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Abstract. We consider the following (solitary) game: each node of a directed graph contains a pile
of chips. A move consists of selecting a node with at least as many chips as its outdegree, and
sending one chip along each outgoing edge to its neighbors. We extend to directed graphs several
results on the undirected version obtained earlier by the authors, P. Shor, and G. Tardos, and we
discuss some new topics such as periodicity, reachability, and probabilistic aspects.

Among the new results specifically concerning digraphs, we relate the length of the shortest
period of an infinite game to the length of the longest terminating game, and also to the access time
of random walks on the same graph. These questions involve a study of the Laplace operator for
directed graphs. We show that for many graphs, in particular for undirected graphs, the problem
whether a given position of the chips can be reached from the initial position is polynomial time
solvable.

Finally, we show how the basic properties of the "probabilistic abacus" can be derived from our
results.

Introduction

Let G be a directed graph and let us place a pile of chips on each node of
G. We are allowed to change this arrangement of chips as follows: we select
a node which has at least as many chips as its outdegree, and move one chip
along each outgoing edge to the neighbor at the other end. We call this step
firing this node. We can repeat this as long as we find some node that can be
fired. A (finite or infinite) sequence of firings is called a chip-firing game. The
sequence of points fired is called the record of the game.

There are a number of natural questions to ask: Will this procedure be finite
or infinite? If finite, how long can it last? If infinite, how soon can it cycle?
What role is played by the choices that are made? How can one determine if a
given distribution of chips can be transformed into another given one by firings?

Chip-firing games were introduced, independently, at least twice. This is not
counting the relation to general Petri nets, of which they are (untypical) special
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cases, or the obvious similarity with neural nets, which remains unexplored.
Engel [7, 8] considered a chip-firing procedure he called the "probabilistic

abacus," as a method of determining the absorption probabilities and access
times of certain Markov chains by combinatorial means. As we shall show in
Section 6, the probabilistic abacus may be viewed as a special case of chip firing
in our sense, and its basic properties are easy to derive in this setting.

Spencer [20] introduced a diffusion-like process on the line as a tool in
analyzing a certain "balancing" game. His process may be viewed as chip firing
on a very long undirected path. Anderson, Lovasz, Shor, Spencer, E. Tardos,
and Winograd [3] studied the process in greater detail, and observed, among
other things, the key property of independence of the length of the game, and
of the final position, from the special choices made during the process. The
procedure was extended from paths to general graphs by Bjorner, Lovasz and
Shor [4], who especially studied the undirected case. G. Tardos [21] proved
that if an undirected game terminates at all, then it terminates in a polynomial
number of steps, while Eriksson [10] showed that a terminating directed game
can be exponentially long.

The analysis of chip-firing games in this paper relies on two components. One
is the formal language approach developed in [4]: The records of all possible
chip-firing games from a given initial position give a language with rather strong
exchange properties. The other is the analysis of the Laplace operator of the
directed graph, and its close connections with chip firings and random walks on
the graph. The connection with the Laplace operator in the undirected case was
already observed in [4]; the extension to the directed case, however, is not quite
straightforward since the Laplace operator is not symmetric any more and we
loose its spectral decomposition as a tool. As an application of these methods,
we show that a terminating game on a strongly connected graph is not longer
than a polynomial in its size times the length of the period of a periodic game.
This in a sense extends Tardos's theorem to the directed case.

We describe an algorithm to decide if one position of chips can be transformed
into another given position by a sequence of firings. The algorithm is polynomial
in the case of undirected graphs without multiple edges, but exponential in
general. The analysis also implies that if a position on an undirected graph
without multiple edges can be transformed into another one, then it can be so
transformed by a polynomial number of moves. This does not remain true for
directed graphs.

Chip-firing games are special cases of so called "vector addition systems"
(defined in Section 1), and some of our results can be generalized to this setting.
In particular, the reachability algorithm for chip positions (Section 5) improves
some instances of the decidability results of Kosaraju [14] and Mayr [15] for
vector addition systems.

A different kind of chip-firing game, motivated by probabilistic and algebraic
considerations, has recently been introduced by Diaconis and Fulton [6]. A
common generalization of the game described here and that of Diaconis and
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Fulton appears in Eriksson [9].
We are grateful to N. Alon and P. Diaconis for helpful comments on an early

draft of this paper, and to a referee for suggesting improvements.

Preliminaries. All graphs we consider are finite and directed. Loops and multiple
edges are allowed. An undirected graph is identified with the directed graph
obtained by replacing each edge between nodes i and j by a pair of oppositely
directed edges between i and j.

For a digraph (directed graph) G = (V,E) we let n - |V| and m = |E|. We
denote by d+(k) and d - ( k ) the outdegree and indegree of the node k, respectively
(where the digraph G = (V, E) is fixed), and by di,j the number of edges from
i to j. Thus, d+(k) = E J d k , j , d - ( k ) = Eidi,k, and di,i is the number of loops
at node i. Finally, we let D = max k v d + (k) . Clearly, D < m; and if G lacks
multiple edges then D < n.

For every vector v e Rv, we denote

1. Chip firing, vector addition systems, and exchange languages

The following basic fact about chip-firing games was established in [4, Theorem
2.1 and Remark 3.4].

THEOREM 1.1. Given a directed graph G, and an initial distribution of chips, either
every legal game can be continued indefinitely, or every legal game terminates after
the same number of moves with the same final position. The number of times a
given node is fired is the same in every legal game.

The original proof was based on a formal language interpretation of chip-
firing games. This approach will be reviewed in this section, since we will make
substantial use of it again in this paper.
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A digraph is eulerian if d+(k) = d - ( k ) for every node k. Every undirected
graph is eulerian, and we shall see that many of the results (but not all of the
methods) extend from the undirected to the eulerian case without any change.

A directed graph is strongly connected if there is a directed path from i to
j, for every ordered pair of nodes i and j. A connected eulerian graph is
strongly connected. A general digraph has a uniquely induced partition into
strongly connected components. A strongly connected component which is not
connected to the outside by any edge leaving the component will be called a sink
component.
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A simpler and more direct proof was found by Eriksson [9]. Eriksson actually
proves a more general version of Theorem 1.1, where each time a node has been
fired the edges from that node may be redrawn in a predetermined manner. We
will not use this added degree of generality in this paper, but remark that it
might be of interest for the study of Markov chains with nonstationary transition
probabilities.

Let V be a finite set. A language over V is any set of finite strings (or words)
formed by elements of V. A subword of a word a is any string obtained by
deleting letters from a arbitrarily. We denote by |a| the length of the word a
and by [a] the score of a, i.e., the vector a e Z+

V whose i-th entry is the number
of times letter i occurs in a. We denote by |a| the e1-norm (sum of absolute
values of entries) of the vector a. Thus |[a]| = |a|.

A word in a language is called basic if it is not the beginning section of any
other word.

A language £ is called left-hereditary if whenever it contains a string, it contains
all beginning sections of the string. The language is called pennutable if whenever
a, B e £, [a] = [B], and ax e £ for some x € V, we also have Bx e £. Finally,
we say that £ is locally free if whenever ax € £ and ay e £ for two distinct
elements x, y e V, we also have axy € £.

Locally free permutable left-hereditary languages have many nice properties.
The following proposition summarizes some of the results from Section 2 of [4].

PROPOSITION 1.2. Let £ be a locally free permutable left-hereditary language. Then:
(i) If a, B € £ then there exists a subword a' of a such that Ba1 e £ and [Ba'] is

the entry-wise maximum of [a] and [B].
(ii) // there is a basic word then the language is finite.

(iii) Every basic word has the same score (in particular, the same length).
(iv) If £ is finite then two words a, B e £ have [a] = [0] if and only if

Property (i), called the strong exchange property, expresses that the game is an
anti-matroid with repetition; for a discussion of this connection, see [4] or [5].

The following lemma, whose proof is trivial and omitted (see [4, Lemma 2.4]),
shows that these general results can be applied to chip-firing games.

LEMMA 1.3. The records of legal games on a digraph starting from a fixed initial
position form a locally free permutable left-hereditary language. D

It is clear that the score of a word in this language determines the position
reached by the corresponding game, and that such a word is basic if and only
if that position is terminal. Therefore Theorem 1.1 is a direct consequence of
Proposition 1.2.

BJORNER AND LOVASZ
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We will later need to consider some related languages associated with digraphs.
For a language C over alphabet V, and for a vector a e Z+

V,let C[a] denote the
set of those words in £ that contain letter i at most ai times. It is straightforward
to verify the following.

LEMMA 1.4. // £ is a locally free permutable left-hereditary language then so is C[a].

In connection with chip-firing games this means that the convergence property
expressed by Theorem 1.1 remains valid if there is a capacity a, e Z+ U {00}
associated with each node i, and node i is allowed to be fired at most ai times
in any legal game.

We conclude this section with describing a more general construction leading
to locally free permutable left-hereditary languages. This leads to discussing a
real-valued version of the chip-firing game.

Let C be a convex cone in Rn (with apex in 0), and let V be a finite set of
vectors in Rn. Let b be any fixed vector in C. Let £ be the set of all sequences
v1 • • • Vk of vectors in V for which b + v1+

... + vi e C for every 1 < i < k. We call
(C, V, b) a vector addition system and £ a vector addition language. Vector addition
systems were introduced by Karp and Miller [11] with the further requirement
that b and the vectors in V have integer components and that C is the first
orthant of Rn. We will call such vector addition systems integral. They are also
known as 'general Petri nets', see Reisig [17] or Reutenauer [18].

It is obvious that every vector addition language is left-hereditary and per-
mutable, but in general not locally free. However, let us assume that the following
holds:

(*) for every facet aTx > 0 of C, there exists at most one vector v e V with aTv < 0.

PROPOSITION 1.5. // V and C have property (*), then the vector addition language
defined by them starting at any b e C is locally free.

Proof. Let v1 • • • Vku e £ and v1 • • • Vkw e £. Assume that v1 • • • vk,uw & £, then
we must have that b + v1 + + Vk + u + w & C. So there exists a facet aTx > 0
of C which is violated by b + v1 + • • • + vk + u + w. But since this facet is
satisfied by both b + v1 + • • • + Vk + u and 6 + v1 + • • • + Vk + w, we must have
aTu < 0 and aTw < 0, which contradicts assumption (*). D

Any chip-firing language on a loop-free digraph is a special case of an integral
vector addition language, where C is the nonnegative orthant in Rv, and for
every node i we take the vector Vi defined by
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Clearly this vector system satisfies (*).
The definition of a vector addition language and of property (*) can easily be

generalized so that chip-firing languages of digraphs with loops are special cases
and Proposition 1.5 remains valid. We leave the details to the reader.

We now describe the real-valued analogue of the chip-firing game, which can
be called the mass-firing game. Here we have a fixed underlying digraph G with
at most one edge from i to j, for every pair of nodes i and j, and a fixed
weight function (i, j) e E —> di,j e R+. As initial position we have a real mass
distribution on the nodes p : V —» R+. If pi > d+(i) = £di,j then it is legal to
fire node i, meaning that a new position is created by removing d+(i) from the
mass at i and adding di,j to the mass of each neighbor j. A game is played
by successive choices of legal moves. Propositions 1.2 and 1.5 show that the
R-valued mass-firing game satisfies the basic convergence property expressed by
Theorem 1.1.

A Z-valued mass-firing game is clearly equivalent to our chip-firing game: just
replace each weighted edge di,j € Z+ by that many parallel edges from i to j, and
each mass pi € Z+ by that many chips. A Q-valued mass-firing game is equivalent
to a Z-valued one by scaling. However, R-valued mass-firing games are truly
more general than chip-firing games. The reason that we have chosen to remain
in the Z-valued setting in this paper is (in addition to the intuitive appeal of the
chips model) that the analysis of periodicity, which plays an important role here,
would otherwise be more complicated. The R-valued mass-firing games might be
of interest for the study of Markov chains with irrational transition probabilities.

2. Finite termination

Let us recall from [4] the following facts about chip-firing games on undirected
graphs, which are very helpful in distinguishing finite and infinite games in the
undirected case: (i) [4] if a game is infinite, then every node gets fired infinitely
often; (ii) [20] if a game is finite, then there is a node that is never fired. Now, (i)
extends to digraphs in the following form without any difficulty. See Proposition
4.4 and Corollary 4.5 for an extension of (ii).

LEMMA 2.1. In every infinite game on a digraph, every node in some sink component
is fired infinitely often.

Proof. If there is an edge from k to j, and node k is fired infinitely many times
then so is j (otherwise an infinite number of chips would build up on j after
it has stopped firing). Hence, if k is fired infinitely often then so are all nodes
reachable from k. Since some node k must be fired infinitely often and some
sink component is reachable from k, this completes the proof. n

BJORNER AND LOVASZ
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It should be observed that a sink (a node k with d+(k) = 0) according to the
rules can be fired at any time. This gives a degenerate firing which does not
affect the current position. It is often natural to view sinks as absorbing nodes
that can never be fired, and this can easily be achieved in our model by attaching
sufficiently many loops to them.

Given a graph, we may ask: What is the minimum number of chips that
allows an infinite game? What is the maximum number of chips that allows a
finite game? In [4] it was shown that for an undirected graph with n nodes
and m (undirected) edges, more than 2m - n chips guarantee that the game
is infinite; fewer than m chips guarantee that the game is finite; and for every
number N of chips with m < N < 2m - n, there are initial positions that lead to
an infinite game and initial positions that lead to a finite game.

For directed graphs, one of the above questions can still be answered trivially:
if G is a directed graph with n nodes and m edges, and we have N > m - n
chips, then the game is infinite (there is always a node that can be fired, by the
pidgeon hole principle), and N < m - n chips can be placed so that the game
terminates in 0 steps.

We don't know how to determine the minimum number of chips allowing an
infinite game on a general digraph. This is not a function just of the number of
nodes and edges, even if the graph is eulerian. Consider a circuit of length n
with doubled edges having symmetric orientation. By the "undirected" result, it
takes n chips to make an infinite game. But if we reverse the orientation of half
of the edges so that we get an oriented circuit with every edge doubled, then 2
chips placed on the same node start an infinite game.

The following bound can, however, be obtained.

THEOREM 2.2. Let Gbea strongly connected digraph and let h denote the maximum
number of edge-disjoint directed cycles in G. Then any game with fewer than h chips
is finite.

(Note that for the undirected case, this gives the exact result. See p. 328 for the
"note added in proof" for a strengthening, which for all eulerian graphs gives
the exact result.)

Proof. The proof extends an idea of Tardos [21]. Let C1, • • •, Ch, be a maximum
family of edge-disjoint directed cycles. While playing the game, let each cycle
"capture" the chip that first uses any of its edges; from then on, this chip has to
move along the edges of the cycle. This does not conflict with the game: when
we fire a node, we make sure that those chips which are captured should move
along the right edges, and this is possible since the cycles are edge-disjoint.

Now, by N < h there will be a cycle that does not capture any chip. This
means that the nodes of that cycle are never fired; but by Lemma 2.1, this means
that the game is finite.
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A version of Theorem 2.2 for general digraphs is obtained by letting h be
maximal such that every sink component of G has h edge-disjoint directed cycles.

BJORNER AND LOVASZ

3. The directed Laplace operator and random walks

Let G = (V,E) be a directed graph and let L e Rv*v be the matrix defined by

We call L the Laplacian of the digraph G. Note that LT1 = 0, so L is singular.
If G is eulerian then also LI = 0.

The Laplace operator of an undirected graph has received a considerable
amount of attention in connection with the study of expansion properties of
graphs and the related mixing properties of random walks on them, see e.g. Alon
[2]. The directed case is less studied.

For the analysis of the periodic properties of chip firing games in the next
section we will need a description of the null space of L, i.e., the space of all
v e RV such that Lv = 0. We will show that this space has a basis of non-negative
vectors whose supports are the sink components of G. For instance, if G is
acyclic then the null space of L is precisely the set of all vectors supported by
sink nodes.

PROPOSITION 3.1. Suppose that G = (V,E) has k sink components S 1 , • • - , S k .
Then there exist vectors v1, • • •, vk €Zv such that

(i) { v 1 , • • - , vk is a basis of the null space of the Laplacian of G,
(ii) (vi)j, > 0 for j £ Si, and (vi)j = 0 for j # Si,

(I'M) (vi)j = 1 for all j e Si, if Si is eulerian.

Proof. First assume that G is strongly connected. If D is the maximum outdegree
of G, then L + DI is a nonnegative irreducible matrix, which has an all-positive
left eigenvector 1 with eigenvalue D. Hence, by the Perron-Frobenius Theorem
(see e.g. Mine [16]), D is the largest eigenvalue of L + DI. Again, by the
Perron-Frobenius Theorem, the right eigensubspace of L + DI belonging to
D is one-dimensional and spanned by an all-positive eigenvector. But this
eigensubspace is just the null space of L. Hence L has rank n — 1 and its null
space is spanned by an all-positive vector, which (after scaling) can be assumed
to have integer components. In particular, if G is a connected eulerian digraph
then the null space of L consists of the vectors t1,t € K.

For a general digraph G we claim that no vector v with Lv = 0 can have a
non-zero entry outside the sink components. Assume that this is not so, and
let T+ = 0[resp. T-1] be the set of nodes with positive [resp. negative] entry in
V\(S1 U • • • U Sk), for some vector v in the null space. Consider the equation
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(which is equivalent to Lv = 0), and sum it for all i e T+:

On the right-hand side it suffices to sum over j e T+ UT-, since for j £ T+ UT-

either Vj = 0 or else j is contained in a sink component and there is no edge
from j to i e T+. So we obtain

where d(A,B) is the number of edges with tail in A and head in B. On the
left-hand side we obtain

and hence equation (3.1) implies

Here the left-hand side is nonpositive and the right-hand side is nonnegative,
so they must both be equal to zero. But this implies that d(i, V\T+) = 0 for
every i e T+, and hence T+ contains a sink component, which contradicts its
definition.

Since no edge connects two distinct sink components, the restriction of any
vector in the null space of L to any sink component is in the null space of
the Laplacian of that component. This component null space is, as we already
showed, one-dimensional and spanned by an all-positive vector. Let v1, • • •, vk

be all-positive vectors spanning the null spaces of the Laplacians of the sink
components S1, • • • , S k . To make them uniquely defined, it will be convenient
to scale the vi so that they have integral coordinates with no common divisor.
Abusing notation, we extend the vector vi outside Si by adding 0 entries so that
it becomes an element of Zv. The family {v1,• • • ,vk} now verifies all claims. D

Remark. For a general nonnegative matrix M with largest eigenvalue E, the
Perron-Frobenius Theorem [16] gives the existence of some nonnegative right
eigenvector associated with E. The proof method used for Proposition 3.1 can
be adapted to show that if 1 is a left E-eigenvector, then there is a basis of the
right eigensubspace of M belonging to E that consists of nonnegative vectors
with pairwise disjoint supports.
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There is an intrinsic connection between the Laplacian and random walks on
digraphs. We discuss this connection here not only because random walks are
dynamic processes intimately linked to chip firing, but also because techniques
from the theory of random walks will be used in proving the bound in Proposition
3.6 below. For general facts concerning discrete stationary Markov chains, see
e.g. Kemeny and Snell [12] or Kemperman [13].

A random walk on a digraph G is a Markov chain yo,y1 • • •» assuming values
from V(G), so that given the value of yt, the probability that yt+1 = u is
proportional to the number of edges connecting yt to u. (We assume that
d+(i) > 0 for every node i.) We shall not go into the theory of random
walks, which is particularly well developed in the case of undirected graphs; we
shall restrict ourselves to a trivial and a slightly less trivial connection with the
Laplacian.

A stationary distribution of the random walk on G is a probability distribution
on V(G) such that if yt has this distribution then so does yt+1. The following
lemma is a straightforward reformulation of this definition.

LEMMA 3.2. A probability distribution (qi : i € V(G)) is stationary if and only if the
vector x defined by Xi = qi/d+(i) satisfies Lx = 0. D

In particular, if G is a strongly connected digraph then there is a unique
stationary distribution on G, namely qi = d + ( i ) - X i , where x is the unique positive
solution of the equations Lx = 0, ||x|| = 1. Note that qi > 0 for all nodes i.
If G is eulerian then substitution shows that this unique vector is defined by
Xi = 1/m, and so qf = d+(i)/m, where m is the total number of edges.

The access time (or, first passage time) acc(i, j) of node j from node i is the
expected number of steps in a random walk starting at i before it hits j. We
denote by acc(G) the maximum access time between any two nodes. If G is
strongly connected then this number is finite. In fact, the following upper bound
can be derived by extending an old argument of Aleliunas, Karp, Lipton, Lovasz
and Rackoff [1]:

PROPOSITION 3.3. Let G be a strongly connected digraph with stationary distribution
q. Let i and j be two nodes connected by a directed path i = io, i1,..., ih = j- Then

Proof. Let e1 = i o i 1 . - - . e h = ih-1ih be the successive edges of the given path.
Consider a random walk. Assume that we have to wait T\ steps to see it pass
the edge e1; after that, we have to wait r2 steps to see it pass the edge e2, etc.
So after T1 + Th, steps, the walk will be at node j, and hence E(r1 + +h)
is an upper bound on the access time.

BJORNER AND LOVASZ
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By linearity of expectations, E(T1+ • • • + rh) = E(T1) + ••• + E(rh). It therefore
suffices to show that

We show this for r = 0. If d+(i) = 1 then clearly E(TI) = 1, and qi1, implies
that qi = qio < 1/2. Set d = d+(i) > 1 and q = qi. Starting from i, let E(k)
denote the expected number of steps we have to make before seeing i again, if
we start through one of the edges from i to k. Then ( 1 / d ) E k d i , k E ( k ) is the
expected number of steps starting from i until we return, which is clearly 1/q
(see [12, Theorem 4.4.5]). Hence the expected number of steps before return,
given that we don't start through e1, is

Now the probability that we will pass through e1 after the t-th visit is ( 1 / d ) ( 1 ~
(1/d))t, and hence the expected time for passing through e1 is at most

This proves the assertion.

COROLLARY 3.4. acc(G) < ||(l/qk)||.

Proof.

The next lemma expresses another connection between the access time and
the Laplacian.

LEMMA 3.5. Let G be a strongly connected digraph and i,j e V(G). Then there
exists a vector w € Rv such that

and

(Note that conditions (3.2), and in fact even the weaker conditions
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determine w uniquely.)

Proof. Let uk denote the expected number of times a random walk starting at
node i leaves node k before hitting node j. (In particular, we have Uj = 0.)
Then for every node r= i, j we have

since uk/d
+(k) is the expected number of times the random walk passes through

any one particular edge from k to r. For r = i and r = j we are off by exactly
one at the beginning and at the end, respectively, and hence

Hence, wi = Ui/d
+(i) satisfies Lw = eJ - ei and trivially w > 0 and Wj = 0.

Moreover, ||w|| = Ekuk is the expected number of steps a random walk starting
at i makes before it hits j, i.e., the access time. D

Now we formulate the result, needed in the next section, for which this detour
through random walks was made.

PROPOSITION 3.6. Let G be a strongly connected digraph and let w £ Rv with
minkWk = 0. Then

Proof. Let V+ = {i : (Lw) > 0} and V- = {i : (Lw)i < 0}. Write Lw =
E j€V+,i€V- B i j(e j - e i)> with Bij > 0- This is clearly possible since £i (Lw) i = 0.
Let w(ij) e Rv be the unique solution of

and let w' = £jev+ iev- Bijw(ij). Then L(w' — w) = 0, whence w' — w = av for
some strictly positive vector v, by Proposition 3.1. So, w' - w is either all-positive,
or all-negative, or zero. Since minkWk = 0 and w' > 0, this implies that w < w'.
Hence,
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4. Period length and game length

Let G = (V,E) be a digraph with Laplacian L. A vector v e Rv is called a
period vector for G if it is non-negative, integral, and Lv = 0. The name comes
from the observation that if v is a period vector in a chip-firing game on G, and
every node i is fired vt times, then the beginning and ending positions are the
same. Such a game can therefore be repeated any number of times. A period
vector is primitive if its entries have no non-trivial common divisor.

The discussion in connection with Proposition 3.1 implies the following:

PROPOSITION 4.1. (i) Every strongly connected digraph G has a unique primitive
period vector VG. It is strictly positive, and all period vectors are of the form
tvG,t = 1,2, • • • .

(ii) If G is connected eulerian, then VG = 1.
(iii) In general, the period vectors of a digraph are exactly the vectors of the

form Ek
i=1 LiviLieZ+, where v1, • • •, Vk are the primitive period vectors of the sink

components.

We call \VG\ the period length per(G) of the strongly connected digraph G. We
extend this definition to all digraphs by defining per(G) as the sum of per(H)
over all strongly connected components H of G. For instance, if all strongly
connected components of G are eulerian then per(G) = n.

It follows from Lemma 3.2 that for the stationary distribution q on a strongly
connected digraph G and v = VG:

Corollary 3.4 implies that

and hence:

PROPOSITION 4.2. For every strongly connected digraph,

(We suspect that the quotient nD we lose here is far too generous.)
Our aim in this section is to relate the period length of G to the maximal

length of a finite game playable on G. For this we will first derive a crucial
combinatorial property of the game language, which will also be important for
the proof of Theorem 5.1.
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LEMMA 4.3. Let v be a period vector of the digraph G, and let a be a legal chip-firing
game (from some initial distribution). Let a' be the subword obtained by deleting
the first vi occurrences of node i in a for all i (if i occurs fewer then vi times, we
delete all of its occurrences). Then a' is a legal game.

Proof. Let a = x1 • • • xm and a' = xi1 • • • xik. We may assume (by induction) that
xi1 • • • X i k _ 1 is legal. Let y = X i k . In game a,y has c > d+(y) chips on it after
the first ik-1 moves; let us see how this number compares with the number of
chips on node y after k -1 moves in game a'. We have deleted v(y) occurrences
of y before the current one, so y was fired v(y) fewer times, which leaves
(d+(y) - dy,y)v(y) more chips on y. But its neighbors have also been fired less
often, so y receives fewer chips from them. More exactly, from each node u, if
y received a(u) chips from u after ik - 1 moves in the game a then it receives
max{0, a(u) — du,yv(u)} chips after k - 1 moves in the game a'. This is a loss of
min{du,yv(u),a(u)}. Hence the number of chips on y after the first k - 1 moves
in game a' is

(by the definition of a period vector). Hence a' is legal. D

Let us call a nonnegative vector a e Rv reduced, if for every period vector v
there exists a node i with ai < Vi.

PROPOSITION 4.4. Every score vector of a finite game is reduced.

Proof. Assume a is a legal game with non-reduced score vector a. Then Lemma
4.3 gives a legal game a' with score vector a - v for some period vector v. Now,
by Proposition 1.2, a' can be augmented from a to a legal game a'B with the
same score as a. So a' and a B lead to the same position (since [B] = v is a
period vector), and hence a'BB • • • is a legal infinite game. Also a and a'B lead
to the same position (having the same score), so also aBB • • • is a legal infinite
game. D

Since eulerian graphs have period vector 1, the following generalization of
Tardos's result for undirected graphs can be deduced.

COROLLARY 4.5. // a game on an eulerian graph is finite then there is a node that
is never fired.

For every strongly connected digraph G, we have introduced two parameters:
the access time acc(G) and the period length per(G). Both in some sense



CHIP-FIRING GAMES 319

measure the speed of a certain "diffusion" process. A further such parameter is
the game length game(G), the maximum length of any finite game on the graph.
For an undirected graph, the period length is n, the access time is O(n3), while
(by Tardos's theorem) the game length is O(n4).

We are going to show that the game length exceeds the period length by
at most a polynomial factor, thereby extending Tardos's theorem to directed
graphs (up to the degree of the polynomial). We conjecture that a reverse such
inequality also holds.

LEMMA 4.6. Let G be a strongly connected digraph with primitive period vector v,
and let a be a reduced nonnegative vector. Then

Proof. By the definition of reducedness, there exists a number 0 < L < 1 such
that mink(ak - LVk) = 0. Hence by Proposition 3.6,

Now here L(a - Lv) = La, by the definition of the period vector, so using (4.2)
we get

LEMMA 4.7. Let a be the score vector of a game with N chips on a digraph G. If
a is reduced, then |a| < 2nND per(G).

Proof. Let p and q be the initial and final positions of the game. Then
|La| = |q- p| < 2N, since |p| = |q| = N. By Lemma 4.6, if G is strongly
connected then

We will derive a similar bound for all digraphs. For each strongly connected
component H of G, let ah be the restriction of the vector o to the positions in
H. So |aH| is the number of firings in that component. We may assume that if
a component H1 can be reached from a component H2 on a directed path, then
we execute all firings in H2 before firing anything in H1: firing a node of H1

never helps in H2.
If H is a sink component, then
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follows from (4.3). If H is not a sink component, then H has a nonempty set
U of nodes which are connected to some node outside H. Now, any time a
node in U is fired, at least one chip is lost from H forever, so nodes in U can
be fired at most N times. All firings in H form a game in H (the chips sent
out from a node u e U are considered to be left on u). Hence we can estimate
|aH | similarly as in Lemma 4.6: let VH be the primitive period vector of H, and
L > 0 such that mink e H(ak - L ( v H ) k ) = 0. Then by our observation about the
elements of U, we have L < N. By Propositions 3.6 and 4.2,

and hence

Summing (4.4) or (4.5) over all strongly connected components, we obtain (4.3)
for an arbitrary digraph. D

THEOREM 4.8. For every directed graph,

Proof. Let us consider a finite game of maximal length and with score vector a.
By Proposition 4.4 the vector a is reduced, and it was noted in Section 2 that
N < m - n. Hence Lemma 4.7 gives: game(G) = |a| < 2n(m - n)D per(G). D

COROLLARY 4.9. // every strongly connected component of G is eulerian then

and if furthermore G has no multiple edges then

We have seen two basic relations between the three "diffusion" parameters
we considered:

Is there any other relation of this nature?
The access time can be much smaller than the other two quantities. Consider

a 2-connected undirected graph G and orient one edge (leave the rest two-way).
Then one can argue that the access time remains polynomial; on the other hand,



CHIP-FIRING GAMES

the example of Eriksson [10] is of this type (see Figure 1), and for it the game
length and period length are exponentially large.

We do not know if the game length can ever be substantially smaller than
the period length. As mentioned, per(G) can be exponentially large. However,
the following bound limits the size of per(G), and hence also of the other two
parameters.

PROPOSITION 4.10. For every digraph,

5. Reachability of positions

Our purpose here is to prove the following decidability result. As will be
discussed at the end of the section, this is a special case of a class of decision
problems whose decidability is known from the work of Kosaraju [14] and Mayr
[15]. However, the nature of our algorithm and the complexity bounds obtained
are new.

THEOREM 5.1. Given two positions p and q of N chips on a directed graph G, it
is decidable in O(n2D2 per(G)log [nND per(G)]) time whether q can be reached
from p via a sequence of chip firings.

To describe an instance of the problem we need n2 log(D +1) + 2n log (N +1)
bits, where the first term describes the digraph G and the second term the
two positions p and q. So except for the factors of D2 and per(G), the
running time is polynomial in the input length. Note that, by Proposition 4.10,
log(D per(G)) < n log(2D).

LEMMA 5.2. Suppose that some chip-firing game leads from position p to q. Then
among the score vectors of such games there is a unique one which is reduced.

321

Proof. Assume first that G is strongly connected. Since rankL = n - 1 we can
find a non-zero minor of size (n - 1) x (n - 1), say the minor Li,j obtained by
deleting row i and column j from L. The vector u = (u1, • • •, un) defined by
Uk = (-l)i+kLi,k is integral, non-zero, and satisfies Lu = 0, and is therefore (up
to sign) a period vector. Furthermore, by Hadamard's inequality (|det(A)| is at
most the product of the lengths of the column vectors of A) each component of

u has magnitude less than (v/2D)n-1. Hence, per(G) < n(\/2D)n-1 < (2.D)n-1.
The general case is obtained by summing the inequality over all strongly

connected components of G. D
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Proof. By Lemma 4.3, if there is any legal game leading from p to q, then there
is one for which the score vector a is reduced. This vector a satisfies

as does the score vector of any game leading from p to q.
We show that this reduced score vector is unique. For, let a1 and a2 be

two reduced nonnegative integer solutions of (5.1). Then L(a1 - a2) = 0, so by
Proposition 3.1 we can write a1 — a2 = £i Livi where the Vi are primitive period
vectors for the sink components. By reducedness, we have |Li,|<1; but the Li;
are integers since a1 — a2 is integral and Vi is primitive. Hence A; = 0 for all i,
i.e., a1 = a2. D

The following is a consequence of Lemmas 4.7 and 5.2.

LEMMA 5.3. // some chip-firing game leads from position p to q, then q can be
reached from p with fewer than 2nND per(G) firings.

Proof of Theorem 5.1. We can determine the reduced score vector a of a (possible)
game leading from p to q by solving (5.1) and also computing the period vectors
of G. By subtracting or adding appropriate multiples of them to a, we may
assume that a is reduced. If no reduced a is obtained this way we conclude that
q is not reachable from p.

We want to decide whether a is the score vector of a legal game with beginning
position p, since this is the case if and only if q is reachable from p. Let £ denote
the language consisting of all legal games from beginning position p, and £[a]
the sublanguage consisting of all words in £ that use letter i at most ai times.
By Lemma 1.4, £[a] is also a locally free permutable hereditary language, which
implies that its maximal words can be found "greedily", i.e. without backtracking.

Now L[a] has rank at most |a|, and it has rank |a| if any only if a itself is
the score vector of a legal game beginning at p. So finding any maximal word
in L[a] tells us whether a is the score of any legal game starting at p. Such a
word can be found in at most |a| steps by successive firing of legal vertices.

We will be a bit careful, however, in finding this word since our upper bound
on |a| contains the factor N, the number of chips, and this may be arbitrarily
large. Note, however, that if N is large then we can carry out many firings
simultaneously. Let, at any stage of the game, ai denote the number of times
node i has to be fired later on (equivalently, ai - ai is the number of times i
has been fired). Let Ni, denote the number of chips on node i at that stage.
We call a node with ai = 0 frozen, and we denote by N the number of chips on
unfrozen nodes. We can take off the chips from the frozen nodes and get, by
Lemma 4.7, that the remaining number of firings is
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Now there is an unfrozen node, say node i, containing at least N/n chips. If
Ni > aid

+(i), then we can fire i simultaneously ai times, and thereby freeze it.
Otherwise, we can fire node i simultaneously [Ni/d

+(i)] times, and reduce |a|,
the remaining number of firings, by at least

So the remaining number of firings is reduced by a factor of 1-1/(2n2D2 per(G)).
Now, the number of steps in which a new node is frozen is at most n. If

there are t + 1 steps of the other kind, then

which implies that

Since this expression dominates the number of steps needed for computing
the reduced score vector a, which is O(n3), the proof is complete. n

COROLLARY 5.4. Given two positions p and q of chips on an eulerian directed
graph without multiple edges (e.g. a simple undirected graph), it is polynomial time
decidable whether q can be reached from p.

We suspect that for a general digraph, the reachability problem is NP-hard
(or perhaps even harder: we don't see that it would be either in NP or co-NP).

One can, of course, state the reachability problem for vector addition systems:
given a vector addition language L, as defined in Section 1, and a vector a 6 C, is
there a sequence v1 • • • Vk E L such that b+ v1 + ··· + vk = a? This is a well-known
problem, which was shown by Kosaraju [14] and Mayr [15] (see also [18, Ch.
5]) to be decidable for every integral vector addition system. The computational
complexity of such decision procedures was left open by them. Our results can
be extended to vector addition systems with property (*); we omit the details.

6. The "Probabilistic Abacus"

Consider a directed graph G with h sink nodes t1, • • • ,th, and a further specified
non-sink node s. Let us assume that there are no other sink components. We
start a random walk at s; this terminates when it reaches one of t 1 , • • • , t h .
We are interested in the probability pi that it terminates at sink ti, and in the
access time acc(s,ti). The probability pi can, of course, be computed using
the theory of Markov chains and basic linear algebra; and an elaborate theory
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exists for computing the access (or passage) time, see Kemeny and Snell [12] or
Kemperman [13]. We now want to discuss a combinatorial procedure for these
tasks, which exhibits a further connection between chip firing and random walks.

The "probabilistic abacus", due to A. Engel [7,8], is a chip-firing procedure
on G, in which the terminal nodes t1 , · · · , th are never allowed to be fired (this
can be achieved in our usual game model by attaching sufficiently many loops to
them). We start with placing d+(k) - 1 chips on each non-sink node k. We call
this the "critical position"; no node can be fired. Now place an additional chip
on s and play the chip firing game until it terminates. Call this the first phase.
If it terminates with the critical position on the non-sink nodes, stop; otherwise,
feed a new chip to a and play the game until it terminates; call this the second
phase, etc. We go on like this as long as the critical position does not reappear
on the non-sink nodes; if it does then we stop.

THEOREM 6.1. (i) The probabilistic abacus terminates after at most Dn-h phases,
(ii) The number of phases can grow exponentially with n.

Assume that we needed M phases, and that a is the score vector of a complete
run of the probabilistic abacus. Let Mj be the number of chips on sink tj at
termination. Clearly, Zh

j=1 Mj = M.

THEOREM 6.2. (Engel [7,8]) (i) PJ = Mj/M, for j = 1, • • •, h.
(ii) If h = 1, then acc(s,t1) = ||a||/M.

Although the finite termination of the probabilistic abacus is necessary for its
performance, there seems to be no previously available proof for this property.
As we will show, it follows rather easily from Theorem 1.1. Engel [8] writes:
"We have proved all our claims with one exception: We have not shown that the
critical load always recurs. For this conjecture we have only the strong evidence
of about 1000 examples." At the end of the same paper there is a "Note added
in proof" announcing that L. Scheller has found a proof of the critical load
conjecture. The note mentions a main idea of Scheller's proof (the "freezing"
of chips) which is also one of the key ingredients of our proof below. A proof
was also independently found by Rimanyi [19], at about the same time as ours.
We have not been able to find a complete proof published by L. Scheller or by
anyone else.

While one run of the probabilistic abacus simultaneously computes the ab-
sorbtion probabilities at all the sinks t1,···,th by part (i) of Theorem 6.2, part
(ii) shows that a separate run is needed for each sink (with the others deleted)
to compute the access times. One way to speed up the performance of the
probabilistic abacus is to use simultaneous firings, as we did in the proof of
Theorem 5.1 (if node k has d+(k)q + r chips and r < d+(k) then move q chips at
once along each edge leaving k). This is actually the firing rule given by Engel.
While this speed-up will somewhat shorten each phase, it does not affect the

BJORNER AND LOVASZ
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total number of phases. One can also ask how long an individual phase of the
abacus can be. For this we point to the general bound given by Theorem 4.8. It
follows from Theorems 4.8, 4.10 and 6.1 that a complete run of the probabilistic
abacus has at most 2nmD per(G)Dn - h < n2(2D2)n firings.

Proof of Theorem 6.1 (i) The existence of sinks t1,···,th that may not be fired,
and the absence of other sink components, shows by Lemma 2.1 that every chip
game on G is finite. In particular, every phase of the probabilistic abacus is
finite. The terminating position of each phase has at most d+(k) - 1 chips on
each nonsink node k, so there are at most Dn-h such positions. Therefore, after
at most Dn-h phases some terminating position q on the nonsink nodes must
reappear. Suppose that it takes M phases to play from the first appearance of
q to the second. (Note that by Theorem 1.1 the sequence of these terminating
positions is predetermined and independent of how each phase is played.)

We now construct a new graph G' from G by creating a new node r and
joining it to s by a directed edge. Place M chips on r and d+(k) - 1 chips
on each "old" non-sink node k. Then the first M phases of the abacus can be
mimicked as a single chip game on G', governed by the rule that r is fired only
when necessary. Call this Game 1.

But we can also play a chip game on G' from the given position as follows:
we "freeze" d+(k) -1 - q(k) of the chips on each "old" node k, and then mimic
with the remaining chips the M phases that lead from the first appearance of the
position q to the second. Call this Game 2. By construction, Game 2 terminates
with the critical position on the non-sink nodes and with no chips on node r.
Therefore by Theorem 1.1 the same is true about Game 1. But this means that
the critical position will reappear after M phases of the probabilistic abacus. D

Proof of Theorem 6.2. For part (i) we want to view the whole run of the
probabilistic abacus as one period of a single chip firing game. For this, enlarge
G to a new graph G" by creating a new node r, connect r to s by a directed
edge and connect each tj to r by a directed edge. The initial position on G"
will be the critical position on the "old" nonsink nodes and one single chip on
r. If we play according to the rule: (i) only fire r if we must, (ii) fire each tj

whenever we can, then we will exactly imitate the probabilistic abacus. When
after M phases the critical position returns, we have completed one period of
the game on G". Furthermore, the number of times tj was fired is the same
as the number Mj of chips accumulating on tj in the probabilistic abacus. So
the numbers Mj are the tj-entries of a period vector for the strongly connected
digraph G".

It is easy to relate random walks on G to random walks on G": whenever a
random walk on G terminates, it goes on in G" by returning to r and then to s,
and starting again. Hence (by doing this for very long) we see that the PJ are
proportional to the probabilities of the nodes tj in the stationary distribution of
the random walk on G". By (4.1) these are proportional to the corresponding
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Figure 1. The graph G, |V| = n + 1.

entries of any period vector, and hence to the Mj. This proves part (i).
In the situation of part (ii) there is only one sink t = t1. In addition to

the critical position, place M extra chips on node s. Then the whole run of
the probabilistic abacus can be seen as a single game on G with score vector
a. This game results in the net transport of the M extra chips from s to t,
so La = M(et - es). Therefore by Lemma 3.5: acc(s,t) = ||a||/M. (For this
lemma, G is supposed to be strongly connected. This can be arranged by adding
a directed edge from t to s, which is otherwise harmless.) n

Proof of Theorem 6.1 (ii). Consider the digraph G in Figure 1 with n + 1 nodes,
n even. Removal of the sink t leaves a subgraph G', which has been studied by
Eriksson [10]. Eriksson showed that an exponentially long chips game can be
played on G', and the idea here is to use his analysis to show that the probabilistic
abacus on G has exponentially many phases.

All edges of G are bidirected, except for the edges SU0 and st. Chips distribu-
tions on G will be denoted by sequences of the type (xs', • • •, xu-2, xu-1, xu0, xu1, xu2,
• • •; xt), where xk is the number of chips on node k. Note that d + ( s ) = n, d+ (u0) =
2, and d+(ui) = 3 for all i = 0.

We will now describe a few moves of the first phase of the probabilistic abacus
on G:
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The position on the subgraph G' at this stage is called P1 by Eriksson [10].
From here on we continue playing in the manner described by him, with the
additional rule that whenever a should be fired but has too few chips (due to the
loss of chips to t) then new chips may be added to s to make its firing legal. Of
course, each time a new chip is added a new phase of the probabilistic abacus
on G is started. Eriksson shows that this procedure will end with the critical
position on G'. Adding one more chip to a (one more phase) we get back the
critical position on the nonsink nodes of G, and Eriksson's construction is such
that it cannot have reappeared before.

The number of phases of the complete run of the abacus just described is
equal to the number of new chips fed to s, which is equal to the number of chips
on the sink t at termination, which is in turn equal to the number of times node
s was fired. The number of firings of s from P1 to termination in the abacus on
G is by construction equal to the number of firings of s from P1 to termination
in Eriksson's game on G'. In both cases there are 2 additional firings (to reach
P1), so the number of firings of s can be computed for Eriksson's game on G'
instead of for the abacus on G. This will be done with a method that parallels
Eriksson's computation of the total number of firings on G'.

Let Pk be the position on G' with 2 chips on nodes ui for i = ±1, ±2, • • •, ±k,
one chip on all other Ui's and 2n - 4 - 2k chips on s. Eriksson describes how
to play from Pk-1 to Pk,k = 1 ,2 , • • • , until the final (critical) position P(n-2)>/2 is
reached. If bk is the number of firings of a when going from Pk-1 to Pk, then
b1 = 2 and bk = 2bk-1 + Zk-2i=1bi,k > 2. Hence, the total number of firings of s
when going from P0 to Pk, call it Ck = b1 + ··· +bk, satisfies the linear recursion

which has solution

Start: critical position

Add one chip to s and fire

Fire each ui once

Fire the ui's clockwise,

beginning and ending with wo

Fire s

Fire the ui's clockwise,

beginning with U1 and ending with U0

(n-1;...,2,2,1,2,2,...;0)

(0;...,3,3,2,3,3,...;1)
(n-2; . . . ,2 ,2 ,2 ,2 ,2 , . . - ;1)

(2n-4;- - - ,1 ,2 ,0 ,2 ,1 , . . . ;1)

(n-4;...,2,3,1,3,2,...;2)

(2n-6;...,1,2,1,2,1,...;2)
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where T = (1 + S5) /2 . Therefore, the number of times s is fired when going
from P0 to P (n-2) /2, which equals the number of phases of the probabilistic abacus
on G, is

Note added in proof. Theorem 2.2 can be sharpened as follows. Let / be the feedback number of a
strongly connected graph, i.e., the minimum number of edges whose removal destroys all directed
cycles. Then every game on G with fewer than / chips is finite. For eulerian graphs this is best
possible.

The idea is to consider a period of an infinite game and the occurrence of each node in it. This
gives an ordering of the nodes of G. Let ei denote the number of edges entering node i from later
nodes. Then clearly Ziei is at least the feedback number. On the other hand, each node i will
have at least ei chips on it at the end of the period.
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