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Abstract. It is known that every group which acts transitively on the ordered edges of the cubic tree
Y3, with finite vertex stabilizer, is isomorphic to one of seven finitely presented subgroups of the full
automorphism group of r3-one of which is the modular group. In this paper a complete answer
is given for the question (raised by Djokovic and Miller) as to whether two such subgroups which
intersect in the modular group generate their free product with the modular group amalgamated.
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1. Introduction

The cubic tree is the unique circuit-free connected graph all of whose vertices
have degree 3. A copy of this graph (called F3) may be constructed by using
the modular group M, the group with presentation M = (a, h\a2 - h3 = 1), as
follows: Let H - (h), take the left cosets of H in M as vertices, and join the
cosets xH and yH by an edge if and only if x-1y € HaH. Thus the vertex H is
joined to aH, haH, and h2 aH, while aH is joined to H, ahaH, and ah2aH, and
so on; in fact, the vertices of this graph are in one-to-one correspondence with
all reduced words in a and h (and h2) which, apart from the identity, end in a.

Note that elements of M induce automorphisms of T3 by left multiplication,
and, for example, multiplication by h may be viewed as a rotation about the
vertex labeled H, while a may be thought of as a reflection, interchanging H
with aH, the other neighbors of H with the other neighbors of aH, and so
on. In particular, the action of M is transitive on the vertices of F3 and is
sharply transitive on its arcs (ordered edges); in other words, the action of M
is arc-regular on F3. Of course, the cubic tree has many more automorphisms
than these. Indeed, given any path (v0, v1, ..., vn-1, vn) of length n in F3, there
are automorphisms fixing each vertex vi on this path and interchanging the other
two vertices adjacent to vn; it follows that Fa is highly arc-transitive: its full
automorphism group is transitive on paths of length n, for all n > 0.

Now clearly the stabilizer (in the full automorphism group) of any given
vertex is infinite. On the other hand, there are subgroups which act transitively
on the arcs of F3 but which have a finite vertex stabilizer; for example, in the
modular group M the stabilizer of the vertex labeled H is the subgroup H itself,
which is of order 3. Up to isomorphism, however, there are only seven such



210 CONDER

subgroups; this was proved some years ago by Djokovic and Miller in [4] by
extending a theorem of Tutte concerning finite trivalent graphs with arc-transitive
automorphism group (see [5] and [6]). Specifically, Djokovic and Miller showed
that if K is a group which acts transitively on the arcs of the cubic tree F3 and if
the stabilizer in K of a vertex of P3 is finite, then K must be isomorphic to one
of seven finitely presented subgroups of the full automorphism group of F3 (one
of which is the modular group). They also investigated relationships between
these subgroups, describing them in terms of amalgams, and obtained results for
the associated finite trivalent graphs — for example, a classification of those with
vertex-primitive automorphism group.

At the end of [4] a number of open problems were listed. Djokovic himself
considered Problem 6 and one case of Problem 5 in [2], but he made some
unfortunate errors, which he later resolved partially in [3]. Problems 1 to 3,
questions concerning the existence of certain types of finite trivalent graphs, were
answered affirmatively by Conder and Lorimer in [1].

In this paper a complete solution is given for Problem 5, the question of
whether two arc-transitive subgroups of Aut(r3), say, K and L, each with a
finite vertex stabilizer and intersecting in the modular group, generate their free
product K M L with the modular group M amalgamated. (The answer turns
out to be "no" if K or L acts transitively on paths of length 5 in r3, and is
"yes" in all other cases.) Problem 6 and related matters are discussed briefly in
Section 5.

2. The Seven Groups

Unified presentations for the seven isomorphism types of subgroup of Aut(r3)
acting arc-transitively on F3 with a finite vertex stabilizer are given in [1] as
follows:
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These correspond, respectively, to the amalgams 1', 2', 2", 3', 4', 4", and 5' given
in [4] with, for example, the generators h, a, p, q, r, and s for our group G5

satisfying exactly the same relations as do the elements ae, y, c, d, b, and e in
the amalgam 5'.

Each of the groups Gn (for n = 1, 3, 5) and Gi, (for n = 2, 4 and i = 1, 2)
acts transitively on paths of the appropriate length n in T3, with vertex stabilizer
H generated by the element h when n = 1, by h and p when n = 2, by h,p,
and q when n = 3, by h, p, g, and r when n = 4, and by h, p, q, r, and s when
n = 5. These vertex stabilizers are isomorphic to C3, S3, S3 x C2, S4, and S4 x C2

of orders 3, 6, 12, 24, and 48, respectively, and just as in Section 1, the vertices
of T3 may be taken as the left cosets of H in each case, with xH adjacent to
yH if and only if x-1y e HaH.

In particular, the second generator a interchanges the vertex H with one of
its neighbors, namely, aH, and this automorphism has order 2 in the cases of
G1, G1,G3, G1, and G5, but it has order 4 in the cases of G2 and G4. Moreover,
in each of the groups G1, G3, G4, and G5, the subgroup generated by h and a
is arc-regular on T3 and is permutation isomorphic to G1, the modular group.

Conversely, Djokovic and Miller proved the following in [4]: every arc-
regular subgroup M of Aut(r3) is isomorphic to G1, is contained in unique
subgroups isomorphic to G1 and G3 (acting regularly on paths of lengths 2 and
3, respectively), and is contained in two subgroups isomorphic to G1 (acting
regularly on paths of length 4), each of which, in turn, is contained in a unique
subgroup isomorphic to G5 (acting regularly on paths of length 5). This situation
is conveniently described by Figure 1, which is more or less a copy of Figure 5
in [4]. In fact, the single copy of G1 is the normalizer of the given subgroup M
in Aut(r3), and conjugation by any of its elements not in M interchanges the
two copies of G1 as well as the two copies of G5 (see the proof of Proposition
13 in [4]).

3. Restatement of the Problem

Problem 5 at the end of [4] can now be stated as follows: if K and L are two
of the six subgroups in Figure 1 that properly contain the given subgroup M,
with K n L = M, then is (K, L) the free product K * L with the subgroup M
amalgamated, or do there exist nontrivial elements of K M which act trivially
on T3?
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Figure 1.

Clearly, there are seven cases to consider, namely, where K and L are
isomorphic in some order to G1 and G1, to G1 and G5, to G3 and G1, to G3 and
G5, to G1 and G1 (distinct copies), to G1 and G5 (in distinct copies of G5), or
to G5 and G5 (distinct copies). As it turns out, we shall not have to deal with
all of these because the solutions in some cases are easy consequences of the
others; also, the case of G1 and G1 was settled by Djokovic in [2] and [3]: these
two subgroups do generate their free product with G1 amalgamated.

Before we proceed to the solution (in Section 4) it is worthwhile to note that
in each of the groups G1, G3, G1, and G5 as presented in Section 2, the relations
provide a set of rewriting rules for words in the generators. For example, in
G5 they imply that ph = hp, qh = hr, rh = hpqr, and sh = h-1s, while they also
imply that pa = aq, qa = ap, ra = as, and sa = ar, so that every element of this
group can be uniquely written in the form uv, where u e (h, a) and v € (p, q, r, a).
Indeed, the same sort of decomposition occurs in all these groups, as explained
in [1, Thm. 1.1].

4. Solution

We first deal with the case where K and L are distinct copies of G5 containing
the given subgroup M (isomorphic to G1).

Let h, a, p, g, r, and s be generators for K that satisfy the relations for G5 as
given in Section 2, and such that (h, a) = M. Also, let N be the normalizer of
M in Aut(r3), and choose P in N such that h, a, and P generate N and satisfy
the relations given for G1—with P in place of p. Then without loss of generality,
the conjugates of h, o, p, q, r, and s by P may be taken as generators for L that
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satisfy the relations for G5 because P - 1 KP = L. In particular, these generators
are ft-1 (= P - 1hP), a (= P-1aP), PpP, PqP, PrP, and PsP, where P-1 = P.

Now consider the following elements of the subgroup generated by K
and L: f1 = (pPsP)2, f2 - (gPrP)2, f3 = (rPqP)2, f4 = (aPpP)2, f5 =
(pgrPpgrP)2, f6 = (pqaPpqaP)2, f7 = (prsPprsP)2, and f8 = (qrsPqrsP)2. Us-
ing the relations for G1 and G5, we will show that each of these elements
acts trivially on the cubic tree F3. To do this, we use the fact that every
vertex of F3 corresponds to a left coset uH, where u is a reduced word in
a, h, and h2 (not ending in ft or h2) and H is the stabilizer in Aut(r3) of
the vertex fixed by ft; in particular, this means an automorphism g acts triv-
ially on T3 if and only if guH = uH for all u e (h, a). Also, we note that
H contains each of the elements H (for 1 < i < 8) defined above, because
p, q, r, s, and P are all in H. Moreover, the rewriting rules involving ft and
a yield the following: f1h = hf1, f2h = hf3, f3h = hf5, f4h = hf4, f5h =
hf2, f6h = hf7, f7h=hf8, f8h = h f 6 , and f1a = af2 f2a = af1, f3a = af4, f4a =
af3, f5a = af6, f6a = af5, f7a = af7, f8a = af8. (For example, f3h = hf5 since
rPqPh = rPqh -1P = rPh -1pqrP = rhPpqrP = hpqrPpqrP.) Clearly, these im-
ply that for 1 < i < 8 and for every u e (h ,a) we have fiu = ufj for some j, and
thus fiuH = uH. In other words, each fi fixes every vertex of F3, as claimed.
Hence in this case K and L do not generate their free product with amalgamated
intersection.

The same argument holds for the cases where K and L are isomorphic to
G1 and G5 or to G3 and G5, because every copy of G3 contains a copy of G1
and (as noted earlier) conjugation by any element of the latter group not in the
intersection M produces a second copy of G5.

Also, a similar thing happens in the case where, say, K is isomorphic to
G5 and L is a copy of G1 not contained in K: If ft, a, p, q, r, s, and P are as
before, then the elements h-1, a, pq, qr, and ps satisfy the relations given for G1
and generate the unique copy of G1 in K that contains M, so their conjugates
h, a, PpgP, PgrP, and PpsP (by P) also satisfy those relations and generate L. But
now, for example, using the fact obtained above that (pPsP)2 = 1 in Aut(P3), we
find p(PpsP)a(PpaP) = pPs(pPsPp)sP = PsPpP(PsP)sP = PsPpsPsP, which
has order 2, and therefore the element (p(PpsP)s(PpsP))2 acts trivially also.
Thus, again, K and L do not generate their free product with M amalgamated.

Next, we turn to the case where K is isomorphic to G3 and L is isomorphic to
G1. Here the approach used above does not work because no nontrivial element
of K M L acts trivially on F3. This time, let ft, a, p, q, and r be generators for
L that satisfy the relations for G1 as given in Section 2, with (h, a) = M, and let
P and Q be elements of K such that ft, a, P, and Q generate K and satisfy the
relations for G3: h

3 = a2 = P2 = Q2 = 1, PQ = QP, Pft = hP, QhQ = h-1, and
aP = Qa. (Note that the p, q, r, and P in this case are not the same as they were
earlier.) The two sets of relations together imply that every element g of (K, L)
can be rewritten in the form g = uv, where u € h, a) and v e (P, Q, p, g, r),
and then, since each of P, Q, p, q, and r lies in the stabilizer H of the vertex of
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T3 labeled H, we have gH = uvH = uH and gaH = uvaH = ua(ava)H = uaH.
It follows that the only elements of (K, L) which fix both the vertex labeled H
and its neighbor aH are those in (P, Q, p, q, r), and therefore any element of
(K, L) which acted trivially on F3 would have to be a word in P, Q, p, g, and r.

Assume now that (K, L) contains such an element, say, g = X1y1X2y2 • • • Xmym,
with 1 = Xi e (P, Q) and 1 = yi e (p, g, r) for 1 < i < m. Because (P, Q) &
C2xC2 there are three possibilities for each Yi, namely, P, Q, and PQ, and because
{p, g, r} is dihedral of order 8 there are seven possibilities for each Xi, namely,
p, q, r. pq) pr, qr, and pgr. Also, since g fixes every vertex of T3, we know the same
is true of ugu-1 for all u e (K, L). We shall prove, however, by induction on m,
that for any nontrivial element y' distinct from ym in (p, g, r), there is an element
u in M such that ug = uX1y1X2y2 • • • Xmym = X1X1x2y2 • • • Xm-1ym-1Xmy'u' for
some u' in M; it then follows that y-1y'v!u-1(= g-1ugu-1) fixes every vertex, a
contradiction, and this shows that no such element g can be found.

When m = 1 take u - (haha)k if X1 = P, or u = (h-1ah-1a)k if X1 = Q,
or u = (h-1aha)k if X1 = PQ, with k = 1, 2, 3, 4, 5, or 6, chosen so that
uX1y1 = X1y'u', where y' is the given element distinct from y1 in (p, g, r). This
works because in each case uX1 = X1(hah-1a)k, and the element hah-1a induces
a 7-cycle by left multiplication on the left cosets of M that contain nontrivial
elements of (p, g, r): hah-1ap = rh-1aha e rM, and, similarly, hah-1ar e
pqrM, hah-1apqr 6 prM, hah-1apr € pgM, hah-1apq 6 qrM, hah-1aqr 6 gM,
and hah-1aq 6 pM.

For the rest of the proof we make the (stronger) inductive hypothesis that for
any choice of nontrivial elements y1, y2, ..., jm-1 from (p, g, r), there exists an
element w in M such that w X 1 X 1 x 2 y 2 • • • Xm-1ym-1 = X1y1X2y2 • • • Xm-1ym-1w'
for some w' in M. Use of this hypothesis allows us to make specific choices
for the elements y1 y2 ,• • • y m - 1 , depending on which of P, Q, and PQ the Xm
happens to be.

Take the following elements of M: u1 = hahahah-1a, u2 = hahah-1aha, u3 =
hah-1ahaha, u4 = h-1ahahaha, u5 = hah-1ah-1ah-1a, u6 = h-1ahah-1ah-1a,
u7 = h-1ah-1ahah-1a, and ug = h-1ah-1ah-1aha. All of these are conjugates of
u1 or u-1 in M, and, in fact, the relations in K yield the following (some of
which are redundant):
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Similarly, the relations in L give also u1pr = pru7, u2pqr = pqru6, u3pq =
pgu5, u4p = pu8, u5pq = pqu3, u6qr = qru2, u7pr = pru1, and U8P = pu4. Thus for
each of these elements Ui (1 < i < 8) and for every X chosen from {P, Q, PQ}
there is a nontrivial element y in (p, q, r) such that UiXy = Xyuj for some j. The
same is also true of powers of the ui; moreover, for every X in {P, Q, PQ} and
for every element y in (p, q, r) we find u3

iy = Xyz for some z e M. On the other
hand, y can always be chosen so that the element z does not have this property,
indeed, so that zP = Pz', where z' induces a 7-cycle on the left cosets of M that
contain nontrivial elements of (p, q, r). For example, u3

7Pq= Pu3
4q = Pqz, where

z = h-1ahah-1ahahah-1ah-1ah-1ahahahah-1a, but then z'p = gz" with z" in M
and, similarly, z'q € qrM, z'gr € pgM, z'pq € prM, z'pr € pqrM, z'pqr e rM, and
z'r e pM. The same situation occurs when P is replaced by Q or PQ. In fact, in
all cases y can be chosen so that P-1zP, Q-1zQ, and (PQ)-1zPQ act as 7-cycles
in this way: when u3X = Xu3 and k = 1, 2, 3, 4, 5, 6, 7, 8, respectively, taking
y = p, r, g, pr, p, g, r, pg will do the trick.

It follows that if we take u = u3, say, then (if m > 2) the elements
y1,y2 • • •, ym-2 can be chosen such that uX1y1X2y2 • • • Xm-2ym-2 = X1y1X2y2 • • •
Xm-2ym-2u

3
j for some j, and then ym_1 can be chosen so that u3

jXm-1ym-1Xm =
Xm-1ym-1zXm = Xm-1ym-1Xmz', where the element z' e M induces a 7-cycle on
the left cosets of M that contain nontrivial elements of (p, q, r) in the manner
illustrated previously. In particular, given any nontrivial y' in (p, q, r) we know
(z')kym € y'M for some fc, and then (finally) we obtain
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as required. This is sufficient to complete the induction and thereby also the
proof that no nontrivial element of (K, L) can act trivially on T3. In particular,
(K, L) is isomorphic to K*M L.

We are left with just two cases to consider, namely, one where K and L are
copies of G1

2 and G1
4and the other where K and L are distinct copies of G1

4

(intersecting in M = G1). Both of these cases are covered by the one above,
because the unique copy N of G1

2 that contains M is itself contained in a copy
of G3, and, further as N is the normalizer of M in Aut(T3), two copies of G1

4 lie
inside the subgroup generated by N and any single copy of G1

4 (which intersects
N in M). Thus in both remaining cases the subgroups K and L generate their
free product with the modular group M amalgamated.

Incidentally, the case of G1
2 and G1

4was solved earlier by Djokovic in [2]
and [3] by using a similar method (albeit in a quite different form) to the
one above. This case may also be handled by choosing h, a, p, q, T, P, and
Q as in the case of G3 and G1

4 and proving by induction that for all m > 1
the group M = (h, a} acts transitively (by left multiplication) on the set of
left cosets of M that contain elements of the form PQy1PQy2 • • • PQym, with
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1 # yi € (p, q, r) for 1 < i < m (so that none of these elements can act trivially
on T3), by considering the effect of powers of the element (haha)3 on cosets
of the form PQpqrPQpqr • • • PQpqrPQpPQyM, with 1 # y € (p, q, r). Such a
proof is considerably easier than either of the other two.

The result we have achieved is the following:

THEOREM. Suppose K and L are two arc-transitive subgroups of the automorphism
group of the cubic tree, each with finite vertex stabilizer, and intersecting in an
arc-regular subgroup M (which is necessarily isomorphic to the modular group). If
neither K nor L acts transitively on paths of length 5, then the subgroup generated
by K and L is isomorphic to their free product K *M L with amalgamated subgroup
M, whereas in all other cases K *M L contains nontrivial elements which act trivially
on the cubic tree.

5. Related Questions

Problem 6 at the end of [4] may also be restated as follows: if K and L
are distinct copies of the group G1

4 intersecting in an arc-regular subgroup M
(isomorphic to the modular group), as in Problem 5, and if K+ and L+ are the
subgroups of K and L, respectively, generated by the stabilizers of vertices of
T3, then is (K+, L+) an infinite simple group?

Once again, let h, a, p, q, and r be generators for K that satisfy the relations
for G1

4 as given in Section 2, with (h, a) = M, and choose P in the normalizer N
of M in Aut(T3) so that h, a, and P satisfy the relations for G1

2 then L = P - 1KP,
generated by h, a, PpP, PqP, and PrP. Now, since each of h, p, q, and r and their
conjugates in K fixes at least one vertex, we have K+ = (h, aha, p, q, r) of index
2 in K, and by the same argument we also have L+ = (h, aha, PpP, PqP, PrP);
consequently, (K+, L+) = (h, aha, p, q, r, PpP, PqP, PrP), which has index 2
in (K, L), with transversal {1, a}. In particular, because the latter is a Schreier
transversal, it is not difficult to obtain a presentation for the group (K+, L+)
in terms of these generators by using the Reidemeister-Schreier process—the
relations are all obvious consequences (under conjugation by a or P or both) of
those for K.

The aim of [2] was to prove this group to be simple, thereby providing a
new example of a finitely presented infinite simple group (and, incidentally, also
an example of a finite amalgam that cannot be embedded in any finite group).
Unfortunately, a subtle error was made in [2], and in the sequel [3] it was shown
instead that the group is residually finite! (Also in [3] it was shown that this group
has PSL,2(n) as a finite quotient, but, in fact, it has an even smaller nontrivial
quotient, namely PSL2(7), because the linear fractional transformations
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of the projective line over GF(7) satisfy all those relations required of ft, a,p,q,r,
and P in the group generated by K and N above and themselves generate
PGL2(7), with h*, p*, q* and T* and their conjugates by a* and P* giving
PSL2(7), the unique subgroup of index 2.)

The answer for Problem 6 in [4] is a definite "no." On the other hand, it
may still make sense to ask a similar question about another group occurring
in this context, as follows: Suppose that K and L are copies of the groups G1

4

and G3 in Aut(T3) that act regularly on paths of lengths 4 and 3, respectively,
and intersecting in the arc-regular subgroup M(= G1). Let h, a, p, q, and r be
generators for K that satisfy the relations for G1

4, with (h, a) = M, and choose
P and Q in L so that h, o, P, and Q satisfy the relations for G3. As in the
case of G1

4 and G1
2, we know that (K, L) is isomorphic to the free product of

K and L with M amalgamated, so (K, L) has a presentation in terms of the
generators ft, o, p, q, r, P, Q, with relations h3 = a2 = p2 = q2 = r2 = P2 =
Q2 = 1, pg = gp, pr = rp, rq = pgr, PQ = QP, h - l ph = q, h - lqh = pg, rhr =
h-1, Ph = hP, QhQ = h-1, ap = pa, aq = ra, and aP = Qa. Now this group has
a normal subgroup S of index 8 generated by h,aha,p,PpP,QpQ, and PQpPQ,
with dihedral complement (a, P, Q). (Note that S contains q and T and their
conjugates as well, for h -1ph = q, (aha) - lp(aha) = r, h - lPpPh = PqP, and so
on.) By letting A, 5, C, D, E and F, respectively, be the given generators for S
and using the Schreier transversal {1, a, P, Q, PQ, aP, aQ, aPQ} as (Schreier)
transversal, the following presentation for S is obtainable from the Reidemeister-
Schreier process:

The question is this: can S be a simple group? Or, more generally, does S have
a nontrivial finite quotient? It would certainly be nice if the answers were "yes"
and "no" to these questions, particularly since the group S would then provide
a concrete example of a finite amalgam not embeddable in any finite group. On
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the other hand, any conjecture to this effect on the author's part would be based
on the flimsiest of evidence—only that he has not been able to find (in 5) any
proper subgroup of finite index! The questions remain open.
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