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Abstract. We introduce a method for studying commutative association schemes with "many"
vanishing intersection numbers and/or Krein parameters, and apply the method to the P- and Q-
polynomial schemes. Let Y denote any commutative association scheme, and fix any vertex x of
Y. We introduce a non-commutative, associative, semi-simple C-algebra T = T(x) whose structure
reflects the combinatorial structure of Y. We call T the subconstituent algebra of Y with respect to x.
Roughly speaking, T is a combinatorial analog of the centralizer algebra of the stabilizer of x in the
automorphism group of Y.

In general, the structure of T is not determined by the intersection numbers of Y, but these
parameters do give some information. Indeed, we find a relation among the generators of T for
each vanishing intersection number or Krein parameter.

We identify a class of irreducible T-moduIes whose structure is especially simple, and say the
members of this class are thin. Expanding on this, we say Y is thin if every irreducible T(y)-module
is thin for every vertex y of Y. We compute the possible thin, irreducible T-modules when Y is P-
and Q-polynomial. The ones with sufficiently large dimension are indexed by four bounded integer
parameters. If Y is assumed to be thin, then "sufficiently large dimension" means "dimension at
least four".

We give a combinatorial characterization of the thin P- and Q-polynomial schemes, and supply
a number of examples of these objects. For each example, we show which irreducible T-modules
actually occur.

We close with some conjectures and open problems.

1. Introduction

Commutative association schemes provide an elegant framework for the study
of codes [6], [15], [19], [54], [56], [59], [60], [62], designs [7], [8], [13], [14], [65],
multiplicity-free permutation groups [10], [28], [39], [43], [58], finite geometry
[32], [33], [34], [36], [44], and some questions in topology [49], so they are
receiving considerable attention. The papers listed above are very recent. To
access work done more than a few years ago, we refer the reader to the 1985
book of Bannai and Ito [3], the 1989 book of Brouwer, Cohen, and Neumaier

Keywords: association scheme, P-polynomial, Q-polynomial, distance-regular graph.

* Parts II and HI will appear in the next two issues.



364

[11], and the survey papers of Bannai [5], [6], Bannai and Ito [4], Faradzhev,
Ivanov, and Klin [29], and Ma [48].

In this paper we introduce a method for studying commutative association
schemes with "many" vanishing intersection numbers and/or Krein parameters.
We have in mind the P- and Q-polynomial schemes and their relatives [3, p260,
p316], the antipodal P-polynomial schemes [11, p438], the bipartite P-polynomial
schemes [11, p211], schemes with more than one P-polynomial or Q-polynomial
structure [3, p238], and the "directed" P- and Q-polynomial schemes [38], [45],
[46], [51], [78]. We believe the regular near polygons [11, p198], [53] and the
distance-transitive P-polynomial schemes with "almost simple" automorphism
group [10], [11, p229], [58] will also yield to our approach, due to their extra
structure. See Section 7 for some conjectures and open problems on the above
topics. To keep things simple, the focus of this paper will be on the P- and
Q-polynomial schemes.

Our idea is summarized as follows (formal definitions will begin in Section 3).
Let Y = (X, {R i}0<i<D) denote any commutative association scheme, with D > 3,
intersection numbers pk

ij, and Krein parameters qk
ij (0 < i, j, k < D). Let

A0, A1, • • •, AD denote the associate matrices of Y. Then

In fact A*0,A*1,··· ,A*D form a basis for a semi-simple commutative subalgebra
M* = M*(x) of Matx(C), and E*0,E*1,··· ,E*D are the primitive idempotents of
M*. We call M* the dual Bose-Mesner algebra with respect to x. We define the
subconstituent algebra T = T(x) to be the subalgebra of Matx(C) generated by
M, M*. T is semi-simple, since it is closed under the conjugate-transpose map,
and
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and indeed these matrices form a basis for a semi-simple commutative subalgebra
M of Matx (C), known as the Bose-Mesner algebra. Let E 0 ,E 1 , · · · ,ED denote
the primitive idempotents of M. For the rest of this section, let x denote
a fixed vertex in X. For each integer i (0 < i < D), let E*i = E*(x) (resp.
A*i = A*i(x)) denote the diagonal matrix in Matx(C), with y,y entry (Ai)xy (resp.
|X|(E i ) x y ) (y e X). Then E*i represents the orthogonal projection onto the
ith subconstituent of Y with respect to x (i.e. the span of all y E X such that
(x, y) E Ri), and

are relations in T.
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To get an intuitive feel for T, suppose for the moment that the associate
classes R0,R1,···,RD are the orbits of the automorphism group Aut(Y) acting
on the Cartesian product X x X. Then the Bose-Mesner algebra is the centralizer
algebra of Aut(Y) [3, p47]. Whether or not Aut(Y) acts in the above fashion,
we may still view the Bose-Mesner algebra as a "combinatorial analog" of this
centralizer algebra. Similarity, we may view T as a "combinatorial analog" of
the centralizer algebra of the stabilizer of x in Aut(Y). In our main results we
assume nothing about Aut(Y).

We may also view T as a homomorphic image of an "abstract subconstituent
algebra" T defined by generators and relations. Recall the character algebra C
of Y is the C-algebra with basis X0, x1,··· , XD such that

[3, p87]. Then the map xi —> Ai (0 < i < D) induces a C-algebra isomorphism
C —> M. Let ei denote the primitive idempotent of C mapped to Ei (0 < i < D)
by this isomorphism. The dual character algebra of Y is the C-algebra with basis
X*0,X*i,··· ,x*D such that

[3, p99]. Then the map x*i -> A*i (0 < i < D) induces a C-algebra isomorphism
C* -> M*. Let e*i denote the primitive idempotent of C* mapped to E*i (0 < i <
D) by this second isomorphism. Now let T denote the C algebra generated by
C, C*, subject to the relations

Then by (1), (2), and since A0 = A*0 is the identity in Matx(C), the above men-
tioned isomorphisms C -> M, C* —> M* extend to a C-algebra homomorphism
from T onto T. The kernel of this homomorphism is non-zero in general, but it
seems difficult to describe. It could conceivably vary with the vertex x (if Aut(Y)
is not transitive on X), although we have not found any examples where this
occurs. We give some open problems concerning T in Section 7.

Now consider the T-modules. T acts by left multiplication on the Hermitean
space V, (,), where V = C|X| (column vectors) and where (,) is the standard
Hermitean dot product on V. Then V decomposes into an orthogonal direct sum
of irreducible T-modules. We would like to identify all the irreducible T-modules
in this sum, but this seems too difficult in general. Therefore, we restrict our
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attention to the following schemes and modules. Y is said to be P-polynomial
if for all integers i,j, k (0 < i,j,k < D), pk

ij = 0 (resp. pk
ij = 0) whenever one

of i,j,k is greater than (resp. equal to) the sum of the other two. Similarily,
Y is said to be Q-polynomial if for all integers i,j, k, (0 < i,j,k < D), qk

ij = 0
(resp. qk

ij = 0) whenever one of i, j,k is greater than (resp. equal to) the sum of
the other two. Also, we say an irreducible T-module W is thin whenever dim
E*iW < 1 for all integers i (0 < i < D). Then we find the possible thin, irreducible
T-modules when Y is P- and Q-polynomial. To describe them, we introduce the
notion of a Leonard system, and interpret a theorem of Leonard [3, p263], [47],
[70] as a classification of these objects. Although we do not take this view here,
a Leonard system of diameter d is essentially an ordered pair of dual q-Racah
polynomial sequences with highest degree d, where the limiting cases q -> ±1
are included as in Leonard's theorem. See [1], [2], [30] for information on the
q-Racah polynomials. Now assume Y is P- and Q-polynomial, and let W denote
a thin, irreducible T-module. Then we show W is naturally associated with a
Leonard system, denoted LS(W). The isomorphism class of W is determined
by LS(W), which in turn is determined by a 4-tuple (u, v, d, f) of parameters,
called the data sequence of W. The parameter u (resp. v) is the least integer
i for which EiW = 0 (resp. E*iW = 0), and d = dim W - 1. The parameter
/ is harder to describe. It is either an unordered pair of algebraically related
complex numbers, an ordered pair of algebraically related complex numbers, or
a complex number, depending on Y. However, in many cases, / takes one of
a certain set of values indexed by a bounded integer parameter e. When this
occurs we say W is strong. It turns out W is strong whenever u, v, d satisfy
certain bounds, as we now indicate. Let y denote a second vertex in X, and let
W' denote a thin, irreducible T(y)-module such that W,W' are not orthogonal.
Then we show the data sequences of W, W' are algebraically related, determining
each other up to a few possibilities. Dually, suppose y, W are as above, but
that W' is an irreducible T(x)-module such that A*R(y)W,W' are not orthogonal
for some integer R (0 < R < D). Then again the data sequences of W,W' are
algebraically related, determining each other up to a few possibilities. Combining
these facts in an inductive argument, we show W is strong whenever
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Furthermore, if every irreducible T(z)-module is thin for every z e X, then W
is strong whenever

The above results suggest looking at the following class of schemes. Assume
Y is an arbitrary commutative scheme, and let us say Y is thin with respect to x
if each irreducible T(x)-module is thin. Then we give some ways to determine
if Y is thin with respect to x. Indeed, suppose that for all y, z e X where (x, y),
(x, z) are in the same associate class, there exists some g E Aut (Y) such that
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gx = X, gy = z, gz = y. Then Y is thin with respect to x. Next suppose
that Y is P-polynomial. Then Y is thin with respect to x if and only if for
all integers i,j,k (0 < i,j,k < D), and all y,z e X with (x,y), (x,z) e Ri, the
number of w e X with (x,w) E Rj, (y,w) e R1 , (z,w) e Rk equals the number
of w' e X with (x, w') e RJ, (y, w') e Rk, (z, w') e R1. A similar result holds if Y
is Q-polynomial. Now suppose Y is P- and Q-polynomial. Then Y is thin with
respect to x if and only if for all integers i (2 < i < D - 1), and all y,z e X with
(x,y),(x,z) E Ri, the number of w e X with (x,w) e Ri, (y,w) E R 1 , ( Z , W ) e R2

equals the number of w' e X with (x,w') e Ri,(y,w') e R2, and (z,w') E R1.
Let us say y is thin if Y is thin with respect to every vertex. We show that

if Y is P- and Q-polynomial with
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or

then Y is thin. Also, many of the known P- and Q-polynomial schemes
are thin. Indeed, suppose Y is a known P- and Q-polynomial scheme with
D > 6, but not a Doob scheme [11, p27], the "Bilinear forms" scheme Hq(N,D)
[3, p306], the "Alternating forms" scheme Altq(N) (D = [N

/2]) [3, p307], the
"Hermitean forms" scheme Herq(D) [3, p308], or the "Quadratic forms" scheme
Quadq(N) (D = [N+1

/2]) [3, p308]. Then Y is thin. In each case, we show which
of the possible irreducible T-modules actually occur.

The paper is organized as follows. In Section 2, we assemble some results
on Leonard systems. Section 3 contains some basic properties of association
schemes and subconstituent algebras. In Section 4 we give the structure of a thin
irreducible T-module when Y is P- and Q-polynomial. Section 5 considers when
Y is thin with respect to a given vertex, and Section 6 is devoted to examples
of thin P- and Q-polynomial schemes. Section 7 contains some open problems
and suggestions for further research. The paper is self contained, except for the
material in Section 2, some preliminary material in Section 3, and Lemma 4.7.
Proofs of the material in Section 2 can be found in [70], The preliminary material
in Section 3 can be found in [3, pp52-70], and the proof of Lemma 4.7 can be
found in [68].

We will use the following notation. Z, R, and C will denote the integers, the
real numbers, and the complex numbers, respectively. The symbol C will denote
an arbitrary but fixed linear order on C. For example, we may take

whenever

or

a < c

a + bi ± c + di (a,b,c,d e R,i2 = -1)

pi
1i = 0 for all integers i (2 < i < D - 1),

qi
1i = 0 for all integers i (2 < i < D - 1),
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For any nonnegative integer n and any positive integer m,

The Kronecker delta DXy is 1 if x = y, and 0 if x = y. For any real number h, [h]
will denote the greatest integer less than or equal to h, and [h] will denote the
least integer greater than or equal to h. By an algebra, we mean an associative
algebra with identity. Fix a positive integer n. Then Matn(C) will denote the
C-algebra of all n x n matrices with entries in C. Let V = C" (column vectors),
and let (,) denote the Hermitean form

where t denotes transpose and denotes complex conjugate. Observe Matn(C)
acts on V by left multiplication. We call V, (,) the standard module of Matn(C).
If X is a set of order n then we may write MatX(C) instead of Matn(C). In
this case we view the coordinates in V, and the corresponding rows and columns
in MatX(C), as being indexed by X. For each x e X, x will denote the vector
(0,0, • • •, 0,1,0, • • •, 0,0)t, where the 1 is in coordinate x. D will denote the all 1's
vector in V. Now let S denote any subalgebra of Matn(C). Then by an S-module
we mean a subspace W of V such that SW C W. An S-module W is irreducible
if it is non-zero, and contains no S-module besides 0, W. Two S-modules W, W'
are isomorphic if there exists a vector space isomorphism z : W —> W' such that

S is symmetric if at = a for all a € S. Now suppose S is closed under the
conjugate-transpose map. Then S is semi-simple [20, p157]. We will not need
the full force of this theory, only the following facts. Let W denote any S-module.
Then for each S-module U C W, the orthogonal complement

of U in W is also an S-module. By induction on the dimension, observe W can
be expressed as an orthogonal direct sum of irreducible S-modules. Now suppose
each S-module in this sum has dimension 1. Then ab-ba vanishes on W for all
a, b E S. If W is a faithful S-module (i.e., aW = 0 -> a = 0 for all a e S), then
S is commutative. Conversely, suppose S is commutative. Then every irreducible
S-module W has dimension 1. Indeed, pick any nonzero a € S. Since C is

{w | w R W, (u, w) = 0 for all u e U}

(a)n = 1 if n = 0, and a(a - 1) • • • (a - n + 1) if n > 0.

(a 1 ,a 2 , · · · ,a m )n = (a1)n(a2)n ··· (am)n.

(a; q)n = 1 if n = 0, and (1 - a)(1 - aq) • • • (1 - aqn-1) if n > 0.

(a1, a2, • • •, am; q)n = (a1; q)n(a2; q)n ••• (am; q)n.

a = c and b < d.
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algebraically closed, a has an eigenvector w e W. Let t denote the associated
eigenvalue. Since Sw = W by the irreducibility of W, we have

(a - tI)W = (a - tI)Sw

= S(a - tI)w
= 0,

so

Now every 1 dimensional subspace of W is an S-module, so W has dimension
1 by irreducibility.

2. Leonard systems

In this section we quote some results on linear algebra that we will use in
Sections 4, 5, 6. Proofs can be found in [70]. We first give a version of
Leonard's theorem [47], [3, p260], [70] and some related results concerning
existence and uniqueness. We then introduce the notion of a Leonard system,
and view Leonard's theorem as a classification of these objects.

THEOREM 2.1. (Leonard [47], Bannai and Ito [3, p260]). Let d denote a
nonnegative integer, and pick any matrices B,H,B*,H* E Matd+1(C) of the form

where

and

au e Span (u) (a E S, u E W).
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Then the following statements (i), (ii) are equivalent:
(i) There exists an invertible Q e Matd+1(C) such that

(ii) Both

where at least one of the following cases I, IA, II, IIA, IIB, IIC, III hold if d > 1
(The expressions LS(...) below are labels, see Definition 2.3):

where

and

To get t*i,b*i,C*i, exchange ( t0 ,h,s) and (t*0,h*,s*), and preserve (r1,r2,q).
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where

To get t*i,b*i,c*i exchange ( t 0 ,h , s ) and (t*0,h*,s*), and preserve r1,r2.
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To get t*i,b*i,c*i, exchange (t0,s) and (t*0,s*).
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where

To obtain t*i,b*i,C*i, exchange ( t 0 ,h , s ) and (t*0,h*,S*), and preserve r1,r2.

Note 2.2. The denominators in the above formulae for bi,b*i (0 < i < d -
1), C i,c* i (1 < i < d) are non-zero whenever (7) holds. Indeed, pick any n E
{I, IA, II, IIA, IIB, IIC, III}, and assume t0,t1, • • •,td, t*0,t*1, • • •, t*d are given in
Case N of Theorem 2.1, for some positive integer d, and some q,h,h*,s,s* e C.
Then

(i) For all integers i,j (0 < i,j < d),ti - tj =

(ii) For all integers i,j (0 < i, j < d), t*i - t*j =

(iii) Suppose (7) holds. Then
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Definition 2.3. Let d denote a non-negative integer, and pick any matrices
B,H,B*,H* € Matd+1(C) of the form (4)-(7) that satisfy (8)-(11). Then we
refer to the 4-tuple (B, H, B*,H*) as a Leonard system over C. The system is over
R if the entries of B,H,B*,H* are all in R. The integer d is the diameter of the
system. t0, t1, • • •, td is the eigenvalue sequence of the system, and t*0, t*1, • • • , t * d

is the dual eigenvalue sequence of the system. In each case I, IA, II, IIA, IIB,
IIC, III of part (ii) in Theorem 2.1, the heading LS(· · ·) refers to the Leonard
system given beneath it.

One might ask if the label LS(···) is determined by the Leonard system
it represents. This is essentially the case if the diameter is at least 3, as the
following lemma shows.

LEMMA 2.4. [70]. Let C = (B, H, B*, H*) denote a Leonard system over C with
diameter d > 1. Referring to part (ii) of Theorem 2.1, suppose the eigenvalue
sequence and dual eigenvalue sequence of C are as in

Then there exists

(i) r1,r2 e C (r1r2 = ss*qd+1) such that

C = LS(I,q,h,h*,r1,r2,s,s*,t0,t*0,d),
and r1,r2 are unique up to permutation,

(ii) a unique r e C such that
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Furthermore, if d > 3 then exactly one of (18)-(24) occurs, and the parameters
listed on that line are uniquely determined by C.

In order to define r1,r2 uniquely in Case I, II, and Case III (d odd), we will
occasionally assume r1 > r2, where X is from the end of the introduction.

Note 2.5. The data in Theorem 2.1 is from Bannai and Ito[3, p260], with the
following translations.

Note 2.6. (Bannai and Ito [3, p274]). The formulae in Case I(ss* = 0), IA,
II, IIA, IIB, IIC, III of Theorem 2.1 can be obtained from the corresponding
formulae in Case I (ss* = 0) by taking limits. See the given reference for details.
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3. The Subconstituent Algebra of an Association Scheme

In this section, we define the subconstituent algebra of an arbitrary commutative
association scheme, and prove some general results.

Definition 3.1. Let D denote a non-negative integer. A commutative, D-class
association scheme is a configuration Y = (X, {Ri}0<i<D), where X is a nonempty
finite set and R0, R1,··· ,RD are nonempty subsets of the Cartesian product X
x X, such that

The elements of X, the Ri, the constants pk
ij, and the constant D are known

as the vertices, the associate classes, the intersection numbers, and the diameter,
of Y. For convenience, we will say scheme instead of commutative association
scheme.

For the rest of this section, let Y = (X,{R i}0 < i < D) denote the scheme in
Definition 3.1. We begin by summarizing some basic results from Bannai and
Ito [3, pp 52-70].

For each integer i (0 < i < D), the ith associate matrix Ai e Matx(C) satisfies

Then Definition 3.1 implies

and

Setting j = 0 in (30), we find
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The matrices A0, A1, • • •, AD are certainly linearily independent, so they form
a basis for a subspace M of Matx(C). Then M is a commutative semi-simple
subalgebra of Matx(C) by (25), (27), (29), (30), and is known as the Bose-Mesner
algebra of Y. By [3, p59, p64], M has a second basis E0,E1, • • • ,ED such that

We refer to Ei as the ith primitive idempotent of Y(0 < i < D).

Let o denote entry-wise multiplication in Matx(C). Then

so M is closed under o. Thus there exists qk
ij e C (0 < i, j, k < D) such that

Taking the conjugate-transpose in (38), we find by (35) that gk
ij E R (0 <

i,j,k < D). Setting j = 0 in (38), we find by (32) that

The qk
ij (0 < i, j, k < D) are known as the Krein parameters of Y.

Since A0 ,A1 , · · · ,AD and E0,E1,···,ED are both bases for M, there exists
Pi(j),qi(j) e C (0 < i,j < D) such that

Taking the complex conjugate and transpose in (40), (41), we observe



378 TERWILLIGER

and

Applying (33), (37) to (40), (41), respectively, we have

The pi(j) (resp. qi(j)) (0 < i,j < D) are known as the eigenvalues (resp. dual
eigenvalues of Y.

There are many equations relating the above constants. For example, set

Then it is proved by Bannai and Ito [3, p62, p67] that

and

Now fix any x e X. For each integer i (0 < i < D), let E*i = E*i(x) denote
the diagonal matrix in Matx(C) satisfying

Then immediately

The matrices E*0,E*1,···, E*D are certainly linearity independent, so they form
a basis for a subspace M* = M*(x) of Matx(C). Then M* is a commutative
semi-simple subalgebra of Matx(C) by (52)-(54). We call M* the dual Bose-
Mesner algebra of Y with respect to x, and refer to E*i as the ith dual idempotent
of Y with respect to x (0 < i < D).

We now define the dual associate matrices in M*. For each integer i (0 <
i < D), let A*i = A*i(x) denote the diagonal matrix in Matx(C) satisfying
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Then from (40), (41) we obtain

and

In particular, A*0, A*1, • • •, A*D form a second basis for M*. Multiplying (58) on
the right by E*j, we find by (52) that

Applying (56) to (32), (34)-(36), (38), we find

We call A*i the ith dual associate matrix of Y with espect to x (0 < i < D).
Let V, (,) denote the standard module of Matx(C), defined near the end of

Section 1. Then by (34), (35), (53), (54), we have the decompositions

We call EiV and E*iV the ith eigenspace and z'th subconstituent with respect
to x, respectively.

Throughout this paper, we adopt the convention that Ei = 0, E*i = 0 for any
integer i such that i < 0 or i > D.

We now find some relations between M, M*.

LEMMA 3.2. Let the scheme Y = (X, {Ri}0<i<D) be as in Definition 3.1, pick any
x E X, and write E*i = E*i(x), A*i = A*i(x) (0 < i < D). Then
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The key result (65) is due to Cameron, Goethals, and Seidel [17].

Proof. First consider (64). By (26), (51), the y, z entry of E*iAjE*k is nonzero
exactly when (x,y) e Ri, (y,z) e Rj, and (x,z) e Rk (y,z e X). By (iv) of
Definition 3.1, such y, z exist if and only if pk

ij = 0, so (64) holds. To see (65),
recall trace (AB) = trace (Ba). Now the sum of the squares of the norms of
the entries of EiA*jEk is equal to

But mk = 0 (0 < k < D) by (48), so (65) holds. This proves Lemma 3.2. D

Definition 3.3. Let the scheme Y = (X, {Ri}0<i<D) be as in Definition 3.1, pick
any x e X, and let T = T(x) denote the subalgebra of Matx(C) generated by
the Bose-Mesner algebra M and the dual Bose-Mesner algebra M*(x). We call
T the subconstituent algebra of Y with respect to x.

Before proceeding, let us emphasise some facts about T(x).

LEMMA 3.4. Let the scheme Y = (X, {Ri}0<i<D) be as in Definition 3.1, pick any
x e X, and write E*i = E*i(x) (0 < i < D), T = T(x). Then

(i) T is closed under the conjugate-transpose map. In particular, T is semisimple.
(ii) The standard module V decomposes into an orthogonal direct sum of irreducible

T-modules.
(iii) Each irreducible T-module W is the orthogonal direct sum of the nonvanishing

EiW (0 < i < D), and the orthogonal direct sum of the nonvanishing E*iW (0 <
i < D).

Proof. T is closed under conjugate-transpose by (35), (54). The result (ii) follows
from the discussion at the end of Section 1. Result (iii) follows from (62), (63).

D
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We will mainly be interested in the following modules for the subconstituent
algebras.

Definition 3.5. Let the scheme Y = (X, {Ri}0<i<D) be as in Definition 3.1, pick
any x E X, and write E*i = E*i(x) (0 < i < D), T = T(x). Let W denote an
irreducible T-module, and define

We call Ws the support of W. The diameter of W is defined to equal |Ws| - 1.
Now define

We call Wz the dual-support of W. The dual-diameter of W is defined to equal
|Waz| - 1. W is said to be thin whenever

W is said to be dual-thin whenever

Y is said to be thin (resp. dual-thin) with respect to x if each irreducible T(x)-
module is thin (resp. dual-thin). Y is said to be thin (resp. dual-thin) if Y is thin
(resp. dual-thin) with respect to each vertex in X.
We now show each subconstituent algebra possesses at least one irreducible
module that is both thin and dual-thin.

LEMMA 3.6. Let the scheme Y = (X, {Ri}0<i<D) be as in Definition 3.1. Pick any
x e X, and write E*i = E*i(x), A*i = A*i(x) (0 < i < D), M* = M*(x), T = T(x).
Then

where 6 denotes the all 1's vector in the standard module. In particular, Mx = M*D
is a thin, dual-thin irreducible T-module of dimension D + 1.

Proof. To obtain (68), evaluate both sides using (26), (51). To obtain (69),
compare the two sides using (56). Now Mx = M*D by the definition of M, M*.
Now Mx is a T-module, since Mx is M-invariant, and M*D is M*-invariant.
Mx is irreducible, since by part (ii) of Lemma 3.4, there exists an irreducible
T-module W that is not orthogonal to x. But then x E E*0W C W, forcing
Mx c W and then Mx = W by the irreducibiliry of W. That Mx is thin and
dual-thin with dimension D + 1 is a consequence of (68), (69). This proves
Lemma 3.6. D



382 TERWILLIGER

For an arbitrary commutative scheme, it seems difficult to describe the re-
maining irreducible modules for the subconstituent algebras. Therefore we focus
on a special class of schemes called the P- and Q-potynomial schemes . These
schemes have many vanishing intersection numbers and Krein parameters, so the
relations (64), (65) should give us a lot of information.

Definition 3.7. The scheme Y = (X, {Ri}0<i< D) in Definition 3.1 is said to be
P-polynomial (with respect to the given ordering A0,A1,···,AD of the associate
matrices), if for all integers i, j, k (0 < i, j, k < D), pk

ij = 0 (resp pk
ij = 0) whenever

one of i, j, k is greater than (resp. equal to) the sum of the other two.

LEMMA 3.8. [3, p190]. Assume the scheme Y = (X, {Ri}0<i<D) in Definition 3.1
is P-polynomial with respect to the ordering A0, A1, • • •, AD of the associate matrices.
Then the following (i)-(iii) hold.

(i) The Bose-Mesner algebra M is symmetric; equivalently

(ii) There exists polynomials Ci, e R[L] (0 < i < D) such that

In particular, A generates M.
(iii) The eigenvalues p 1 ( j ) (0 < j < D) are mutually distinct real numbers.

Proof of (i). Setting j = i' in (30), we have p0
ij' = 0 (0 < i < D) since

Ai Ai' = AiA
t
i has non-zero trace. Now 0, i, i' must satisfy the triangle inequality

by Definition 3.7, so i = i' (0 < i < D). Now M is symmetric by (29), and
i = i (0 < i < D) by (35), (36). D

Proof of (ii). The existence of C0,C1,···, CD follows directly from (30) and
Definition 3.7. D

Proof of (iii). The eigenvalues p 1 ( j ) (0 < j < D) are distinct because A
generates M. The eigenvalues are real numbers by (42), (70). D

LEMMA 3.9. Assume the scheme Y = (X, {Ri}0<i<D) in Definition 3.1 is P-
polynomial with respect to the ordering A0,A1,··· ,AD of the associate matrices.
Pick any x e X, and write E*i = E*i(x) (0<i < D), T = T(x). Let W denote an
irreducible T-module, with diameter d and dual-diameter d*. Set
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We call v the dual-endpoint of W (with respect to the given ordering the associate
matrices). Now the following (i)-(v) hold.

In particular, W is dual-thin, forcing d = d*.

Proof of (i). We have pj
i1 = 0 whenever \i - j\ > 1 by Definition 3.7, so by (53),

(63),

This proves (i).

Now set

and assume for the moment that W[i, j] is A-invariant for some integers i, j (0 <
i,j < D). Then W[i,j] is M-invariant by Lemma 3.8, and M*-invariant by
construction, so W[i, j] is a T-moduIe. But then W[i,j] = W by the irreducibility
of W. Now consider the assertions (ii)-(v).

Proof of (ii). Suppose E*jW = 0 for some integer j (v < j < v + d*). Then
W[v, j -1 ] is A-invariant by (73), and hence equals W by our preliminary remarks.
But this contradicts the definition of d*, so E*jW = 0 for all j (v < j < v + d*).
Now (ii) holds by the definition of d*. D

Proof of (iii). Certainly

(iv) Suppose W is thin. Then

(v) Suppose W is thin. Then
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for if (76) failed for some j (v < j < v + d*), then AE*jW C E*j-1W + E*jW
by (73), making W[v,j] A-invariant, and contradicting our preliminary remarks.
Similarly,

for otherwise W[j, v + d*] is A-invariant, contradicting our preliminary remarks.
D

Proof of (iv). Immediate from (i)-(iii). D

Proof of (v). Setting i = d* in (74), we find

Now (75) is obtained by applying Ej to both sides of (77).

Definition 3.10. The scheme Y = (X, {Ri}0<i<D) in Definition 3.1 is said to be
Q-polynomial (with respect to the given ordering E0, E1, • • •,ED of the primitive
idempotents), if for all integers i,j,k (0 < i,j,k < D) ,q k

i j = 0 (resp. qk
ij = 0)

whenever one of i, j, k is greater than (resp. equal to) the sum of the other two.
We abbreviate A*(x) - A*1(x) whenever Y is Q-polynomial.

LEMMA 3.11. Assume the scheme Y = (X,{Ri}0<i<D) in Definition 3.1 is Q-
pofynomial with respect to the ordering E0, E1, • • •, ED of the primitive idempotents.
Then the following (i)-(iii) hold.

(i) The Bose-Mesner algebra M is symmetric.
(ii) There exists polynomials C*i e R[L] (0 < i < D) such that

In particular, A*(x) generates the dual Bose-Mesner algebra M*(x) for all x £ X.
(iii) The dual eigenvalues q1(j) (0 < j < D) are mutually distinct real numbers.

Proof. Similar to Lemma 3.8. D

LEMMA 3.12. Assume the scheme Y = (X,{R i } 0 < i < D ) in Definition 3.1 is Q-
polynomial with respect to the ordering E0 ,E1 , . . . ,ED of the primitive idempotents.
Pick any x e X, and write E*i = E*i(x),(0 < i < D),A* = A*1(x),T = T(x). Let
W denote an irreducible T-module, with diameter d and dual-diameter d*. Set



SUBCONSTITUENT ALGEBRA 385

We call u the endpoint of W (with respect to the given ordering of the primitive
idempotents). Now the following (i)-(v) hold.

In particular, W is thin, forcing d= d*.

Proof. Similar to the proof of Lemma 3.9. D

In [11, p239], Brouwer, Cohen, and Neumaier show how to determine if a given
P-polynomial scheme is Q-polynomial.

Sections 4, 5, 6, 7 will appear in subsequent issues.
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