomials, then a complex number z
is a limit of roots of { fn(x)} if and only if there is a sequence {zn} in C such that fn(zn) = 0
for all n and zn → z as n → ∞.

The main result of their paper characterizes precisely the limits of roots of a recursive family
of polynomials.

Theorem 3 [3] Under the non-degeneracy requirements that in (5) no αi (x) is identically
zero and that for no pair i �= j is λi (x) ≡ ωλ j (x) for some ω ∈ C of unit modulus, then
z ∈ C is a limit of roots of { fn(x)} if and only if either
(i) two or more of the λi (z) are of equal modulus, and strictly greater (in modulus) than

the others; or
(ii) for some j, λ j (z) has modulus strictly greater than all the other λi (z) have, and

α j (z) = 0.

This result has found application to the chromatic roots of recursive families of graphs
(cf. [5]), that is, families of graphs whose Tutte (and therefore chromatic) polynomials
satisfy a homogeneous linear recurrence; see [4, 27] for some examples.

3. Location of independence roots of some families of graphs

As advertised, we shall now find the topological closures of real and complex independence
roots. As the coefficients of any independence polynomial are positive all the way down to
the constant term, it is clear that no real independence root is nonnegative. Nevertheless,
we have:

Theorem 4 Complex roots of independence polynomials are dense in all of C, while real
independence roots are dense in (−∞, 0].

We will prove Theorem 4 by considering very specific families of graphs, taking lexi-
cographic products, and examining the roots of the independence polynomials that arise.
The upshot will be the truth of Theorem 4 even for some very restricted families of graphs,
namely well covered and comparability graphs.

In fact, the first half of Theorem 4 follows from the second, by composing with empty
graphs. Since each subset of vertices in K̄ m is independent, it follows from the Binomial
Theorem that i(K̄ m, x) = (1 + x)m .
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Theorem 5 If {Gn} is a family of graphs whose real independence roots are dense in the
interval (−∞, 0], then the family {Gn[K̄ m]} has independence roots that are dense in C.

Proof: Denote by R the set of real independence roots of the family {Gn}; by supposition,
R̄ = (−∞, 0]. Let z ∈ C and ε > 0. We will show that there exist positive integers n, m
such that i(Gn[K̄m], z̃) = 0 for some z̃ within an ε-radius of z. From Proposition 1, we
have

i(Gn[K̄ m], x) = i(Gn, i(K̄ m, x) − 1) = i(Gn, (1 + x)m − 1).

We may assume z �= −1; thus |z + 1| > 0. Choose m large enough that some m-th root
of −|z + 1|m , say w = |z + 1|e i(2k+1)π

m , is within an ε
2 -radius of z + 1. Choose δ > 0 such

that δ < ε
2 and r = −(|z + 1| + δ)m − 1 ∈ R (such a δ exists, since R is dense in (−∞, 0]

and −(|z +1|+ δ)m −1 is a continuous function of δ). Then the corresponding m-th root of
r + 1 = −(|z + 1|+ δ)m , namely w̃ = (|z + 1|+ δ)e

i(2k+1)π
m , is within an ε-radius of z + 1, as

|w̃ − (z + 1)| = |(w̃ − w) + (w − (z + 1))|
≤ |w̃ − w| + |w − (z + 1)|
< δ + ε

2
<

ε

2
+ ε

2
= ε.

Finally, since r ∈ R, there is a positive integer n for which i(Gn, r ) = 0. Set z̃ = w̃ − 1.
Then

|z̃ − z| = |(w̃ − 1) − z| = |w̃ − (z + 1)| < ε,

and

i(Gn[K̄ m], z̃) = i(Gn, (1 + z̃)n − 1)

= i(Gn, w̃
m − 1)

= i(Gn, (r + 1) − 1)

= i(Gn, r )

= 0,

completing the proof. �

3.1. Well covered graphs

A graph is well covered if every maximal set of independent vertices has the same cardinality.
The graph C4, for instance, is well covered with independence number 2, while C6, a graph
with independence number 3, is not well covered, since it contains maximal independent
subsets of cardinality 2. Well covered graphs have attracted considerable attention; see [26]
for an extensive survey. We omit the proof of the following simple result.
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Proposition 2 If G and H are well covered, then G[H ] is also well covered.

Denote by [1, β] the set {1, 2, . . . , β}. As in [6], Lk
β (where k is a positive integer) is the

‘lattice graph’ with vertex set [1, β]k , in which two k-tuples are joined by an edge if and
only if they agree in a coordinate. The next result is sufficiently simple that we can state it
without proof.

Proposition 3 For β, k ≥ 2, the graph Lk
β is well covered with independence number β.

The graphs Lk
β were considered in [6], where the following was shown.

Theorem 6 [6] The independence polynomials i(Lk
β, x) have all real, negative roots.

Further, if 2k−1 ≥ β ≥ 1 then the smallest root y(k)
β of i(Lk

β, x) lies in the interval

−β < y(k)
β < −β(1 − 2−k).

By taking the lexicographic product of the Lk
β with complete graphs, we find below that

the independence roots which arise are real and dense in (−∞, 0]. Complete graphs are
obviously well covered (with independence number 1), and i(Kn, x) = 1+nx . Proposition
2 then implies that Lk

β[Kn] is well covered, and, by Eq. (1), i(Lk
β[Kn], x) = i(Lk

β, nx).

Theorem 7 The independence roots of the family {Lk
β[Kn]} are real and dense in (−∞, 0].

Proof: Since i(Lk
β, x) has all real roots, so too does i(Lk

β[Kn], x) = i(Lk
β, nx). Let s ∈

(−∞, 0] and ε > 0 be given. We will show that there are positive integers β, k and n such
that i(Lk

β[Kn], x) = i(Lk
β, nx) has a root in the interval (s − ε, s + ε). Begin by choosing

a positive integer n large enough that the interval n · (s − ε, s + ε) ≡ (ns − nε, ns + nε)
contains some integer β ≤ −2. By Theorem 6, there is a number k such that i(Lk

β, x) has
a root r in that interval. Then r/n ∈ (s − ε, s + ε), and

i

(
Lk

β[Kn],
r

n

)
= i

(
Lk

β, n · r

n

)
= i

(
Lk

β, r
) = 0,

completing the proof. �

The following is a direct consequence of Theorems 5 and 7.

Corollary 1 The independence roots of the family Lk
β[Kn][K̄ m] are dense in C.

The family Lk
β[Kn][K̄ m] is well covered, since empty graphs K̄ m are obviously well

covered. Thus, Theorem 7 and Corollary 1 imply that Theorem 4 is true even when restricting
to well covered graphs.



LOCATION OF ROOTS OF INDEPENDENCE POLYNOMIALS 279

3.2. Comparability graphs

A simple graph G is a comparability graph if it has a transitive orientation, that is, an
orientation of its edges such that if x → y and y → z then x → z. Comparability graphs
are also closed under graph composition.

Proposition 4 If G and H are comparability graphs, then G[H ] is also a comparability
graph.

Proof: Orient the graph G[H ] by (a, x) < (b, y) if and only if a < b (in G) or a = b
and x < y (in H ). This is a transitive orientation of G[H ]. For suppose (a, x) < (b, y) and
(b, y) < (c, z). If a = b = c, then x < y and y < z, and so x < z by transitivity of H ,
whence (a, x) < (c, z). If instead a = b < c or a < b = c or a < b < c, then a < c
by transitivity of G, and so (a, x) < (c, z). This completes the proof, as there are no other
possibilities. �

Contained in the collection of comparability graphs are paths, complete graphs and empty
graphs. We omit the proof of this basic fact.

Proposition 5 Paths, complete graphs and empty graphs are all comparability graphs.

Together with Proposition 4, this implies:

Corollary 2 The graphs Pn1 [Kn2 ] and Pn1 [Kn2 ][K̄n3 ] are comparability graphs.

Analogous to what we did for well covered graphs, we will show that the family {Pn1 [Kn2 ]}
has real independence roots which are dense in (−∞, 0]. It then follows from Theorem 5
that the complex independence roots of the family {Pn1 [Kn2 ][K̄n3 ]} are dense in all of C.

We begin with paths, themselves.

Theorem 8 The independence roots of the family {Pn} are real and dense in (−∞, − 1
4 ].

Proof: Since Pn is the line graph of Pn+1, M(Pn+1, x) = xni(Pn, −1/x2), the former
being the matching polynomial of Pn+1, and matching polynomials are known [21] to
have only real roots. It follows that i(Pn, x) has only real roots as well. The reduction in
Proposition 1 for calculating independence polynomials gives

i(Pn, x) = i(Pn−1, x) + x · i(Pn−2, x) (l ≥ 3), (6)

and so the family {i(Pn, x)} is recursive; the initial conditions are i(P1, x) = 1 + x and
i(P2, x) = 1 + 2x . Solving, we find

i(Pn, x) = α1(x)λ1(x)n + α2(x)λ2(x)n,
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where

λ1(x) = 1 + √
1 + 4x

2
, λ2(x) = 1 − √

1 + 4x

2

and

α1(x) =
√

1 + 4x + (1 + 2x)

2
√

1 + 4x
, α2(x) =

√
1 + 4x − (1 + 2x)

2
√

1 + 4x
.

The non-degeneracy conditions of the Beraha-Kahane-Weiss theorem (Theorem 3) are
therefore satisfied, and part (i) of that theorem implies that among the limits of roots are
those z for which

|λ1(z)| = |λ2(z)|,

which simplifies to

|1 + √
1 + 4z| = |1 − √

1 + 4z|,

implying that
√

1 + 4z is purely imaginary. Thus 1+4z ≤ 0, i.e., z ≤ −1/4, which is what
we wanted to show. �

By composing with complete graphs, we can fill up the rest of the negative real axis.

Theorem 9 The independence roots of the family Pn1 [Kn2 ] are real and dense in (−∞, 0].

Proof: From Theorem 8, independence roots of the graphs Pn1 [K1] = Pn1 are real and
dense in (−∞, −1/4]. Let s ∈ (−1/4, 0) and ε > 0 be given. Then there are positive
integers n1 and n2 for which i(Pn1 [Kn2 ], x) = i(Pn1 , n2x) has a root in (s − ε, s + ε).
Indeed, choose n2 large enough that n2s ≤ −1/4. Then, from Theorem 8, there is a number
n1 such that i(Pn1 , x) has a root r ∈ n2 · (s − ε, s + ε) ≡ (n2s − n2ε, n2s + n2ε). But then
1
n2

· r ∈ (s − ε, s + ε) and i(Pn1 [Kn2 ], 1
n2

· r ) = i(Pn1 , n2 · r
n2

) = i(Pn1 , r ) = 0, completing
the proof. �

By Theorem 5, compositions with empty graphs will then fill up the complex plane.

Corollary 3 The independence roots of the graphs Pn1 [Kn2 ][K̄n3 ] are dense in C.

Hence, Theorem 4 remains true when we restrict to comparability graphs.
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4. Concluding remarks

It may be of interest to study the independence roots of yet further classes of graphs. Some
common ones include chordal, interval, claw-free, and line graphs.

It is known (cf. [32]) that interval graphs are chordal, and line graphs are claw-free. The
reader can verify that the graphs Pn1 [Kn2 ] are chordal, interval, and claw-free, while graphs
Pn1 [Kn2 ][K̄n3 ] (n3 ≥ 2) are neither. Thus, real independence roots of chordal, interval,
or claw-free graphs are dense in (−∞, 0], while further investigation would be necessary
to determine where the complex roots of those families lie. Finally, since independence
polynomials of line graphs are essentially just matching polynomials, their roots are real
and negative [21]. Paths Pn are line graphs, while Pn1 [Kn2 ] and Pn1 [Kn2 ][K̄n3 ] are not.
Therefore, line graphs have independence roots which are dense in at least (−∞, − 1

4 ], but
it remains to be seen whether they are in fact dense on the entire negative real axis.
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