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Abstract. Let �I,I ′ be the minor of a matrix which corresponds to row set I and column set I ′. We give a
characterization of the inequalities of the form

�I,I ′�K ,K ′ ≤ �J,J ′�L ,L ′

which hold for all totally nonnegative matrices. This generalizes a recent result of Fallat, Gekhtman, and Johnson.
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1. Introduction

Let A be an n × n matrix and let I and I ′ be subsets of [n] = {1, . . . , n} having equal
cardinality. We define �I,I ′ , the (I, I ′) minor of A, to be the determinant of the submatrix
of A corresponding to rows I and columns I ′. A matrix is called totally nonnegative if each
of its minors is nonnegative. While this definition may be applied to nonsquare matrices,
we will restrict our attention to square totally nonnegative matrices. It is easy to see that
the concatenation of a row or column of zeros to a totally nonnegative matrix introduces no
negative minors.

One setting in which totally nonnegative matrices arise is in the counting of paths in
directed graphs. Let us define a planar network of order n to be a planar acyclic directed graph
G = (V, E) in which 2n vertices are distinguished as n sources and n sinks. We will assume
that all sources and sinks are boundary vertices, labeled cyclically (counterclockwise) as
s1, . . . , sn, tn, . . . , t1. We will use S and T to denote the sources and sinks of a planar
network, and SI and TI to denote the subsets of sources and sinks corresponding to an index
set I ,

SI = {si | i ∈ I },
TI = {ti | i ∈ I }.

In figures we will draw sources on the left of a planar network and sinks on the right.
The orientations of edges will be understood to be from left to right (see figure 1).
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Figure 1. A planar network of order 4.

Let G = (V, E) be a planar network of order n and let each edge e of G be labeled by a
positive real weight we. Define the weight of a path from s to t to be product of weights of
edges along this path, and define the weighted path matrix of G to be the matrix A = [ai j ],
where ai j is the sum of weights of all paths from source si to sink t j . Such a weighted
path matrix is always totally nonnegative. In particular, the minors of such a matrix have
an interpretation in terms of families π = (π1, . . . , πn) of paths in G from sources to sinks.
Defining the weight of a path family to be the product of weights of its n paths, we have
the following result.

Theorem 1.1 Let A be the weighted path matrix of a planar network G. The minor �I,I ′

of A is equal to the sum of weights of all nonintersecting path families which connect the
sources indexed by I to the sinks indexed by I ′. In particular, A is totally nonnegative.

The first proofs of this fact were given by Karlin and MacGregor [7], and Lindström [8].
Since then, Theorem 1.1 has been used to prove that matrices arising in various situations
are totally nonnegative (see for example [5] and [6]).

By results of Whitney [12], Loewner [9], Cryer [2], and Brenti [1], the converse of
Theorem 1.1 is true as well. This result was first stated in [1].

Theorem 1.2 Every n × n totally nonnegative matrix A is the weighted path matrix of a
planar network G of order n.

While the planar network G in Theorem 1.2 is not uniquely determined, it is easy to
see that G may be chosen so that each source (sink) has indegree zero and outdegree one
(outdegree zero and indegree one). Furthermore, it may always be chosen to be of a canonical
form [1] (see also [4]).

Some recent interest in totally nonnegative matrices involves polynomial functions in
n2 variables {xi j | i, j ∈ [n]} which evaluate to nonnegative numbers whenever we set
xi j = ai j for a totally nonnegative matrix A = [ai j ] of size at least n × n. Let us call such
polynomials totally nonnegative. In particular, Lusztig [10] has shown that the elements of
the dual canonical basis of the coordinate ring of GLn are totally nonnegative. In order to
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Figure 2. A partial order on partitions of {1, 2, 3, 4} into at most two blocks.

better understand this basis, which currently has no simple description, one might hope to
characterize all totally nonnegative polynomials, or at least to study some subset of these
polynomials.

One such subset, discovered recently by Fallat et al. [3], may be described in terms of
principal minors. An example is the totally nonnegative polynomial

�{1,3}{1,3}�{2,4}{2,4} − �{1,4}{1,4}�{2,3}{2,3}. (1.1)

In other words, the inequality

�{1,4}{1,4}�{2,3}{2,3} ≤ �{1,3}{1,3}�{2,4}{2,4} (1.2)

holds for all totally nonnegative matrices of size at least 4 × 4. This and sixteen similar
inequalities are shown as a poset P in figure 2. Each element of the form I -K in P represents
the product �I,I �K ,K , and the minimal element represents the determinant �{1,2,3,4}. The
relation <P is defined by I -K <p J -L whenever the inequality

�I,I �K ,K ≤ �J,J �L ,L

holds for all totally nonnegative matrices. Thus the relation 14-23 <P 13-24 represents the
inequality (1.2).

This poset raises the question of finding a more general class of inequalities in products
of arbitrary (i.e., not necessarily principal) minors of totally nonnegative matrices. Let us
consider products of the form �I,I ′� Ī , Ī ′ , where Ī = [n]\I .

Question 1.1 What conditions on four subsets I, I ′, J, J ′ of [n] imply the inequality

�I,I ′� Ī , Ī ′ ≤ �J,J ′� J̄ , J̄ ′ (1.3)

for all totally nonnegative matrices of size at least n × n?
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By Theorem 1.2, we may interpret the products of minors which occur in the inequality
(1.3) in terms of families of paths in planar networks. The combinatorial interpretation of
the product �I,I ′� Ī , Ī ′ is quite simple.

Observation 1.3 Let A be an n × n totally nonnegative matrix, and let G be any planar
network whose weighted path matrix is A. Then the product �I,I ′� Ī , Ī ′ of minors of A is
equal to the weighted sum of all path families π = (π1, . . . , πn) in G with the following
properties.
1. Each path connects a source in SI to a sink in TI ′ or a source in SĪ to a sink in TĪ ′ .
2. The paths from SI to TI ′ are pairwise vertex disjoint, as are the paths from SĪ

to TĪ ′ .

We will refer to the combination of the two conditions in Observation 1.3 as a binary crossing
rule or more specifically as the (I, I ′) crossing rule. We will refer to source-to-sink paths
and to families of these simply as paths and path families.

Using Observation 1.3 we may reformulate Question 1.1.

Question 1.2 What conditions on four subsets I, I ′, J, J ′ of [n] imply that for each planar
network G of order n, the weighted sum of path families in G which obey the (I, I ′) crossing
rule is less than or equal to the weighted sum of path families in G which obey the (J, J ′)
crossing rule?

In Section 2 we will examine a special case of Question 1.2 which will lead to a proof
of our main theorem in Section 3. This theorem, which generalizes recent results of Fallat
et al. [3], characterizes all inequalities of the form

�I,I ′� Ī , Ī ′ ≤ �J,J ′� J̄ , J̄ ′

which hold for all totally nonnegative matrices. A corollary provides a combinatorial inter-
pretation of the corresponding totally nonnegative polynomials

�J,J ′� J̄ , J̄ ′ − �I,I ′� Ī , Ī ′ .

In Section 4 we will show that our main result essentially characterizes even the more
general class of inequalities of the form

�I,I ′�K ,K ′ ≤ �J,J ′�L ,L ′

which hold for all totally nonnegative matrices.

2. Path families which cover a planar network

A path family π in a planar network G will not in general use all of the edges of G. We
will say that π covers G if it does use all of the edges. Since the weight of a path family
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which covers G is equal to the product of all edge weights in G (with multiplicities for
multiply covered edges), we may calculate the weighted sum of path families which cover G
simply by counting path families which cover G.This suggests the following specialization
of Question 1.2.

Question 2.1 What conditions on four subsets I, I ′, J, J ′ of [n] imply that for each planar
network G of order n, the number of path families which cover G and obey the (I, I ′)
crossing rule is less than or equal to the number of path families which cover G and obey
the (J, J ′) crossing rule?

Questions 1.2 and 2.1 in fact have the same answer. The easiest way to see this is to
consider three related families of graphs and maps between these.

Let G1(n) be the family of planar networks of order n which may be expressed as a union
of n source-to-sink paths, no three of which share a vertex. These are precisely the planar
networks which can be covered by path families which obey a binary crossing rule. (To see
sufficiency, let I = I ′ be the set of odd integers in [n].) Note that the vertices in such planar
networks have indegree and outdegree bounded by two.

Let G2(n) be the family of undirected graphs with at least n connected components which
are paths, and arbitrarily many connected components which are cycles. To define our first
map φ : G1(n) → G2(n), let G = (V, E) be a graph in G1, and create φ(G) = G ′ = (V ′, E ′)
as follows.

1. For each vertex x ∈ V which has indegree and/or outdegree two, create vertices x− and
x+ in V ′. Otherwise create vertex x in V ′.

2. For each edge (x, y) in E , create the unique edge (x+, y−) or (x, y−) or (x+, y) or (x, y)
which can be defined in E ′.

Figure 3 shows a planar network G and figure 4 shows the graph φ(G). As we have used
S and T to refer to the sources and sinks in G, we will again use S and T to refer to the
corresponding vertices in φ(G).
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Figure 3. A planar network G which is a union of 7 paths.
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Figure 4. The graph φ(G).

It is not hard to see that the components of φ(G) are of three types: paths whose two
endvertices are sources or sinks (there are necessarily n of these), paths containing no source
or sink, and cycles. Examination of these components immediately gives a formula for the
number of path families which cover G and obey a binary crossing rule.

Proposition 2.1 Let G be a planar network in G1(n), let k be the number of cyclic compo-
nents of φ(G), and let I, I ′ be two subsets of [n]. Then the number of path families which
cover G and obey the (I, I ′) crossing rule is 2k if no path component of φ(G) contains two
vertices in SI ∪ TĪ ′ . It is zero otherwise.

Proof: Let G be a graph in G1(n). Counting the number of path families which cover G
and obey the (I, I ′) crossing rule is equivalent to counting the edge colorings of G which
satisfy the following conditions.

1. Each edge incident upon a source in SI or a sink in TI ′ is colored blue; edges incident
upon the remaining sources and sinks are colored red.

2. Each edge in the graph must be colored red, blue, or red and blue.
3. For each vertex v which is not a source or a sink, at most one red edge enters v and the

same number of red edges leaves v.
4. For each vertex v which is not a source or a sink, at most one blue edge enters v and the

same number of blue edges leaves v.

These rules ensure that |I | nonintersecting blue paths lead from SI to TI ′ , n − |I | noninter-
secting red paths lead from SĪ to TĪ ′ , and the union of these n paths is equal to the edge set
of G.

Consider any component H of φ(G) and let F be the corresponding set of edges in G.
For any two edges in H which share a vertex x+ or x−, the corresponding edges of F
must be colored differently. Similarly, for any two edges in H which share a vertex x , the
corresponding edges in F must be colored equally. This forces us to color F by partitioning
it into alternating blocks of equally colored edges, with consecutive blocks separated by a
vertex of the form x+ or x−.
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If H is a path containing no vertex in S ∪ T , then we must color each edge in F both
red and blue, since the unique vertex x+ in H corresponds to a vertex x in G with indegree
two. If H is a cycle, then it contains equal numbers of vertices of the forms x+ and x−, and
contains no sources or sinks. Thus we partition F into an even number of monochromatic
blocks, and we may color this set of blocks in one of two ways. Now suppose H is a path
whose endvertices belong to S ∪ T . If the endvertices both belong to S or both to T , then
H contains an odd number of vertices of the forms x+, x−, and we partition F into an even
number of blocks. Thus we may color this set of blocks in one way if exactly one of the
endvertices of H belongs to SI ∪ TI ′ and in zero ways otherwise. If on the other hand one
endvertex of H belongs to S and the other belongs to T , then H contains an even number
of vertices of the forms x+, x− and we partition F into an odd number of blocks. Thus we
may color this set of blocks in one way if exactly one of the endvertices of H belongs to
SI ∪ TI ′ and in zero ways otherwise.

Proposition 2.1 implies a surprising relationship between sets of path families which
cover a planar network and obey one crossing rule or another.

Corollary 2.2 Let G be a planar network of order n and let I, I ′, J, J ′ be subsets of [n].
If the number of path families which cover G and obey the (I, I ′) crossing rule is not equal
to the number of path families which cover G and obey the (J, J ′) crossing rule, then one
of these numbers is zero.

Thus, the comparison of weighted sums of path families which cover a planar net-
work G and obey two different crossing rules reduces to a problem of determining the
existence of such families. By Proposition 2.1, this in turn reduces to the problem of
deciding if n paths in the graph φ(G) determine a perfect matching of SI ∪ TĪ ′ with
SĪ ∪ TI ′ . We therefore introduce a third class of graphs which records only this
information.

Let G3(2n) be the family of graphs on 2n vertices labeled 1, . . . , 2n, and n edges which
can be drawn so that if the vertices lie in increasing order on a horizontal line, then the edges
form n noncrossing arcs above them. It is well known that the cardinality of G3(2n) is Cn ,
the nth Catalan number (see [11, p. 222]). To define a second map ψ : G1(n) → G3(2n),
let G = (V, E) be a graph in G1(n), let G ′ = (V ′, E ′) be φ(G) and create ψ(G) = G ′′ =
(V ′′, E ′′) as follows.

1. For each source si in V create vertex i in V ′′.
2. For each sink ti in V create vertex 2n + 1 − i in V ′′.
3. For each path component of G ′ with endvertices in S ∪ T , connect the corresponding

two vertices in V ′′ with an arc.

Figures 5 and 6 show two embeddings of the graph ψ(G), where G is the graph in
figure 3.

The map ψ allows us to state a simple criterion for comparing path families which cover
a given graph in G1(n) and obey two different crossing rules.
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Figure 5. The graph ψ(G), drawn similarly to φ(G).
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Figure 6. The graph ψ(G), drawn with vertices on a horizontal line and edges above this line.

Observation 2.3 Let G be a graph in G1(n), let I, I ′, J, J ′ be subsets of [n], and define
the sets

I ′′ = I ∪ {2n + 1 − i | i ∈ I
′},

I
′′ = [2n]\I ′′,

J ′′ = J ∪ {2n + 1 − j | j ∈ J
′},

J ′′ = [2n]\J ′′.

There are more path families which cover G and obey the (I, I ′) crossing rule than there
are path families which cover G and obey the (J, J ′) crossing rule if and only if ψ(G) is a
perfect matching of the numbers I ′′ with Ī ′′ and it is not a perfect matching of the numbers
J ′′ with J̄ ′′.

It is easy to show that the map ψ is surjective. One proof of this is given by the following
map ρ : G3(2n) → G1(n), which identifies a canonical representative in the preimage
ψ−1(H ) of each graph H in G3(2n).

1. Draw a vertical representation of H and label the vertices s1, . . . , sn, tn, . . . , t1 as in
figure 7(a).

2. For each edge e of H whose endvertices have indices which differ by k, replace e by a
zig-zag path of k + 1 straight edges and k new vertices as in figure 7(b).
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Figure 7. A graph H in G3(14) and the creation of the graph ρ(H ) in G2(7).

3. Identify pairs of new vertices as in figure 7(c) so that each vertex in the resulting graph
has degree one or four.

It is easy to see that the graph created in step 2 is φ(ρ(H )), and that all pairs of ver-
tices which are identified in step 3 belong to two different components of φ(ρ(H )). More
specifically, we have the following lemma.

Lemma 2.4 Let H be a graph in G3(2n), and let I, I ′ be subsets of [n]. If ρ(H ) contains
any path family which obeys the (I, I ′) crossing rule, then this path family covers ρ(H ) and
is unique.

Proof: Let π be a path family in ρ(H ) which obeys the (I, I ′) crossing rule but does
not cover ρ(H ), and color the edges of ρ(H ) red and/or blue as in the proof of Proposi-
tion 2.1. Construct the graph φ(ρ(H )), and color its edges as those of ρ(H ) are colored. All
components of φ(ρ(H )) are paths, some containing uncolored edges. For each component
containing at least one uncolored edge, consider the vertex labels of the corresponding arc
in H , and choose a component C which minimizes the difference between these two labels.
By the choice of C and the fact that no component of φ(ρ(H )) contains two vertices x+

and x− for any vertex x of ρ(H ), we have that some edge of C is uncolored, one of its
neighboring edges is colored twice, the next edge is uncolored, etc. This implies that a
terminal edge of C is colored twice or not at all, contradicting our assumption that the edge
coloring determines a path family in ρ(H ) which obeys the (I, I ′) crossing rule.

3. Main theorem

The maps φ and ψ defined in Section 2 reduce the problem of comparing products �I,I ′� Ī , Ī ′ ,
�J,J ′� J̄ , J̄ ′ of minors in n×n totally nonnegative matrices to a problem of examining perfect
matchings in graphs on 2n vertices. We will now demonstrate that this problem reduces to
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examining subintervals of [2n] and their intersections with the two sets I ′′, J ′′ defined in
Observation 2.3. In particular, we will define an interval [b1, b2] = {b1, b1 + 1, . . . , b2} to
be even if its cardinality is even, and we will show that the inequality

�I,I ′� Ī , Ī ′ ≤ �J,J ′� J̄ , J̄ ′

holds for all totally nonnegative matrices if and only if the sets I ′′, J ′′ satisfy the inequality

max{|B ∩ I ′′|, |B\I ′′|} ≥ max{|B ∩ J ′′|, |B\J ′′|} (3.1)

for all even subintervals B of [2n].
Let us first consider the circumstances under which the inequality (3.1) fails to hold for

some subinterval B of [2n].

Lemma 3.1 Let I ′′ and J ′′ be two subsets of [2n] and let B = [b1, b2] be a minimal
subinterval of [2n] which satisfies

max{|B ∩ I ′′|, |B\I ′′|} < max{|B ∩ J ′′|, |B\J ′′|}. (3.2)

Then the numbers b1 and b2 both belong to J ′′, or both belong to J̄ ′′, while exactly one
of these numbers belongs to I . Furthermore, the cardinalities |[b1 + 1, b2 − 1] ∩ I ′′|,
|[b1 + 1, b2 − 1]\I ′′|, |[b1 + 1, b2 − 1] ∩ J ′′|, and |[b1 + 1, b2 − 1]\J ′′| are all equal to
1
2 (|B| − 2). In particular, B is even.

Proof: Assume without loss of generality that we have

|B\J ′′| < |B\I ′′| ≤ |B ∩ I ′′| < |B ∩ J ′′|.

The cardinality |B ∩ J ′′| must be exactly one greater than |B ∩ I ′′|, for otherwise B would
not be a minimal interval satisfying the inequality (3.2). Similarly, b1 and b2 both belong
to J ′′, while at most one of these belongs to I ′′.

If neither b1 nor b2 belongs to I ′′, then let c be the smallest number such that the
cardinalities of [b1, c] ∩ I ′′ and [b1, c]\I ′′ are equal. If in addition the cardinalities of
[b1, c] ∩ J ′′ and [b1, c]\J ′′ are equal, then the interval [c + 1, b2] satisfies an inequality
of the form (3.2). If not, then the interval [b1, c] satisfies an inequality of this form. Either
possibility contradicts the minimality of B.

If only one of the numbers b1, b2 belongs to I ′′, then by symmetry we may assume it is b1.
Then |[b1 +1, b2]∩ J ′′| is equal to the maximum of |[b1 +1, b2]∩ I ′′| and |[b1 +1, b2]\I ′′|.
Therefore the intervals [b1 + 1, b2] and B satisfy

|[b1 + 1, b2] ∩ I ′′| = |B ∩ I ′′| − 1 < |B ∩ I ′′| = |B ∩ J ′′| − 1

= |[b1 + 1, b2] ∩ J ′′|,

and we have

|[b1 + 1, b2]\I ′′| = |[b1 + 1, b2] ∩ J ′′| = |B ∩ I ′′|.
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This implies that the cardinalities of the sets [b1 + 1, b2 − 1] ∩ I ′′, [b1 + 1, b2 − 1]\I ′′,
[b1 + 1, b2 − 1] ∩ J ′′, and [b1 + 1, b2 − 1]\J ′′ are all equal to 1

2 (|B| − 2).

Armed with this technical lemma, we may now state and prove our main result.

Theorem 3.2 Let I, I ′, J, J ′ be subsets of [n] and define the subsets I ′′, J ′′ of [2n]
by

I ′′ = I ∪ {2n + 1 − i | i ∈ Ī ′},
J ′′ = J ∪ {2n + 1 − j | j ∈ J̄ ′}.

Then the following statements are equivalent.
1. In each totally nonnegative matrix of size at least n × n, the minors �I,I ′ , � Ī , Ī ′ , �J,J ′ ,

and � J̄ , J̄ ′ satisfy

�I,I ′� Ī , Ī ′ ≤ �J,J ′� J̄ , J̄ ′ .

2. In each planar network G of order n, the weighted sum of path families in G which obey
the (I, I ′) crossing rule is less than or equal to that of the path families in G which obey
the (J, J ′) crossing rule.

3. For each planar network G = (V, E) in which the edges are weighted by formal variables
w1, . . . , wm, the difference between the weighted sum of path families in G which obey
the (J, J ′) crossing rule and that of path families in G which obey the (I, I ′) crossing
rule is a subtraction-free polynomial in w1, . . . , wm.

4. For each planar network G of order n, the number of path families which cover G and
obey the (I, I ′) crossing rule is zero, or is equal to the number of path families which
cover G and obey the (J, J ′) crossing rule.

5. For each even subinterval B of [2n], the sets I ′′ and J ′′ satisfy

max{|B ∩ I ′′|, |B\I ′′|} ≥ max{|B ∩ J ′′|, |B\J ′′|}. (3.3)

6. For each subinterval B of [2n], the sets I ′′ and J ′′ satisfy (3.3).

Proof: (1 ⇔ 2) Follows from Observation 1.3.
(3 ⇒ 2) Obvious.
(4 ⇒ 3) The difference between the weighted sums of path families in G which obey the

two binary crossing rules can be expressed as a sum of differences, over all subnetworks of
G which can be covered by path families which obey at least one of the two rules. Assume
as in (4) that the difference corresponding to each subnetwork is a monomial in w1, . . . , wm

with coefficient (a − a) or (a − 0) for some nonnegative integer a. Clearly the sum of these
is a subtraction-free polynomial in w1, . . . , wm .

(5 ⇒ 4) Let G be a planar network, and let k(I, I ′), k(J, J ′) be the numbers of path
families which cover G and obey the (I, I ′) crossing rule and the (J, J ′) crossing rule,
respectively. If k(I, I ′) is greater than k(J, J ′), then k(J, J ′) must be equal to zero by
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Corollary 2.2. Thus ψ(G) is a perfect matching of I ′′ with Ī ′′ and not a perfect matching of
J ′′ with J̄ ′′. Let B = [b1, b2] be a minimal subinterval of [2n] such that (b1, b2) is an edge
in ψ(G) and b1, b2 both belong to J ′′ or both belong to J̄ ′′. By the minimality of B we have

max{|B ∩ I ′′|, |B\I ′′|} = b2 − b1 + 1

2
<

b2 − b1 + 3

2
= max{|B ∩ J ′′|, |B\J ′′|},

which contradicts (5).
(6 ⇒ 5) Obvious.
(2 ⇒ 6) Suppose that (6) is false. Let B = [b1, b2] be a minimal subinterval of [2n]

which satisfies

max{|B ∩ I ′′|, |B\I ′′|} < max{|B ∩ J ′′|, |B\J ′′|}.

Without loss of generality, assume that we have

|B\J ′′| < |B\I ′′| ≤ |B ∩ I ′′| < |B ∩ J ′′|.

By Lemma 3.1, the cardinality of B is even, and exactly half of the elements of the subinterval
[b1 + 1, b2 − 1] belong to I ′′. Furthermore, both b1 and b2 belong to J ′′ while only one of
these belongs to I ′′.

Create a graph H inG3(2n) by drawing 2n distinct points labeled 1, . . . , 2n on a horizontal
line, and by connecting them with n nonintersecting arcs above the line as follows.

1. Connect b1 to b2.
2. Below the arc (b1, b2) and above the horizontal line, draw arcs to create a noncrossing

perfect matching of [b1 + 1, b2 − 1] ∩ I ′′ with [b1 + 1, b2 − 1]\I ′′.
3. Above the arc (b1, b2) and above the horizontal line, draw arcs to create a noncrossing

perfect matching of ([2n]\B) ∩ I ′′ with ([2n]\B)\I ′′.

Clearly H is a matching of I ′′ with Ī ′′, but not a matching of J ′′ with J̄ ′′. Now consider the
graph G = ρ(H ) in G1(n). By Lemma 2.4, exactly one path family in G obeys the (I, I ′)
crossing rule and none obeys the (J, J ′) crossing rule. This contradicts (2).

As an immediate corollary of Theorem 3.2, we obtain a combinatorial interpretation of
the difference

�J,J ′� J̄ , J̄ ′ − �I,I ′� Ī , Ī ′ , (3.4)

when this difference is nonnegative for all totally nonnegative matrices.

Corollary 3.3 Let I, I ′, J and J ′ be subsets of [n], define the sets I ′′ and J ′′ as in
Theorem 3.2, and assume that the inequality

max{|B ∩ I ′′|, |B\I ′′|} ≥ max{|B ∩ J ′′|, |B\J ′′|}. (3.5)



INEQUALITIES IN PRODUCTS 207

holds for all even subintervals B of [2n]. Then for any n × n totally nonnegative matrix A,
and any planar network G whose weighted path matrix is A, the difference (3.4) is equal
to the weighted sum of path families π in G which obey the (J, J ′) crossing rule and which
cannot be covered by any path family which obeys the (I, I ′) crossing rule.

As a second corollary of Theorem 3.2, we obtain the following specialization to principal
minors, first stated in [3, Thm. 4.10].

Corollary 3.4 Let I and J be subsets of [n]. Then the following statements are equivalent.
1. In each totally nonnegative matrix of size at least n ×n, the principal minors �I,I , � Ī , Ī ,

�J,J , and � J̄ , J̄ satisfy

�I,I � Ī , Ī ≤ �J,J � J̄ , J̄ . (3.6)

2. For each even subinterval B of [n], the sets I and J satisfy

max{|B ∩ I |, |B\I |} ≥ max{|B ∩ J |, |B\J |}. (3.7)

Proof: (1 ⇒ 2) follows from Theorem 3.2.
(2 ⇒ 1) Suppose that I and J satisfy (3.7) for all even subintervals of [n], and define

the subsets I ′′ and J ′′ of [2n] as before Theorem 3.2. If I ′′ and J ′′ fail to satisfy (3.3) for
some even subinterval of [2n], then this interval must be of the form B = [b1, 2n + 1 − b2],
where b1, b2 ≤ n. We cannot have b1 = b2, for then the four sets B ∩ I ′′, B\I ′′, B ∩ J ′′,
B\J ′′ would all have cardinality equal to n − b1 + 1. On the other hand, we cannot have
b1 
= b2, for then I and J would fail to satisfy (3.7) for the interval whose endpoints are b1

and b2. Thus I ′′ and J ′′ must satisfy (3.3) and the principal minors �I,I , � Ī , Ī , �J,J , and
� J̄ , J̄ must satisfy (3.6).

Note the similarity between the inequalities (3.3) and (3.7). This implies that the map
(I, I ′, n) �→ (I ′′, 2n) induces a bijective correspondence between inequalities

�I,I ′� Ī , Ī ′ ≤ �J,J ′� J̄ , J̄ ′ (3.8)

in products of minors of n × n matrices and inequalities

�I ′′,I ′′� Ī ′′, Ī ′′ ≤ �J ′′,J ′′� J̄ ′′, J̄ ′′

in products of principal n × n minors of 2n × 2n matrices.

4. Generalization to noncomplementary index sets

A more general inequality than (3.8) has the form

�I,I ′�K ,K ′ ≤ �J,J ′�L ,L ′ . (4.1)
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That is, the pairs (I, K ), etc. need not be complements. However, any such inequality which
holds for all totally nonnegative matrices can be deduced from Theorem 3.2 or equivalently
from Corollary 3.4. We will give a combinatorial proof of this fact using the families of
graphs introduced in Section 2.

Let p and p′ be the cardinalities of I ∪ K and I ′ ∪ K ′, and let q and q ′ be the cardinalities
of I ∩ K and I ′ ∩ K ′. Necessarily, p +q = p′ +q ′ = |I |+ |K |. Applying Observation 1.3,
we may interpret the product of minors �I,I ′�K ,K ′ of any totally nonnegative matrix to be
the weighted sum of path families π = (π1, . . . , πp+q ) in a planar network which connect
sources indexed by I (K ) to sinks indexed by I ′ (K ′) and in which all SI to TI ′ paths (SK to
TK ′ paths) are vertex-disjoint. We will say that such a path family obeys the (I, I ′, K , K ′)
crossing rule. The following neccessary condition for eight sets to satisfy (4.1) for all totally
nonnegative matrices was first stated in [3, Prop. 2.2].

Observation 4.1 Let I, I ′, J, J ′, K , K ′, L , L ′ be subsets of [m]. Unless I ∪K and J ∪L are
equal as multisets, and I ′ ∪ K ′ and J ′ ∪ L ′ are equal as multisets, the products �I,I ′�K ,K ′

and �J,J ′�L ,L ′ are incomparable as functions on totally nonnegative matrices.

Proof: Suppose i is an index which appears with greater multiplicity in I ∪ K than in
J ∪ L , and let G be any planar network of order m in which the unique edge leaving source
si has weight c. If c is large enough, then the weighted path matrix of G satisfies

�I,I ′�K ,K ′ > �J,J ′�L ,L ′ .

On the other hand, if c is close enough to zero, we have the opposite strict inequality.
Similarly, if I ′ ∪ K ′ and J ′ ∪ L ′ are not equal as multisets, then the products are again
incomparable.

Without loss of generality, we shall assume that the sets I ∪ K and I ′ ∪ K ′ are equal to
[p] and [p′], respectively. Otherwise we can delete appropriate matrix rows and columns
to make this true. Necessary and sufficient conditions for eight sets to satisfy (4.1) are
analogous to the inequalities (3.3) and (3.7). The appropriate choices of I ′′, J ′′, and n are
as follows. Let n be the number 1

2 (p − q + p′ − q ′), let η be the unique order preserving
map

η : (I\K ) ∪ (K\I ) → [p − q],

and let η′ be the unique order reversing map

η′ : (I ′\K ′) ∪ (K ′\I ′) → [p − q + 1, 2n].

Define the subsets I ′′ and J ′′ of [2n] by

I ′′ = η(I\K ) ∪ η′(K ′\I ′),
J ′′ = η(J\L) ∪ η′(L ′\J ′).
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Theorem 4.2 Let I, I ′, J, J ′, K , K ′, L , L ′ be subsets of [m], and define p, p′, q, q ′, n, η,

η′, I ′′, and J ′′, as above. Then the following statements are equivalent.
1. In each totally nonnegative matrix of size at least m ×m, the minors �I,I ′ , �J,J ′ , �K ,K ′ ,

�L ,L ′ satisfy

�I,I ′�K ,K ′ ≤ �J,J ′�L ,L ′ .

2. The multisets I ∪ K and J ∪ L are equal, the multisets I ′ ∪ K ′ and J ′ ∪ L ′ are equal,
and the sets I ′′, J ′′ satisfy

max{|B ∩ I ′′|, |B\I ′′|} ≥ max{|B ∩ J ′′|, |B\J ′′|}

for each even subinterval B of [2n].

Proof: (2 ⇒ 1) Suppose (1) is false. Then there exists a planar network in which more
path families obey the (I, I ′K , K ′) crossing rule than obey the (J, J ′, L , L ′) crossing rule.
This network contains a subnetwork G which is a union of (p + q) paths from p sources
to p′ sinks with the property that more path families π = (π1, . . . , πp+q ) which cover G
obey the (I, I ′, K , K ′) crossing rule than obey the (J, J ′, L , L ′) crossing rule.

Applying the procedure defining φ to G, we obtain a graph in which exactly n connected
components are paths whose endpoints belong to the 2n-element set

SI\K ∪ SK\I ∪ TI ′\K ′ ∪ TK ′\I ′ .

By the discussion following Corollary 2.2, these n paths define a perfect matching of
S(I\K ) ∪ T(K ′\I ′) with S(K\I ) ∪ T(I ′\K ′), which is not a perfect matching of S(J\L) ∪ T(L ′\J ′)
with S(L\J ) ∪ T(J ′\L ′). Let H be the graph in G3(2n) realizing this matching, in which
vertex i (1 ≤ i ≤ p − q) corresponds to the source in SI\K ∪ SK\I with the i th smallest
index and vertex j (p − q < j ≤ p − q + p′ − q ′) corresponds to the sink in TI ′\K ′ ∪
TK ′\I ′ with the j th greatest index. Let B = [b1, b2] be a minimal interval of [2n] such
that (b1, b2) is an edge of H and b1, b2 both belong to J ′′ or both belong to J̄ ′′. Then
we have

max{|B ∩ I ′′|, |B\I ′′|} < max{|B ∩ J ′′|, |B\J ′′|}. (4.2)

(1 ⇒ 2) Let B = [b1, b2] be a minimal subinterval of [2n] which satisfies (4.2), and let
j1 and j2 be the preimages of these numbers with respect to the maps η and/or η′. Create a
graph H = (V, E) as follows.

1. Place 2p + 2q vertices on a horizontal line.
2. Define six sets of symbols

S = {si | i ∈ (I\K ) ∪ (K\I )},
U = {ui | i ∈ (I ∩ K )},
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U ′ = {u′
i | i ∈ (I ∩ K )},

T = {ti | i ∈ (I ′\K ′) ∪ (K ′\I ′)},
V = {vi | i ∈ (I ′ ∩ K ′)},
V ′ = {v′

i | i ∈ (I ′ ∩ K ′)}.

3. Label the leftmost p + q vertices by the p + q symbols S ∪ U ∪ U ′, in order of nonde-
creasing indices. Label the rightmost p + q vertices by the p + q symbols T ∪ V ∪ V ′,
in order of nonincreasing indices.

4. Connect each of the q + q ′ pairs of the form (ui , u′
i ) or (vi , v

′
i ) by q + q ′ noncrossing

arcs.
5. Connect the b1st (from the left) singleton to the b2nd (from the left) singleton by an arc.
6. Draw p + q −1 more arcs above the vertices to complete a noncrossing perfect matching

of SI\K ∪ TK ′\I ′ with SK\I ∪ TI ′\K ′ .

The arc drawn in step (5) prevents H from inducing a perfect matching of SJ\L ∪TL ′\J ′ with
SL\J ∪ TJ ′\L ′ . Now consider the planar network G which is obtained from H by creating
ρ(H ) and then identifying all pairs of vertices of the form (ui , u′

i ) or (vi , v
′
i ). There are no

path families in G which obey the (J, J ′, L , L ′) crossing rule, but there are some which
obey the (I, I ′, K , K ′) crossing rule. This contradicts (1).

Example 4.1 Consider the two products of minors

�{1,2,3,6},{1,2,4,5}�{3,4},{2,5}, �{1,3,6},{1,2,5}�{2,3,4},{2,4,5}.

We claim that these products are incomparable. To see this, let the map η : {1, 2, 4, 6} →
{1, 2, 3, 4} preserve order, and let the map η′ : {1, 4} → {5, 6} reverse order. Then define

I ′′ = {η(1), η(2), η(6)} ∪ ∅
= {1, 2, 4},

J ′′ = {η(1), η(6)} ∪ {η′(4)}
= {1, 4, 5}.

Since the sets I ′′, J ′′ satisfy

max{|[4, 5] ∪ I ′′|, |[4, 5]\I ′′|} < max{|[4, 5] ∪ J ′′|, |[4, 5]\J ′′|},
max{|[5, 6] ∪ I ′′|, |[5, 6]\I ′′|} > max{|[5, 6] ∪ J ′′|, |[5, 6]\J ′′|},

the products of minors are incomparable.

5. Open problems

Note that the results of this paper reduce the problem of comparing minors in totally non-
negative matrices to the problem of counting unweighted path families in planar networks.
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This is curious, since Theorem 1.2 does not guarantee that for every totally nonnegative
integer matrix A, there exists a planar network G such that A counts unweighted paths in
G. This suggests the following open problem.

Problem 5.1 Characterize the totally nonnegative integer matrices A = [ai j ] for which
there exists a planar network G such that each entry ai j counts unweighted paths in G from
source si to sink t j .

Other possibilities for extending the present work are the following.

Problem 5.2 Let P(n) be the poset whose elements are set partitions of [2n] into two blocks
of size n, ordered by I -Ī ≤P(n) J - J̄ whenever the inequality

�I,I � Ī , Ī ≤ �J,J � J̄ , J̄

holds for all totally nonnegative matrices. Find a simple description for P(n).

Problem 5.3 Characterize the inequalities in products of k minors which are satisfied by
all totally nonnegative matrices, for k > 2.
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