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Abstract. Using covering graph techniques, a structural result about connected cubic simple graphs admitting
an edge-transitive solvable group of automorphisms is proved. This implies, among other, that every such graph
can be obtained from either the 3-dipole Dip3 or the complete graph K4, by a sequence of elementary-abelian
covers. Another consequence of the main structural result is that the action of an arc-transitive solvable group on a
connected cubic simple graph is at most 3-arc-transitive. As an application, a new infinite family of semisymmetric
cubic graphs, arising as regular elementary abelian covering projections of K3,3, is constructed.
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1. Introduction

Throughout this paper graphs are assumed to be finite, and unless specified otherwise,
simple, undirected and connected. It transpires that, when investigating edge-transitive cubic
(simple) graphs the concept of graph coverings plays a central role. A correct treatment of
this concept calls for a more general definition of a graph (see Section 2), with the class of
simple graphs as a special case.

The study of cubic arc-transitive graphs has its roots in the classical result of Tutte [20],
who proved that cubic graphs are at most 5-arc-transitive. A number of articles on the subject
followed over the years, some of them of purely combinatorial content, others linking this
topic of research to group theory and to the theory of maps on surfaces [17]. On the other
hand, regular edge- but not vertex-transitive graphs (cubic in particular) have also received
considerable attention [2, 3, 6, 7, 9–11].

In this article we deal with cubic graphs admitting an edge-transitive solvable subgroup of
automorphisms. Using covering graph techniques we prove a structural reduction theorem
(see Theorem 4.4) which implies, among other, that every such graph can be obtained from
either the 3-dipole Dip3 or the complete graph K4, by a sequence of elementary abelian
covers (see Corollary 4.5). Another interesting consequence of Theorem 4.4 is that the
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action of an arc-transitive solvable group on a connected cubic simple graph is at most
3-arc-transitive (see Corollary 4.6).

This article is organized as follows. In Section 2 we introduce additional notation and
formal definitions pertaining to graph coverings. In Section 3 we give a complete clas-
sification of edge-transitive elementary abelian covering projections onto Dip3, K4, and
K3,3. These results are then used in Section 4, where the proof of Theorem 4.4 is given.
Finally, an application of the above is presented in Section 5, with a special emphasis to new
constructions of cubic edge- but not vertex-transitive graphs, arising as elementary abelian
covers of K3,3, the Heawood graph, and the Moebius-Kantor graph.

2. Preliminaries

A graph is an ordered 4-tuple (D, V ; beg, inv) where D and V �= ∅ are disjoint finite sets of
darts and vertices, respectively, beg : D → V is a mapping which assigns to each dart x its
initial vertex beg x , and inv : D → D is an involution which interchanges every dart x and
its inverse dart x−1. (If not explicitly given, the four defining parameters of a graph X are
denoted by D(X ), V (X ), begX and invX , respectively.) The orbits of inv are called edges.
An edge is called a semiedge if inv x = x , a loop if inv x �= x while beg (x−1) = beg x ,
and is called a link otherwise. The set of boundary vertices of an edge e, denoted by ∂e,
comprises the initial vertices of the darts contained in the edge. Two edges are parallel if
they have the same boundary vertices. The set of all darts with a vertex v as their common
initial vertex is denoted by Dv , and the cardinality of Dv is called the valency of v. A
graph with no semiedges, no loops and no parallel links is referred to as simple. A simple
graph with vertex-set V and edge-set E is isomorphic to the graph (D, V ; beg, inv), where
D = {(u, v) | {u, v} = ∂e, e ∈ E}, beg(u, v) = u, and inv(u, v) = (v, u). In view of
this fact a simple graph can be defined as an ordered pair (V, E) with vertex-set V and
edge-set E ⊆ {{u, v} | u, v ∈ V, u �= v}. The symbol u → v is used to denote the dart
(u, v). Formal definitions of graph morphisms, mono-, epi- and automorhisms is left to
the reader. Note that all functions, unless explicitly stated otherwise, are composed on the
left.

Let k be a nonnegative integer. A walk of length k in a graph X is a sequence v1, x1, v2, x2,

. . . , vk, xk, vk+1 of vertices and darts such that vi = beg xi for each i = 1, 2, . . . , k and
vi+1 = beg inv xi for each i = 1, 2, . . . , k. A walk of length 0 is called trivial and contains
a single vertex. A reduced walk is a walk such that no two consecutive darts are inverse to
each other. A reduced walk of length k is also called a k-arc. A k-path corresponding to a
given k-arc is the underlying subgraph of X , containing the darts and vertices of this k-arc.
Let s be a nonnegative integer and let G be a subgroup of the automorphism group Aut X
of a graph X . We say that X is (G, s)-arc-transitive if G acts transitively on the set of s-arcs
of X , and that it is (G, s)-path transitive if G acts transitively on the set of s-paths of X .
We use the terms arc-transitive and edge-transitive instead of 1-arc transitive and 1-path-
transitive, respectively, and the term vertex-transitive instead of 0-arc-transitive. A graph X
is G-semisymmetric if all the vertices of X have constant valency and is G-edge-transitive
but not G-vertex-transitive. If the group G in the above definitions is the full automorphism
group, then the symbol G is omitted.
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Let X = (D, V ; beg, inv) be a graph and N ≤ Aut X a subgroup of automorphisms of X .
Let DN and VN denote the sets of its orbits on darts and vertices of X , respectively, and let
begN [x] = [beg x] and invN [x] = [inv x], where [x] is the N -orbit in D(X ). This defines
a graph X N = (DN , VN ; begN , invN ) together with a natural epimorphism ℘N : X → X N ,
x �→ [x], called the quotient projection relative to N . Moreover, if α: X N → Y is a graph
isomorphism, then α℘N : X → Y is itself called a quotient projection relative to N . If a
quotient projection ℘: X̃ → X relative to a subgroup N ≤ Aut X̃ is valency preserving
(that is, if N acts regularly and faithfully on each of its dart- and vertex-orbits), then ℘

is called a regular covering projection with the group of covering transformations N . If
K is an abstract group, then a K -covering projection is a regular covering projection with
the group of covering transformations isomorphic to K . A graph X̃ is called a regular
cover (or more precisely, a K -cover) of a graph X , if there exists a K -covering projection
℘: X̃ → X . Trivial regular covering projections, that is, those with the group of covering
transformations being trivial, are excluded from our considerations unless explicitly stated
otherwise. An isomorphism of regular covering projections ℘: X̃ → X and ℘ ′: X̃ ′ → X ′

is an ordered pair (α, α̃): ℘ → ℘ ′ of graph isomorphisms α: X → X ′ and α̃: X̃ → X̃ ′

such that ℘ ′α̃ = α℘. The isomorphism α̃ is called the lift of α and α is the projection of
α̃. An isomorphism of the form (α̃, id) is called an equivalence. In particular, the group of
selfequivalences of the same regular covering projection coincides (in view of the fact that
graphs are assumed connected) with the group of covering transformations. We shall be
mainly interested with lifts of automorphisms of a graph X along a given regular covering
projection ℘: X̃ → X . Let G be a subgroup of Aut X and let α ∈ Aut X . A regular covering
projection ℘ is G-admissible if every automorphism in G has a lift, and is α-admissible if it is
〈α〉-admissible. A regular G-admissible covering projection is minimal if it cannot be written
as a composition of two regular covering projections such that the lifted group G̃ successively
projects along this decomposition; equivalently, the group of covering transformations is a
minimal normal subgroup in the lifted group G̃ [14]. A regular covering projection ℘: X̃ →
X is edge-transitive, arc-transitive or semisymmetric if the largest subgroup of Aut X that
lifts along ℘ is edge-transitive, arc-transitive or semisymmetric, respectively. Observe that
the covering graph X̃ may fail to be semisymmetric even if the corresponding regular
covering projection is semisymmetric. For details on combinatorial treatment of covering
projections (in a more general setting) and on the problem of lifting automorphisms we refer
the reader to [8, 13]. As opposed to the general case, these problems can be studied in a
considerably greater detail provided that the group of covering transformations is elementray
abelian. A brief summary of this special case, dealt with extensively in [14], is given
below.

Let p be a prime. A p-elementary abelian (or just elementary abelian) covering pro-
jection is a regular covering projection with the group of covering transformations N
isomorphic to an elementary abelian group Z

k
p, for some integer k ≥ 1. In particular,

if N is isomorphic to H1(X ; Zp), the first homology group of X with Zp as the co-
efficient ring, we call such a covering p-homological (or just homological). The group
H1(X ; Zp) is usually viewed as a vector space over Zp of dimension equal to the Betti num-
ber of the graph X . Note that all p-homological covering projections of a given graph are
equivalent.
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Let K be an abelian group. A K -voltage assignment on a graph X is a function ζ : D(X ) →
K such that ζ (x−1) = −ζ (x). Two K -voltage assignments ζ and ζ ′ on X are equivalent if
there exists a function θ : V (X ) → K such that ζ ′(x) − ζ (x) = θ (beg(x−1)) − θ (beg(x)).
For a given spanning tree T of X and for a given K -voltage assignment ζ , there exists a
unique voltage assignment ζT which is equivalent to ζ and satisfies ζT (x) = 0, for each
x ∈ D(T ). If the set {ζT (x) | x ∈ D(X )\D(T )} generates the group K , we say that ζ

is connected relative to T . Note however that this property does not really depend on the
choice of a particular tree T which may thus be omitted from the definiton.

A connected voltage assignment ζ on a graph X determines a K -covering projection
℘ζ : Cov(ζ ) → X as follows. The graph Cov(ζ ) has D(X ) × K and V (X ) × K as the sets
of darts and vertices, respectively, with beg(x, ν) = (beg x, ν) and inv(x, ν) = (inv x, ν +
ζ (x)). The corresponding projection ℘ζ is defined as the projection onto the first component.
Each K -covering projection is equivalent to the K -covering projection ℘ζ : Cov(ζ ) →
X for some connected voltage assignment ζ : D(X ) → K . Note that equivalent voltage
assignments give rise to equivalent regular covering projections. Therefore, from now on
we may assume that elementary abelian covering projections arise from voltage assignments
which vanish on a prescribed spanning tree.

Let α be an automorphism of the graph X . Since α maps a cycle of X to a cycle of X , there
is a natural action of α on H1(X ; Zp), inducing a linear transformation α# of H1(X ; Zp). The
mapping #: Aut X → GL(H1(X ; Zp)) defined by α �→ α# is in fact a group homomorphism.
The problem of finding all p-elementary abelian α-admissible covering projections of a
graph X can be solved effectively as follows [14, Corollary 6.5]: First choose a spanning
tree T of X . Let {ei | i = 1, 2, . . . r} be the set of edges of X not contained in T , and let xi be
one of the darts of ei , i = 1, 2, . . . , r . The sequence of darts x1, x2, . . . , xr naturally defines
an (ordered) basis BT of H1(X ; Zp). Next, let A ∈ GL(Zr

p), where Z
r
p is treated as a column

vector space, be the matrix representing α# relative to the basis BT . Then there is a bijective
correspondence between all α-admissible p-elementary abelian covering projections (up to
equivalence of regular covering projections) and the invariant subspaces of the transposed
matrix At . In particular, if U is an At -invariant subspace of the column vector space Z

r
p,

spanned by a basis {u1, u2, . . . , uk}, and Q is a matrix with rows ut
1, ut

2, . . . , ut
k , then the

voltage assignment ζ , mapping xi to the i th column of Q, i = 1, 2, . . . r , and mapping all
darts of T to 0, gives rise to a regular α-admissible covering projection. Note that minimal
regular α-admissible covering projections correspond to minimal invariant subspaces of At .
Also, two regular α-admissible covering projections are isomorphic if and only if there is
a graph automorphism β ∈ Aut X such that its corresponding matrix Bt maps one of the
respective invariant subspaces to the other [14].

Let X be a graph. If H, H ′ ≤ Aut X are two conjugate subgroups, and if a regular covering
projection X̃ → X is H -admissible, then there is an isomorphic regular covering projection
which is H ′-admissible. Thus, when faced with the problem of finding all edge-transitive
regular covering projections of X (up to isomorphism of regular covering projections) it
suffices to consider all regular H -admissible covering projections, where H runs through a
complete set of representatives of conjugacy classes of minimal edge-transitive subgroups
of Aut X . This suggests the following simplification when searching for semisymmetric
regular covering projections of X . For each minimal edge-transitive subgroup H , up to
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conjugacy, it is enough to check, for all pairs (H, G) where G is a minimal element (relative
to inclusion) of the set of arc-transitive subgroups of Aut X containing H , whether G lifts
or not. Such a pair (H, G) is called a minimal edge-arc-transitive pair of X .

Finally, note that fast andomized algorithms for computing invariant subspaces of matri-
ces are available [1, 18].

3. Elementary abelian covers of small cubic graphs

In this section we classify all elementary abelian covers of the 3-dipole Dip3 (that is, the
graph with two vertices and three parallel edges), the complete graph on four vertices K4,
and the complete bipartite graph K3,3. These three graphs play a central role in the statement
of our main result, Theorem 4.4.

Covers of Dip3

Elementary abelian covers of prime valency dipoles were extensively studied in [14]. We
summarize here the results in the special case of the 3-dipole Dip3.

Proposition 3.1 Let p be a prime and let X → Dip3 be a nontrivial connected edge-
transitive Z

k
p-cover of Dip3. Then one of the following occurs:

(i) k = 2 and X → Dip3 is isomorphic to a p-homological covering projection;
(ii) k = 1,p = 3 and X → Dip3 is isomorphic to the regular covering projection

K3,3 → Dip3 obtained by giving the voltages 0, 1 and 2 to the three parallel darts of
Dip3, and 0, 2 and 1 to their respective inverse darts;

(iii) k = 1, p ≡ 1 (mod 3) and X → Dip3 is isomorphic to the regular covering projection
obtained by the voltages 0, 1 and −ξ as shown in figure 1 below, where ξ ∈ Zp is one
of the two elements of order 3 in Z

∗
p.

Figure 1. The minimal covers of Dip3 in case p ≡ 1(mod 3).

Covers of K4

Label the vertices of K4 by the elements of Z4. The automorphism group Aut K4 is iso-
morphic to the symmetric group S4. It acts regularly on the set of 2-arcs of K4. The index 2
subgroup G of Aut K4, isomorphic to A4, acts regularly on the arcs of K4 and is the unique
minimal arc-transitive subgroup of Aut K4. Since K4 is not bipartite, G is also the unique
minimal edge-transitive subgroup of Aut K4. The pair (G, G) is therefore the unique mini-
mal edge-arc-transitive pair of K4. Let ρ = (1, 2, 3) and σ = (0, 1)(2, 3). They generate G.
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Let the spanning tree T contain the edges {0, 1}, {0, 2} and {0, 3}, and let a, b and c denote
the elements of H1(K4; Zp) defined by the tree T and the darts 1 → 2, 2 → 3 and 3 → 1,
respectively. The set B = {a, b, c} is then a basis of the Zp-vector space H1(K4; Zp). Let
#: Aut K4 → GL(H1(K4; Zp)) be the linear representation of Aut K4 as defined in Section 2,
and let R = [ρ#;B,B]t and S = [σ #;B,B]t be the transposes of matrices representing the
linear transformations ρ# and σ # relative to the basis B, respectively. A straightforward
computation shows that:

R =




0 1 0

0 0 1

1 0 0


 and S =




0 0 1

−1 −1 −1

1 0 0


 .

It may be seen that there are no proper non-trivial invariant subspaces of 〈R, S〉 for odd
p. On the other hand, for p = 2 there is a proper non-trivial invariant subspace of 〈R, S〉,
namely the 1-dimensional subspace spanned by the vector (1, 1, 1)t . The corresponding
covering graph is isomorphic to the cube Q3. This implies the following result.

Proposition 3.2 Let p be a prime, k a positive integer and let ℘: X → K4 be a non-trivial,
connected, edge-transitive Z

k
p-covering projection. Then one of the following occurs:

(i) k = 3 and X → K4 is isomorphic to a p-homological cover of K4;
(ii) p = 2, k = 1 and X → K4 is isomorphic to the canonical double covering Q3 → K4.

The above proposition motivates the study of edge-transitive elementary abelian covers
of Q3. It turns out that all of them are arc-transitive.

Covers of K3,3

Label the vertices of the complete bipartite graph K3,3 by the elements of Z6 in such a
way that the sets {0, 2, 4} and {1, 3, 5} form the bipartition of K3,3. Every edge-transitive
subgroup of Aut K3,3 contains the unique minimal edge-transitive subgroup H , generated
by the permutations ρ = (0, 2, 4) and σ = (1, 3, 5). It is easy to see that there are precisely
three minimal arc-transitive subgroups of Aut K3,3 containing H ; namely, G1 = 〈H, τ1〉,
G2 = 〈H, τ2〉 and G3 = 〈H, τ3〉, where τ1 = (0, 1)(2, 3)(4, 5), τ2 = (0, 1)(2, 5)(4, 3) and
τ3 = (0, 1)(2, 5, 4, 3). Consequently, the ordered pairs (H, Gi ), i = 1, 2, 3, are the only
minimal edge-arc-transitive pairs of K3,3.

Let T be the spanning tree of K3,3 containing the edges {0, 1}, {0, 3}, {0, 5}, {1, 2} and
{1, 4}. Let a, b, c and d denote the elements of H1(K3,3; Zp), defined by the tree T and the
darts 3 → 2, 3 → 4, 2 → 5 and 4 → 5, respectively (see figure 2). The set B = {a, b, c, d}
is then a basis of the Zp-vector space H1(K3,3; Zp). Let #: Aut K3,3 → GL(H1(K3,3; Zp))
be the linear representation of Aut K4 as defined in Section 2. Further, let R = [ρ#;B,B]t ,
S = [(ρσ )#;B,B]t , T1 = [τ #

1 ,B,B]t , T2 = [τ #
2 ,B,B]t , and T3 = [τ #

3 ,B,B]t be the
transposes of the matrices representing the linear transformations ρ#, (ρσ )#, τ #

1 , τ #
2 , and τ #

3
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Figure 2. The voltage assignment of K3,3.

relative to the basis B, respectively. A straightforward computation shows that:

R =




−1 1 0 0

−1 0 0 0

0 0 −1 1

0 0 −1 0


 S =




1 −1 1 −1

1 0 1 0

−1 1 0 0

−1 0 0 0




T1 =




−1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1


 T2 =




0 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 0


 T3 =




0 0 1 0

−1 0 0 0

0 0 0 −1

0 1 0 0


 .

Furthermore, let ω1 = (2, 4), ω2 = (3, 5) and Oi := [ω#
i ,B,B]t , for i = 1, 2. Then

O1 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 O2 =




0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0


 .

The minimal polynomial of S is mS(x) = x3 − 1 which factors into (x − 1)(x2 + x + 1) if
p ≡ −1 (mod 3), and into (x − 1)(x − ξ )(x − ξ 2) if p ≡ 1 (mod 3), where ξ 2 + ξ + 1 = 0.
The set of invariant subspaces of S can be found by computing the kernels of the irreducible
factors of mS(x), valued at S.

Observe first that K0 = Ker (S − I ) = 〈(1, 0, −1, −1)t , (0, 1, 1, 0)t 〉 is invariant for
the matrix R, too. Now if p ≡ −1 (mod 3), then there are no 1-dimensional R-invariant
subspaces of K0. On the other hand, in the case p ≡ 1 (mod 3) there are two 1-dimensional
R-invariant subspaces of K0, that is, L1 = 〈(1, −ξ 2, ξ, −1)t 〉 and L2 = 〈(1, −ξ, ξ 2, −1)t 〉.
As for other S-invariant subspaces we have that, for p ≡ 1 (mod 3), the subspaces K1 =
Ker (S − ξ I ) = 〈(1, −ξ, ξ, −X2

i )t 〉 and K2 = Ker (S − ξ 2 I ) = 〈(1, −ξ 2, ξ 2, −Xi )t 〉 are
R-invariant too. If p ≡ −1 (mod 3), then the subspace J = Ker (S2+S+ I ) = 〈(1, 0, 0, 1)t ,
(0, 1, −1, −1)t 〉 is R-invariant.

For p ≡ 1 (mod 3) the linear transformations T1, T2 and T3 permute the minimal 〈R, S〉-
invariant subspaces K1, K2, L1 and L2 as (L1, L2), (K1, K2) and (K1, L1, K2, L2), respec-
tively. The above implies that all Zp-covers associated with K1, K2, L1 and L2 (as well as
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all Z
3
p-covers associated with the corresponding complements) are isomorphic. Moreover,

there are two non-isomorphic Z
2
p-covers associated with K1 + K2 (or L1 + L2) and K1 + L1

(or K1 + L2 or K2 + L1 or K2 + L2). In the latter case, since none of the transformations
Ti , i = 1, 2, 3, fixes the subspace K1 + L1, the associated regular covering projection is
semisymmetric. In fact, the derived covering graph is semisymmetric too, as will be shown
in Section 5.

Similarly, for p ≡ −1 (mod 3) the linear transformations T1 and T2 fix the minimal
〈R, S〉-invariant subspaces K0 and J , whereas T3 interchanges them. This implies that all
associated regular covering projections are isomorphic.

Finally, let p = 3. Define u1 = (0, 1, 1, 0)t , v1 = (1, −1, 1, −1)t , v2 = (1, 1, −1, 0)t ,
and v3 = (−1, 0−1, 1)t , and observe that u1, v1, v2, v3 form a Jordan basis for the matrix S.
Moreover, it can be checked that the nontrivial proper invariant subspaces of (H #)t = 〈R, S〉
are the following: V1 = 〈v1〉, V2 = 〈v1, v2〉, K0 = 〈v1, u1〉 = Ker (S − I ), W1 = 〈v1, u1 +
v2〉, W2 = 〈v1, u1 − v2〉, and V3 = 〈v1, v2, u1〉 = Ker (S − I )2. By computation we can
check that T1 and T2 interchange W1 with W2 and fix all others. On the other hand, T3

interchanges W1 with W2 as well as V2 with K0, and fixes all others. Hence the regular
covering projections associated with V2 and K0 are isomorphic. The same holds for the
regular covering projections associated with W1 and W2. Moreover, the only semisymmetric
regular covering projections arise from W1 (or W2) since these are the only subspaces not
fixed by any of T1, T2 or T3.

The discussion above is summarized in Table 1 below. Based on the theory developed in
[14], the discussion above gives the following proposition.

Proposition 3.3 Let X → K3,3 be a non-trivial, connected, edge-transitive Z
k
p-covering

projection. Then all such pairwise non-isomorphic covering projections arise from voltage
assignments given in Table 1.

Each of the first five rows of this table corresponds to a particular family or a sporadic
example, whereas the defining parameters are read from the columns. The first column
gives the corresponding invariant subspace while the next four columns give the voltages
(see Figure 2). The last three columns give, respectively, the arithmetic condition for the
existence of such a projection, the maximal edge-transitive subgroup of Aut K3,3 that lifts,
and its order.

A comment on the data regarding some of the graphs obtained from Table 1 is in order.
First, all graphs are arc-transitive except for those obtained from rows 3 and 8 which are
semisymmetric. In fact, the graph in row 8 is the Gray graph, the smallest cubic semisym-
metric graph, as was shown in [16]. Regarding the semisymmetry of the family of graphs
associated with row 3, see Theorem 5.1. Finally, note that the graphs associated with rows
6, 7 and 9, respectively, are the cubic arc-transitive graphs whose respective codes in the
Foster Census [4] are 18 (the Pappus graph), 54, and 162C.

4. Main results

In this section we analyse the structure of cubic graphs admitting an edge-transitive action
of a solvable group of automorphisms. We start by giving three lemmas. The first one is
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Table 1. Edge-transitive elementary abelian covers of K3,3.

Inv. sub. ζ (a) ζ (b) ζ (c) ζ (d) Condition Group that lifts Its order

K1 (1) (−ξ ) (ξ ) (−ξ2) p ≡ 1 (mod 3) 〈H, τ1〉 18
ξ2 + ξ + 1 = 0

J

(
1
0

) (
0
1

) (
0

−1

) (
1

−1

)
none 〈H, τ1, τ2〉 36

K1 + L1

(
1
0

) (
0
1

) (
ξ

0

) (
0
ξ

)
p ≡ 1 (mod 3)
ξ2 + ξ + 1 = 0

〈H, ω1〉 18

K1 + K2 + L1


 1

0
0





 0

1
0





 0

0
1





 1

ξ

−ξ2


 p ≡ 1 (mod 3)

ξ2 + ξ + 1 = 0
〈H, τ2〉 18

N




1
0
0
0







0
1
0
0







0
0
1
0







0
0
0
1


 none 〈H, τ1, τ2, τ3〉 72

V1 (1) (−1) (1) (−1) p = 3 〈H, τ1, τ2, τ3〉 72

V2

(
1
0

) ( −1
1

) (
1

−1

) ( −1
−1

)
p = 3 〈H, τ1, τ2〉 36

W1

(
1
0

) ( −1
0

) (
0
1

) (
0

−1

)
p = 3 〈H, ω1, ω2〉 36

V3


 1

0
0





 0

1
0





 0

0
1





 1

1
−1


 p = 3 〈H, τ1, τ2, τ3〉 72

a mere observation, whereas the second one is a bit more complex. It deals with the case
when the quotient graph is the tripod K1,3, and is central to the proof of Theorem 4.4. The
third lemma gives an extension of a particular case covered by Table 1 in Proposition 3.3.

An n-semistar is a graph with one vertex and n semiedges.

Lemma 4.1 Let X be a connected cubic simple graph admitting an edge-transitive group
G of automorphisms. Let N be a normal subgroup of G, and let X N be the quotient graph
with respect to the action of N on X. Then X N admits an edge-transitive action of the
quotient group G/N , and is one of the following graphs:

(i) a connected cubic simple graph;
(ii) the 3-dipole Dip3;

(iii) the tripod K1,3;
(iv) the complete graph K2;
(v) the 3-semistar s3.

Proof: The normality of N implies that the quotient graph is a {1, 3}-graph, that is, a
graph whose vertices have valencies 1 or 3. Moreover, X N is obviously edge-transitive.
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It is easy to see that every edge-transitive {1, 3}-graph is isomorphic to one of the above
graphs.

Lemma 4.2 Let X be a connected cubic simple graph admitting an edge-transitive group
G of automorphisms. If G contains a normal subgroup N ∼= Z

k
p such that X N is isomorphic

to the tripod K1,3, then X is G-semisymmetric and one of the following occurs:

(i) k = 1 and X ∼= K3,3;
(ii) k = 2 and X is isomorphic to the Pappus graph;

(iii) k = 3 and X is isomorphic to the Gray graph.

Proof: Since G has a normal subgroup with respect to which the quotient graph is iso-
morphic to K1,3, a graph which is not vertex-transitive, the action of G on X cannot be
vertex-transitive, and hence is semisymmetric.

Let U1, U2, and U3 be the N -orbits corresponding to three vertices of degree 1 of the
tripod K1,3, and let W be the N -orbit corresponding to the vertex of valency 3 of the tripod.
Clearly, N acts faithfully and hence regularly on W . Thus |W | = pk . Since all the sets Ui

are of the same cardinality and |W | = 3|U1|, we have p = 3, and hence |W | = 3k and
|Ui | = 3k−1, i = 1, 2, 3. Moreover, |E(X )| = 3k+1.

Let M be a Sylow 3-subgroup of G. By [21, Theorem 3.4] the group M acts transitively
on the edge set E(X ). By [15, Proposition 2.4], the order of a vertex stabilizer Gv , v ∈ V (X ),
is divisible by 3 but not by 9. It follows that |M | = 3k+1, implying that M acts regularly
on the edge set E(X ). Clearly, N is normal in M of index 3. Let µ be an element of order
3 in Gv , v ∈ W , mapping Ui to Ui+1. Then µ ∈ M\N . For each i ∈ {1, 2, 3}, let Ki be
the kernel of the action of N on Ui . As |N | = 3|Ui |, we have that Ki

∼= Z3. Clearly, µ

permutes K1, K2 and K3 by conjugation. Let L = 〈K1, K2, K3〉. Note that L is normal in
N , Lµ = L and that M = 〈N , µ〉. Therefore L is normal in M .

We now count the number of orbits of the action of L on W and U = U1 ∪ U2 ∪ U3.
Let |L| = 3l . Observe that l ≤ 3. Then the number of orbits of the action of L on W is
3k−l . Moreover, the number of orbits of the action of L on U is 3k−l+1. Namely, for each
i ∈ {1, 2, 3}, the kernel of the action of L on Ui is Ki . Hence |L/Ki | = 3l−1. But L/Ki acts
semiregularly on Ui . It follows that the number of orbits of L on Ui equals 3−l+1|Ui | = 3k−l .
Therefore the number of orbits of L on U is 3k−l+1. Recall that L is normal in M , and that
the latter acts regularly on E(X ). The quotient graph X L is a bipartite {1, 3}-graph with
bipartition sets of respective sizes 3k−l and 3k−l+1. But as it is connected, it can be easily
seen that 3k−l = 1, and so k = l. Therefore L = N . Recalling that k = l ≤ 3, we consider
three different cases.

Suppose first that k = 1. Then N ∼= Z3 and so X ∼= K3,3. Moreover, N acts trivially on
one part of the bipartition and cyclically permutes the other part.

Next, let k = 2. Then N = Z
2
3. Let {e1, e2} be the standard basis of N . We may assume

that Ki = 〈ei 〉 for i = 1, 2. Since µ takes by conjugation Ki to Ki+1, i ∈ Z3, it follows
that K3 = 〈−e1 − e2〉. Further, by computation we see that µ normalizes the subgroup
T = 〈e1 − e2〉 ∼= Z3. Therefore T is normal in M = 〈N , µ〉. Observe that T , being a
subgroup of N , acts semiregularly on W , and moreover, acts semiregularly on U since it
intersects each Ki trivially. Also, it acts semiregularly on E(X ) since it is contained in M .
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It follows that X → XT is a regular Z3-covering projection, where XT is a connected cubic
graph with 9 edges. Hence XT

∼= K3,3. From Table 1 in Proposition 3.3 it may be seen
that X is isomorphic to the Pappus graph. Moreover, N acts regularly on one part of the
bipartition and has three orbits of length 3 on the other part.

Finally, suppose that k = 3. Then N ∼= Z
3
3. Let {e1, e2, e3} be the standard basis of N .

We may assume that Ki = 〈ei 〉, i = 1, 2, 3. Set T = 〈e1 − e2, e2 − e3〉 ∼= Z
2
3. Observe

that µ normalizes T , implying that T is normal in M . As in the preceeding paragraph T
acts semiregulary on X and so the graph X is a regular Z

2
3-cover of XT

∼= K3,3. Comparing
Table 1 in Proposition 3 with the Foster Census [4], the graph X is isomorphic either to
the graph with Foster code 54, or to the Gray graph. In the first case, it can be checked that
the unique minimal edge-transitive group has exactly one normal subgroup isomorphic to
Z

2
3. This normal subgroup has six orbits of length 9, and so the corresponding quotient is

not the tripod, a contradiction. Consequently, the only remaining possibility is that X be
isomorphic to the Gray graph. Moreover, N acts regularly on one part of the bipartition and
has three orbits of length 3 on the other part.

Lemma 4.3 Let G be an edge-transitive subgroup of Aut Gray. Then there exists a regular
Z

2
3-covering projection Gray → K3,3 along which G projects, if and only if |G| ∈ {81,162}

or |G| = 324 and G has a normal subgroup isomorphic to Z
2
3.

Proof: From row 8 of Table 1 in Proposition 3.3 we deduce that the maximal edge-
transitive subgroup of Aut Gray which projects along Gray → K3,3 has order 324. More
precisely, there are two conjugacy classes of subgroups of order 324 in Aut Gray, the first
one consisting of a normal subgroup and the second one consisting of four subgroups.
For each of these four subgroups there exists a corresponding regular covering projection
Gray → K3,3. Now, as it was checked with MAGMA [1], each of the groups from the
statement of the lemma is contained in one of these four subgroups of order 324.

Theorem 4.4 Let X be a connected cubic simple graph admitting an edge-transitive
solvable subgroup G of automorphisms. Then G contains a normal subgroup K , possibly
trivial, such that one of the following occurs:

(i) X is a K -cover of K4, where G/K is isomorphic to one of the two edge-transitive
subgroups of Aut K4;

(ii) X is a K -cover of the dipole Dip3, where G/K is isomorphic to one of the four
edge-transitive subgroups of Aut Dip3;

(iii) X is a K -cover of K3,3, where G/K is isomorphic to one of the five edge-transitive
subgroups of Aut K3,3 which do not project along the regular covering projection
K3,3 → Dip3;

(iv) X is a K -cover of the Gray graph, and G/K is isomorphic to one of the five edge-
transitive subgroups of Aut Gray which do not project along the regular covering
projection Gray → K3,3.

Moreover, the regular covering projection X → X K can be decomposed into a sequence
of (minimal) elementary abelian covering projections.
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Remark Let us mention that the subgroups isomorphic to G/K , appearing in (i)–(iv)
above, are respectively: A4 and S4 in case (i); A3, S3 and their direct products with Z2 in case
(ii); the groups 〈ρ, σ, ω1〉, 〈ρ, σ, ω2〉, 〈ρ, σ, ω1, ω2〉, 〈ρ, σ, τ3〉, and Aut K3,3 = 〈τ1, τ2, τ3〉,
with the notation of Section 3, in case (iii); and the only normal subgroup of order 324
in Aut Gray, all three subgroups of order 648 in Aut Gray, and Aut Gray, a group of order
1296, itself. The relative computations regarding the subgroups of Aut Gray were done with
the help of MAGMA [1].

Proof: Let X be a minimal counterexample to the statement of the theorem, and let N � G
be the minimal normal subgroup of G. By [19, Theorem 5.24], N is elementary abelian,
say, N ∼= Z

k
p. Applying Lemma 4.1 we now consider the five possibilities for the quotient

graph X N .
Suppose first that X N is a connected cubic simple graph. Then the quotient projection

is valency preserving and hence X → X N is a regular covering projection. By minimality
of X there exists a regular covering projection X N → Y such that G/N projects, where
Y is isomorphic to one of K4, Dip3, K3,3, or the Gray graph. But the composition of these
two regular covering projections is a regular covering projection X → Y along which G
projects, a contradiction.

Suppose next that X N
∼= Dip3. Since this quotient projection is a regular covering

projection such that G projects, we have an immediate contradiction.
Suppose now that X N

∼= K1,3. In view of Lemma 4.2, X is isomorphic to one of the
exceptional graphs, that is, K3,3, the Pappus graph, or the Gray graph. Clearly, if X ∼= K3,3

then X falls in (ii) or (iii). Next, let X be isomorphic to the Pappus graph. From row 6 of
Table 1 in Proposition 3.3 we have that G projects along X → K3,3, and so the pair (X, G)
falls in (ii) or (iii). Finally, suppose that X is isomorphic to the Gray graph. If G projects
along X → K3,3 then the pair (X, G) falls in (ii) or (iii), and if G does not project along
X → K3,3, then the pair (X, G) falls in (iv). All these contradictions show that this case
cannot occur.

Next, let X N
∼= K2. Then N acts transitively and hence regularly on E(X ). Thus 2pk =

3|V (X )|, and so p = 3. If k = 1, then X ∼= Dip3 and X falls in (ii). Otherwise, consider
the line graph L(X ) which is a 4-valent Cayley graph of Z

k
3. But then k = 2. Therefore

X ∼= K3,3 and X falls in (ii) or (iii). These contradictions show that this case cannot occur.
Finally, suppose that X N

∼= s3. Then the quotient projection, being valency-preserving,
is a regular covering projection onto a monopole. Hence X is a Cayley graph of the group
N . So 3pk = 2|E(X )| and consequently p = 2. By connectivity of X we have k ≤ 3.
Thus, X is isomorphic either to K4 or to Q3. But Q3 is the canonical double cover of K4

and so the full automorphism group of Q3 projects. Hence X falls in (i). This contradiction
completes the proof of Theorem 4.4.

Theorem 4.4 has the following immediate consequences.

Corollary 4.5 Let X be a connected simple cubic graph admitting an edge-transitive
solvable subgroup of automorphisms. Then X is a regular cover either of the 3-dipole Dip3
or of the complete graph K4. Moreover, the corresponding regular covering projection
decomposes into a sequence of (minimal) elementary-abelian covering projections.
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Corollary 4.6 Let X be a connected simple cubic graph admitting an arc-transitive solv-
able subgroup G of automorphisms. If X is a regular cover of K3,3, then it is at most
(G, 3)-arc-transitive. In all other cases X is at most (G, 2)-arc-transitive.

In view of Corollary 4.5, a connected simple cubic graph admitting a solvable group of
automorphisms can be constructed from Dip3 or K4 via a sequence of minimal elementary
abelian covers. These graphs can be thought of as being arranged into a lattice, with Dip3
and K4 as minimal elements. The distance of a graph in this lattice from the set of minimal
elements {Dip3, K4} defines its level. (Note that the lattice changes if the objects, rather
than just graphs, are ordered pairs (X, G), where G is solvable and acts edge-transitively
on a cubic graph X ; with an arrow between the two objects whenever G projects along an
elementary abelian cover. In that sense, the set of minimal elements includes also ordered
pairs (K3,3, G), where G is one of the exceptional groups from (iii) of Theorem 4.4, and
(Gray, G), where G is one of the exceptional groups from (iv) of Theorem 4.4.) This point
of view is useful when one is faced with the problem of constructing graphs with specific
symmetry properties. As an example, in the next section we present a construction of cubic
semisymmetric graphs as elementary abelian covers of K3,3 of level 2.

5. New families of semisymmetric cubic graphs

The object of this section is to show that the graphs, denoted here by K p,p
3,3 where p ≡

1 (mod 3), belonging to the infinite family of semisymmetric Z
2
p-covering projections of

K3,3 from row 3 of Table 1 in Proposition 3.3, are semisymmetric. Note that K 7,7
3,3 , the

smallest graph in the above family, has 294 vertices.

Theorem 5.1 Let p ≡ 1 (mod 3) be a prime. Then K p,p
3,3 is a semisymmetric graph with

edge stabilizers isomorphic to Z2.

Proof: Let A = Aut K p,p
3,3 and recall, from row 3 of Table 1, that 〈H, ω1〉 is the largest

subgroup of Aut K3,3 that lifts. Let  denote the lift of this group, and note that || = 18p2.
Clearly,  is semisymmetric with edge stabilizers isomorphic to Z2. It therefore suffices to
see that A = . This is what we do now basing our arguments on a thorough analysis of
12-cycles.

Let us first analyze possible closed walks in K3,3 which lift to 12-cycles in K p,p
3,3 . We call

a 12-cycle in K p,p
3,3 homological if its projection in K3,3 is a closed walk traversing every

edge the same number of times in both directions. Observe that such a walk is made of three
4-cycles and misses out precisely one of the vertices of K3,3 (see figure 3 below). In fact,
for every vertex of K3,3 there exists a single such walk (modulo taking a translation or the
inverse of a walk). It follows that there is a total of 6p2 homological 12-cycles in K p,p

3,3 . It
may be seen that every 12-cycle of K p,p

3,3 arises in this way provided p > 7. (We leave out
the rather technical details.) For p = 7, we used MAGMA [1] to check that K 7,7

3,3 is indeed
semisymmetric, with edge stabilizers isomorphic to Z2. We now assume that p > 7 and
hence that all 12-cycles in K p,p

3,3 are homological.
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Figure 3. The configuration (walk) in K3,3 missing out fibre 4̃ and the corresponding 12-cycle in K p,p
3,3 .

Let us call a vertex of K p,p
3,3 even if it belongs to an even fibre 0̃, 2̃ or 4̃, and odd if it

belongs to an odd fibre 1̃, 3̃ or 5̃. Similarly, a 12-cycle of K p,p
3,3 is said to be even if it misses

out an even fibre, and odd if it misses out an odd fibre. We let the symbols C+ and C− denote
the two respective sets of even and odd 12-cycles in K p,p

3,3 . As the number of 12-cycles
coincides with the order 6p2 of the graph K p,p

3,3 , we have that every vertex lies on precisely
twelve 12-cycles. Consider an even 12-cycle and an odd vertex on it (see figure 3). Observe
that its antipodal vertex on that 12-cycle belongs to the same fibre. Analogously, on an odd
12-cycle any two antipodal even vertices belong to the same fibre.

For vertices in odd fibres consider the equivalence relation obtained by taking the tran-
sitive (and reflexive) hull of the relation of ‘being antipodal on even 12-cycles’. It may be
easily seen that the equivalence classes coincide with the three odd fibres. Denote by G the
largest subgroup of A that fixes the two parts of the bipartition of K p,p

3,3 as well as the sets C+

and C−. Let v ∈ K p,p
3,3 be an odd vertex and g ∈ Gv . In view of the above remarks it follows

that g fixes the whole fibre containing v. Hence all odd fibres are blocks of imprimitivity
for G. But then the same holds also for all even fibres. In other words G coincides with the
lifted group .

The following consequences are now at hand. If every automorphism of K p,p
3,3 fixes C+

and C− then [A : ] ≤ 2. Similarly, if there are automorphisms in A interchanging C+ and
C−, then [A : ] ≤ 4. This puts the upper bound for the order of A to 23 · 32 · p2. Let P be a
Sylow p-subgroup of A isomorphic to Z

2
p. Then  = NA(P) coincides with the normalizer

of P in A. By the above comments we have [A : ] ∈ {1, 2, 4}. Therefore by the Sylow
theorem, P is normal in A and so the whole of A projects, forcing A = . It follows that
X is semisymmetric with edge stabilizers isomorphic to Z2, as required.

There is another infinite family of semisymmetric graphs associated with K3,3 (see [16]).
They are obtained as regular Zn-covers of K3,3, where n = 3pe1

1 pe2
2 . . . pek

k , with ε ∈
{0, 1} and pi ≡ 1 (mod 3), i = 1, 2, . . . k, being distinct primes and each ei ≥ 1. The
corresponding voltage assignments are given by ζ (a) = 1, ζ (b) = −r , ζ (c) = s and
ζ (d) = −rs (see figure 2), where r and s generate two distinct subgroups of order 3 in Z

∗
n .
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The smallest graph in this family, a Z91-cover of K3,3, has 546 vertices. As opposed to the
graphs K p,p

3,3 , the graphs in this family have trivial edge stabilizers, for the maximum group
of Aut K3,3 that lifts is H .

Similar constructions can be obtained by taking other small cubic edge-transitive graphs
as base graphs. This is done in [14] for the Heawood graph (of order 14) and in [12] for the
Moebius-Kantor graph G P(8, 3) (of order 16). The smallest semisymmetric graph arising
from the Heawood graph has 112 vertices and is a Z

3
2-cover. The smallest semisymmetric

graph arising from the Moebius-Kantor graph has 144 vertices and is a Z
2
3-cover. A more

detailed information on these two graphs as well as the above mentioned graphs on 294 and
546 vertices may be found in the list of all cubic semisymmetric graphs of order up to 768
[5].
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