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Abstract. Tropical algebraic geometry is the geometry of the tropical semiring (R, min, +). The theory of total
positivity is a natural generalization of the study of matrices with all minors positive. In this paper we introduce
the totally positive part of the tropicalization of an arbitrary affine variety, an object which has the structure of a
polyhedral fan. We then investigate the case of the Grassmannian, denoting the resulting fan Trop+Grk,n . We show
that Trop+Gr2,n is the Stanley-Pitman fan, which is combinatorially the fan dual to the (type An−3) associahedron,
and that Trop+Gr3,6 and Trop+Gr3,7 are closely related to the fans dual to the types D4 and E6 associahedra.
These results are strikingly reminiscent of the results of Fomin and Zelevinsky, and Scott, who showed that the
Grassmannian has a natural cluster algebra structure which is of types An−3, D4, and E6 for Gr2,n , Gr3,6, and
Gr3,7. We suggest a general conjecture about the positive part of the tropicalization of a cluster algebra.
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1. Introduction

Tropical algebraic geometry is the geometry of the tropical semiring (R, min, +). Its objects
are polyhedral cell complexes which behave like complex algebraic varieties. Although this
is a very new field in which many basic questions have not yet been addressed (see [16]
for a nice introduction), tropical geometry has already been shown to have remarkable
applications to enumerative geometry (see [14]), as well as connections to representation
theory (see [2, 3, 12]).

The classical theory of total positivity concerns matrices in which all minors are positive.
However, in the past decade this theory has been extended by Lusztig (see [10, 11]), who
introduced the totally positive variety G>0 in an arbitrary reductive group G and the totally
positive part B>0 of a real flag variety B. In the process, Lusztig discovered surprising
connections between his theory of canonical bases for quantum groups and the theory of
total positivity.

In this paper we introduce the totally positive part (or positive part, for short) of the trop-
icalization of an arbitrary affine variety over the ring of Puiseux series, and then investigate
what we get in the case of the Grassmannian Grk,n . First we give a parameterization of the
totally positive part of the Grassmannian, largely based on work of Postnikov [15], and then
we compute its tropicalization, which we denote by Trop+Grk,n . We identify Trop+Grk,n
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with a polyhedral subcomplex of the (n
k
)-dimensional Gröbner fan of the ideal of Plücker

relations, and then show that this fan, modulo its n-dimensional lineality space, is combina-
torially equivalent to an (n−k −1)(k −1)-dimensional fan which we explicitly describe. As
a special case, we show that Trop+Gr2,n is a fan which appeared in the work of Stanley and
Pitman (see [19]), which parameterizes certain binary trees, and which is combinatorially
equivalent to the (type An) associahedron. We also show that Trop+Gr3,6 and Trop+Gr3,7

are fans which are closely related to the fans of the types D4 and E6 associahedra, which
were first introduced in [5]. These results are strikingly reminiscent of the results of Fomin
and Zelevinsky [3], and Scott [17], who showed that the Grassmannian has a natural cluster
algebra structure which is of type An for Gr2,n , type D4 for Gr3,6, and type E6 for Gr3,7.
(Fomin and Zelevinsky proved the Gr2,n case and stated the other results; Scott worked out
the cluster algebra structure of all Grassmannians in detail.) Finally, we suggest a general
conjecture about the positive part of the tropicalization of a cluster algebra.

2. Definitions

In this section we will define the tropicalization and positive part of the tropicalization of
an arbitrary affine variety over the ring of Puiseux series. We will then describe the tropical
varieties that will be of interest to us.

Let C = ⋃∞
n=1 C((t1/n)) and R = ⋃∞

n=1 R((t1/n)) be the fields of Puiseux series over C

and R. Every Puiseux series x(t) has a unique lowest term atu where a ∈ C∗ and u ∈ Q.
Setting val( f ) = u, this defines the valuation map val : (C∗)n → Qn, (x1, . . . , xn) �→
(val(x1), . . . , val(xn)). We define R+ to be {x(t) ∈ C| the coefficient of the lowest term of
x(t) is real and positive}. We will discuss the wisdom of this definition later; for practically
all purposes, the reader may think of C as if it were C and of R+ as if it were R+.

Let I ⊂ C[x1, . . . , xn] be an ideal. We define the tropicalization of V (I ), denoted
TropV (I ), to be the closure of the image under val of V (I ) ∩ (C∗)n , where V (I ) is the
variety of I . Similarly, we define the positive part of TropV (I ), which we will denote as
Trop+V (I ), to be the closure of the image under val of V (I ) ∩ (R+)n . Note that TropV
and Trop+V are slight abuses of notation; they depend on the affine space in which V is
embedded and not solely on the variety V .

If f ∈ C[x1, . . . , xn]\{0}, let the initial form in( f ) ∈ C[x1, . . . , xn] be defined as follows:
write f = tag for a ∈ Q chosen as large as possible such that all powers of t in g are
nonnegative. Then in( f ) is the polynomial obtained from g by plugging in t = 0. If f = 0,
we set in( f ) = 0. If w = (w1, . . . , wn) ∈ Rn then inw( f ) is defined to be in( f (xi twi )).
If I ⊂ C[x1, . . . , xn] then inw(I ) is the ideal generated by inw( f ) for all f ∈ I . It was
shown in [18] that TropV (I ) consists of the collection of w for which inw(I ) contains no
monomials. The essence of this proof was the following:

Proposition 2.1 ([18]) If w ∈ Qn and inw(I ) contains no monomial then V (inw(I ))∩(C∗)n

is nonempty and any point (a1, . . . , an) of this variety can be lifted to a point (ã1, . . . , ãn) ∈
V (I ) with the leading term of ãi equal to ai twi .

We now prove a similar criterion to characterize the points in Trop+V (I ).
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Proposition 2.2 A point w = (w1, . . . , wn) lies in Trop+V (I ) if and only if inw(I ) does
not contain any nonzero polynomials in R+[x1, . . . , xn].

In order to prove this proposition, we will need the following result of [13], which relies
heavily on a result of [9].

Proposition 2.3 ( [13]) An ideal I of R[x1, . . . , xn] contains a nonzero element of R+

[x1, . . . , xn] if and only if (R+)n ∩ V (inη(I )) = ∅ for all η ∈ Rn.

We are now ready to prove Proposition 2.2.

Proof: Define T ⊂ Qn to be the image of V (I ) ∩ (R+)n under val. Let U denote the
subset of Rn consisting of those w for which inw(I ) contains no polynomials with all positive
terms. By definition, Trop+V (I ) is the closure of T in Rn . We want to show that the closure
of T is U .

It is obvious that T lies in U . The subset U is closed, as the property that inw( f ) has only
positive terms is open as w varies. Thus, the closure of T lies in U .

Conversely, suppose that w ∈ U . Then, by Proposition 2.3, for some η ∈ Rn , (R+)n ∩
V (inη(inw(I ))) 	= ∅. For ε > 0 sufficiently small, we have inη(inw(I )) = inεη+w(I ).
Therefore we can find a sequence w1, w2, . . . approaching w with (R+)n ∩ V (inwi (I )) 	= ∅.

As w varies, inw(I ) takes on only finitely many values, and the subsets of Rn on which
inw(I ) takes a specific value form the relative interiors of the faces of a complete rational
complex known as the Gröbner complex (see [21]). These complexes are actually fans when
I is defined over R ([20]). Therefore, we may perturb each wi , while preserving inwi (I ),
in order to assume that the wi ∈ Qn and we still have wi → w. Then, by Proposition 2.1,
each wi ∈ T , so w is in the closure of T as desired.

Corollary 2.4 TropV (I ) and Trop+V (I ) are closed subcomplexes of the Gröbner com-
plex. In particular, they are polyhedral complexes. If I is defined over R, then TropV (I )
and Trop+V (I ) are closed subfans of the Gröbner fan.

One might wonder whether it would be better to modify the definition of R+ to require
that our power series lie inR. This definition, for example, is more similar to the appearance
of the ring of formal powers series in [12]. One can show that in the case of the Grassmanian,
this difference is unimportant. Moreover, the definition used here has the advantage that it
makes it easy to prove that the positive part of the tropicalization is a fan.

Suppose V (I ) ⊂ Cm and V (J ) ⊂ Cn are varieties and we have a rational map f :
Cm → Cn taking V (I ) → V (J ). Unfortunately, knowing val(xi ) for 1 ≤ i ≤ m does not in
general determine val( f (x1, . . . , xm)), so we don’t get a nice map TropV (I ) → TropV (J ).
However, suppose that f takes the positive points of V (I ) surjectively onto the positive
points of V (J ) and suppose that f = ( f1, . . . , fn) is subtraction-free, that is, the formulas
for the fi ’s are rational functions in the xi ’s whose numerators and denominators have
positive coefficients. Define Trop f : Rm → Rn by replacing every × in f with a +,
every/with a −, every + with a min and every constant a with val(a).
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Proposition 2.5 Suppose V (I ) ⊂ Cm and V (J ) ⊂ Cn are varieties. Let f : Cm → Cn be
a subtraction-free rational map taking V (I ) to V (J ) such that V (I ) ∩ (R+)m surjects onto
V (J ) ∩ (R+)n. Then Trop f takes Trop+V (I ) surjectively onto Trop+V (J ).

Proof: This follows immediately from the formulas val(x + y) = min(val(x), val(y)) and
val(xy) = val(x) + val(y) for x and y ∈ R+.

We now define the objects that we will study in this paper. Fix k and n, and let N = (n
k
). Fix

a polynomial ring S in N variables with coefficients in a commutative ring. The Plücker ideal
Ik,n is the homogeneous prime ideal in S consisting of the algebraic relations (called Plücker
relations) among the k × k minors of any k × n-matrix with entries in a commutative ring.

Classically, the Grassmannian Grk,n is the projective variety in PN−1
C defined by the

ideal Ik,n of Plücker relations. We write Grkn(C) for the variety in PN−1
C defined by

the same equations. Similarly, we write Grk,n(R) for the real points of the Grassman-
nian, Grk,n(R+) for the real positive points, Grk,n(R+) for those points of Grk,n(C) all
of whose coordinates lie in R+ and so on. We write Grk,n(C) when we want to em-
phasize that we are using the field C, and use Grk,n when discussing results that hold
with no essential modification for any field. The totally positive Grassmannian is the
set Grk,n(R+).

An element of Grk,n can be represented by a full rank k × n matrix A. If K ∈ ([n]
k

),
where [n] denotes the set {1, . . . , n}, we define the Plücker coordinate �K (A) to be
the minor of A corresponding to the columns of A indexed by K . We identify the el-
ement of the Grassmannian with the matrix A and with its set of Plücker coordinates
(which satisfy the Plücker relations).

Our primary object of study is the tropical positive Grassmannian Trop+Grk,n , which
is a fan, by Corollary 2.4. As in [18], this fan has an n-dimensional lineality space. Let φ

denote the map from (C∗)n into (C∗)
(n
k
)

which sends (a1, . . . , an) to the (n
k
)-vector whose

(i1, . . . , ik)-coordinate is ai1 ai2 · · · aik . We abuse notation by also using φ for the same map
(C∗)n → (C∗)

(n
k
)
. Let Trop φ denote the corresponding linear map which sends (a1, . . . , an)

to the (n
k
)-vector whose (i1, . . . , ik)-coordinate is ai1 + ai2 + · · · + aik . The map Tropφ is

injective, and its image is the common lineality space of all cones in Trop Grk,n .

3. Parameterizing the totally positive Grassmannian Grk,n(R+)

In this section we explain two equivalent ways to parameterize Grk,n(R+), as well as a
way to parameterize Grk,n(R+)/φ((R+)n). The first method, due to Postnikov [15], uses
a certain directed graph Webk,n with variables associated to each of its 2k(n − k) edges.
The second method is closely related to the first and uses the same graph, but this time
variables are associated to each of its k(n − k) regions. This has the advantage of giving a
bijection between (R+)k(n−k) and Grk,n(R+). Finally, we use Webk,n with variables labelling
each of its (k − 1)(n − k − 1) inner regions in order to give a bijective parameterization of
Grk,n(R+)/φ((R+)n).

Let Webk,n be the directed graph which is obtained from a k by n − k grid, as shown in
figure 1. It has k incoming edges on the right and n − k outgoing edges on the bottom, and



THE TROPICAL TOTALLY POSITIVE GRASSMANNIAN 193

1

4

2

56789

3

Figure 1. Webk,n for k = 4 and n = 9.

the vertices attached to these edges are labelled clockwise from 1 to n. We denote the set
of 2k(n − k) edges by E . Let us associate a formal variable xe with each edge e ∈ E , and
if there is no ambiguity, we abbreviate the collection {xe} by x . If p is a path on Webk,n

(compatible with the directions of the edges), then we let Prodp(x) denote
∏

e∈p xe. And if
S is a set of paths on Webk,n , then we let ProdS(x) denote

∏
p∈S Prodp(x).

As in [15], we define a k × n matrix Ak,n(x), whose entries ai j (x) are polynomials in the
variables xe, by the following equation:

ai j (x) = (−1)i+1
∑

p

Prodp(x),

where the sum is over all directed paths p from vertex i to vertex j . Note that the k × k
submatrix of Ak,n(x) obtained by restricting to the first k columns is the identity matrix.
In particular, Ak,n(x) is a full rank matrix and hence we can identify it with an element of
Grk,n . Also note that every element of the totally positive Grassmannian Grk,n(R+) has a
unique matrix representative whose leftmost k × k submatrix is the identity. We shall see
that as the {xe} vary over (R+)2k(n−k), the Ak,n(x) range over all of Grk,n(R+).

We now show it is possible to express the maximal minors (Plücker coordinates) of
Ak,n(x) as subtraction-free rational expressions in the xe, as shown in [15]. If K ∈ ([n]

k
),

then let Path(K ) denote the set

{S : S is a set of pairwise vertex-disjoint paths from [k]\(K ∩ [k]) to K\([k] ∩ K )}.

Note that for K = [k], we consider the empty set to be a legitimate set of pairwise vertex-
disjoint paths.

Applied to Webk,n , Theorem 15.4 of [15] implies the following.

Proposition 3.1 The Plücker coordinates of Ak,n(x) are given by

�K (Ak,n(x)) =
∑

S∈Path(K )

ProdS(x).
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Proof: We give a brief proof of this result: the main idea is to use the well-known Gessel-
Viennot trick [8]. First note that ai j (x) has a combinatorial interpretation: it is a generating
function keeping track of paths from i to j . Thus, the determinant of a k × k submatrix of
Ak,n(x) corresponding to the column set K also has a combinatorial interpretation: it is a
generating function for all sets of paths from [k]\(K ∩ [k]) to K\([k] ∩ K ), with the sign of
each term keeping track of the number of crossings in the corresponding path set. What we
need to show is that this is equal to the sum of the contributions from path sets which are
pairwise vertex-disjoint. To see this, consider a path set which does have an intersection.
Look at its lexicographically last intersection, and compare this path set to the one obtained
from it by switching the two path tails starting at that point of intersection. These two path
sets get different signs, but have equal weights, and hence they cancel each other out.

Proposition 3.1 allows us to define a map �0 : (R+)2k(n−k) → Grk,n(R+) as follows. Let
K ∈ ([n]

k
), and define PK : (R+)2k(n−k) → R+ by

PK (x) :=
∑

S∈Path(K )

ProdS(x).

Clearly if we substitute positive values for each xe, then PK (x) will be positive. We now
define �0 by

�0(x) = {PK (x)}K∈([n]
k ).

In other words, �0 is the map which sends a collection of positive real numbers {xe} to
the element of Grk,n with Plücker coordinates PK (x) (which is identified with the matrix
Ak,n(x)).

By Theorem 19.1 of [15], the map �0 is actually surjective: any point in Grk,n(R+) can be
represented as Ak,n(x) for some positive choices of {xe}. In summary, we have the following
result (which will also be a consequence of our Theorem 3.3).

Proposition 3.2 The map �0 : (R+)2k(n−k) → Grk,n(R) is a surjection onto Grk,n(R+).

Unfortunately, the method we have just described uses 2k(n−k) variables to parameterize
a space of dimension k(n − k). We will now explain how to do a substitution of variables
which will reduce the number of variables to k(n − k).

We define an inner region of Webk,n to be a bounded component of the complement of
Webk,n (viewed as a subset of R2). And we define an outer region of Webk,n to be one of the
extra inner regions we would obtain if we were to connect vertices i and i + 1 by a straight
line, for i from 1 to n − 1. A region is an inner or outer region. Note that there are k(n − k)
regions, which we denote by R, and there are (k − 1)(n − k − 1) inner regions.

Let us label each region r ∈ R with a new variable xr , which we define to be the product of
its counterclockwise edge variables divided by the product of its clockwise edge variables.

For example, the new variables A, B, C shown in figure 2 would be defined by

A := x1x2

x3x4
, B := x5x6

x7
, C := x8x9.
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Figure 2. Substitution of variables.

It is easy to check that for a path p on Webk,n , Prodp(x) is equal to the product of the
variables attached to all regions below p. Since ProdS(x) and Ak,n(x) were defined in terms
of the Prodp(x)’s, we can redefine these expressions in terms of the k(n−k) region variables.
Proposition 3.2 still holds, but our map is now a map �1 from (R+)k(n−k) onto Grk,n(R+),
taking the region variables {xr } to the element of Grk,n(R+) represented by Ak,n(x).

Since we are now parameterizing a space of dimension k(n − k) with k(n − k) variables,
we should have a bijection. We shall prove that this is so by constructing the inverse map.

Theorem 3.3 The map �1 : (R+)k(n−k) → Grk,n(R+), which maps {xr }r∈R to the
Grassmannian element represented by Ak,n(x), is a bijection.

Before we prove this theorem, we need a lemma about matrices and their minors. We
use a very slight generalization of a lemma which appeared in [4]. For completeness, we
include the proof of this lemma. First we must define some terminology. Let M be a k × n
matrix. Let �I,J denote the minor of M which uses row set I and column set J . We say that
�I,J is solid if I and J consist of several consecutive indices; if furthermore I ∪ J contains
1, we say that �I,J is initial. Thus, an initial minor is a solid minor which includes either
the first column or the first row.

Lemma 3.4 ([4]) A matrix M is uniquely determined by its initial minors provided that
all these minors are nonzero.

Proof: Let us show that each matrix entry xi j of M is uniquely determined by the ini-
tial minors. If i = 1 or j = 1, there is nothing to prove, since xi j is an initial minor.
Assume that min(i, j) > 1. Let � be the initial minor whose last row is i and last col-
umn is j , and let �′ be the initial minor obtained from � by deleting this row and col-
umn. Then � = �′xi j + P , where P is a polynomial in the matrix entries xi ′ j ′ with
(i ′, j ′) 	= (i, j) and i ′ ≤ i, j ′ ≤ j . Using induction on i + j , we can assume that each
xi ′ j ′ that occurs in P is uniquely determined by the initial minors, so the same is true of
xi j = (� − P)/�′.

We now define a reflected initial minor to be a solid minor �I,J such that I contains k or
J contains 1. Thus, a reflected initial minor is a solid minor which includes either the first
column or the last row. A trivial corollary of Lemma 3.4 is the following.
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Corollary 3.5 A matrix M is uniquely determined by its reflected initial minors provided
that all these minors are nonzero.

Now we are ready to prove Theorem 3.3.

Proof: To prove the theorem, we will construct an explicit inverse map � : Grk,n(R+) →
(R+)k(n−k). The first step is to prove that ��1 = id.

Let us index the regions in Webk,n by ordered pairs (i, j) as follows. Given a region,
we choose i to be the label of the horizontal wire which forms the upper boundary of the
region, and choose j to be the label of the vertical wire which forms the left boundary of
the region. Now we define a map K from the set of regions to ([n]

k ) by

K (i, j) := {1, 2, . . . , i − 1} ∪ {i + j − k, i + j − k + 1, . . . , j − 1, j}.

If (i, j) is not a region of Webk,n , then we define K (i, j) := ∅.
Let A be a k × n matrix whose initial k × k minor is the identity. We define �(A) by

(�(A))(i, j) := �K (i, j)(A)�K (i+1, j−2)(A)�K (i+2, j−1)(A)

�K (i, j−1)(A)�K (i+1, j)(A)�K (i+2, j−2)(A)
. (1)

Note that by convention, we define �∅ to be 1.
See figure 3 for the definition of � in the case of Gr3,6(R+). Note that for brevity, we

have omitted the A’s from each term.
We claim that if A = �1x , then ��1x = x . To prove this, we note that the variable in

region (i, j) can be expressed in terms of vertex-disjoint paths as follows.
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124 234

134

156 124
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125 134
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123

1

2

3

456

Figure 3. Web3,6.
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First observe that if K (i, j) 	= ∅ then there is a unique set of pairwise vertex-disjoint
paths from [k]\([k] ∩ K (i, j)) to K (i, j)\([k] ∩ K (i, j)). If one examines the terms in (1)
and draws in the six sets of pairwise vertex-disjoint paths on Webk,n (say the three from the
numerator in red and the three from the denominator in blue) then it is clear that every region
in Webk,n lies underneath an equal number of red and blue paths—except the region (i, j),
which lies underneath only one red path. Thus, by definition of the maps PK , it follows
that

(��1(x))(i, j) = PK (i, j)(x)PK (i+1, j−2)(x)PK (i+2, j−1)(x)

PK (i, j−1)(x)PK (i+1, j)(x)PK (i+2, j−2)(x)
= x(i, j).

To complete the proof, it remains to show that � is injective. This will complete the proof
because we know that ��1� = �, and � injective then implies that �1� = id.

Choose an element of Grk,n(R+), which we identify with its unique matrix representative
A whose leftmost k × k minor is the identity. Let V denote the set of rational expressions
which appear in the right-hand side of (1) for all regions (i, j) in Webk,n . Let P denote the
set of all individual Plücker coordinates which appear in V . We prove that � is injective
in two steps. First we show that the values of the expressions in V uniquely determine
the values of the Plücker coordinates in P . Next we show that the values of the Plücker
coordinates in P uniquely determine the matrix A.

The first step is clear by inspection. We illustrate the proof in the case of Gr3,6(R+).
By the choice of A, �123 = 1. Looking at the rational expressions in figure 3, we see
that knowing the value �124

�123
determines �124; the value �124 together with the value �134

�124

determines �134; and similarly for �234, �125, �126. Next, these values together with the
value �145�123

�125�134
determines �145, and so on.

For the second step of the proof, let A′ denote the k × (n − k) matrix obtained from A by
removing the leftmost k × k identity matrix. Note that the values of the Plücker coordinates
�K (i, j)(A) (which are all elements of P) determine the values of all of the reflected initial
minors of A′. (Each such Plücker coordinate is equal to one of the reflected initial minors,
up to sign.) Thus, by Corollary 3.5, they uniquely determine the matrix A′ and hence A.
This completes the proof of Theorem 3.3.

Now let us parameterize Grk,n(R+)/φ((R+)n). We shall show that we can do this by
using variables corresponding to only the (k − 1)(n − k − 1) inner regions of Webk,n .

First recall that the n-dimensional torus acts on Grk,n(R+) by scaling columns of a matrix
representative for A ∈ Grk,n(R+). (Although the torus has dimension n, this is actually just
an (n − 1)-dimensional action as the scalars act trivially.) Namely,

(λ1, . . . , λn)




a11 . . . a1n
...

...
ak1 . . . akn


 :=




λ1a11 . . . λna1n
...

...
λ1ak1 . . . λnakn




If A ∈ Grk,n(R+) then we let Ā denote the torus orbit of A under this action. Note that if
K = {i1, . . . , ik}, then �K (λA) = λi1λi2 . . . λik �K (A).
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We will now determine the corresponding torus action on (R+)k(n−k) such that the above
bijection commutes with the actions. If r is an internal region then xr is a ratio of Plücker
coordinates with the same indices appearing on the top and bottom, so xr is not mod-
ified by the torus action. A simple computation shows that the torus acts transitively
on the values of the outer region variables. Thus, taking the quotient by φ((R+)n) on
the right hand side of the equation corresponds to forgetting the outer variables on the
left.

Define a map �2 : (R+)(k−1)(n−k−1) → Grk,n(R+)/φ((R+)n) by lifting a point c ∈
(R+)(k−1)(n−k−1) to any arbitrarily chosen point c̃ ∈ (R+)k(n−k) and then mapping c to
�1(c̃). We have just proven:

Theorem 3.6 The map �2 : (R+)(k−1)(n−k−1) → Grk,n(R+)/φ((R+)n) is a bijection.

4. A fan associated to the tropical positive Grassmannian

In this section we will construct a lower-dimensional fan associated to the tropical positive
Grassmannian Trop+Grk,n . By methods precisely analogous to those above, we can prove
an analogue of Theorem 3.6 for the field of Puiseux series.

Theorem 4.1 The map �2 : (R+)(k−1)(n−k−1) → Grk,n(R+)/φ((R+)n) is a bijection.

This theorem allows us to compute Trop+Grk,n/(Tropφ)(Rn) by applying the valuation
map to the image of �2. By Proposition 2.5 we can tropicalize the map �2, obtaining the
following surjective map.

Trop�2 : R(k−1)(n−k−1) → Trop+Grk,n/(Tropφ)(Rn)

The map Trop�2 is the map we get by replacing multiplication with addition and addition
with minimum in the definition of �2. Explicitly, it is defined as follows. Let K ∈ ([n]

k

)
,

and let inner region variables take on values {xr } in R. Outer region variables are chosen
arbitrarily. If p is a path on Webk,n then we let Sump(x) denote the sum of all variables
which label regions below p. Similarly, if S is a set of paths, then let SumS(x) denote∑

p∈S Sump(x). Now define TropPK (x) : R(k−1)(n−k−1) → R by

TropPK (x) := min{SumS(x) : S ∈ Path(K )}.

The map Trop�2 is the map

Trop�2 : R(k−1)(n−k−1) → Trop+Grk,n/(Tropφ)(Rn) ⊂ RN /(Tropφ)(Rn)

given by

(Trop�2(x))K = PK (x).
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Definition 4.2 The fan Fk,n is the complete fan in R(k−1)(n−k−1) whose maximal cones are
the domains of linearity of the piecewise linear map Trop�2.

Because Trop�2 surjects onto Trop+Grk,n/(Tropφ)(Rn), the fan Fk,n reflects the com-
binatorial structure of the fan Trop+Grk,n/(Tropφ)(Rn), which differs from Trop+Grk,n

only through modding out by the linearity space. However, Fk,n is much easier to work
with, as it lives in (k − 1)(n − k − 1)-dimensional space as opposed to (n

k
)-dimensional

space.
Since the maps TropPK are piecewise linear functions, to each one we can associate a

fan F(PK ) whose maximal cones are the domains of linearity for TropPK . It is clear that
the fan Fk,n is the simultaneous refinement of all of the fans F(PK ).

From now on, by abuse of notation, we will refer to Trop+Grk,n/(Tropφ)(Rn) as Trop+

Grk,n .

5. Trop+Gr2,n and the associahedron

In this section we will describe the fan F2,n associated to Trop+Gr2,n . We show that this fan
is exactly the Stanley-Pitman fan Fn−3, which appeared in the work of Stanley and Pitman
in [19]. In particular, the face poset of F2,n , with a top element 1̂ adjoined, is isomorphic to
the face lattice of the normal fan of the associahedron, a polytope whose vertices correspond
to triangulations of the convex n-gon. (In the language of [1], this is the associahedron of
type An−3.)

Let us first do the example of Trop+Gr2,5.
We use the web diagram Web2,5, as shown in figure 4. The maps TropPK are given

by:

TropP1 j = 0 for all j

TropP23 = 0

TropP24 = min(x1, 0)

TropP25 = min(x1 + x2, x1, 0)

1

2

345

X X2 1

Figure 4. Web2,5.
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11 11 2 1 2min(0, X  ) min(0, X  , X  +X  ) min(X  , X  +X  )

X1 0

X  +X1 2

X 1
X1

0

X  +X1 2

Figure 5. Fans for TropPJ .

TropP34 = x1

TropP35 = min(x1, x1 + x2)

TropP45 = x1 + x2

Each map TropPK : R2 → R is piecewise linear and so gives rise to the complete fan
F(PK ). For example, the map TropP24 is linear on the region {(x1, x2) : x1 ≥ 0}, where
it is the function (x1, x2) �→ 0, and on the region {(x1, x2) : x1 ≤ 0}, where it is the
function (x1, x2) �→ x1. Thus, F(P24) is simply the subdivision of the real plane into the
regions x1 ≥ 0 and x1 ≤ 0. The three nontrivial fans that we get from the maps TropPJ

are shown in figure 5. In each picture, the maximal cones of each fan are separated by solid
lines. F2,5, which is the simultaneous refinement of the three nontrivial fans, is shown in
figure 6.

In [18], it was shown that maximal cones of the fan Trop Gr2,n correspond to trivalent
trees on n labelled leaves. It turns out that maximal cones of the fan Trop Gr+

2,n correspond
to trivalent planar trees on n labelled leaves, as is illustrated in figure 6.

We will now describe the fan that appeared in [19], but first, we must review some notions
about trees. A plane binary tree is a rooted tree such that each vertex has either two children
designated as left and right, or none at all; and an internal vertex of a binary tree is a vertex
which is not a leaf. A trivalent planar tree is an (unrooted) tree such that every vertex has
degree three, and such that the leaves are labelled in a clockwise fashion. It is known that
both plane binary trees with n − 1 leaves, and trivalent planar trees with n labelled leaves,
are counted by the Catalan number cn−2 = 1

n−1 ( 2(n−2)
n−2 ).

There is a simple bijection between such trivalent planar trees and plane binary trees: if
T a trivalent planar tree, then simply contract the edge whose leaf is labelled 1, and make
this the root. This bijection is illustrated in figure 6.

Let us now define the Stanley-Pitman fan Fn−3 in Rn−3. (Note that we use different
indices than are used in [19]). The maximal cones of Fn−3 are indexed by plane binary trees
with n − 1 leaves, in the following manner. Let T be a plane binary tree with n − 1 leaves.
Label the internal vertices of T with the numbers 1, 2, . . . n − 2 in the order of the first
time we drop down to them from a child when doing a depth-first search from left to right
starting at the root. (See figure 6 for examples.) Let x1, . . . , xn−3 denote the coordinates in
Rn−3. If the internal vertex i of T is the parent of vertex j , and i < j , then associate with
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Figure 6. The fan of Trop+Gr2,5.

the pair (i, j) the inequality

xi + · · · + x j−1 ≥ 0,

while if i > j then associate with (i, j) the inequality

xi + · · · + x j−1 ≤ 0.

These n − 3 inequalities define a simplicial cone CT in Rn−3.
The result proved in [19] is the following.

Theorem 5.1 ( [19]) The cn−2 cones CT , as T ranges over all plane binary trees with
n − 1 leaves, form the chambers of a complete fan in Rn−3. Moreover, the face poset of
Fn−3, with a top element 1̂ adjoined, is dual to the face lattice of the associahedron which
parameterizes triangulations of the convex n-gon.
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The key step in proving that our fan F2,n is equal to the Stanley-Pitman fan Fn−3 is the
following lemma, also proved in [19].

Lemma 5.2 ( [19]) Let Di = {(x1, . . . , xn−3) ∈ Rn−3 : x1 +· · ·+ xi−1 = min(0, x1, x1 +
x2, . . . , x1 +· · ·+ xn−3)}. Let Ti consist of all plane binary trees with n − 1 leaves and root
i . Then Di = ∪T ∈Ti CT .

Proposition 5.3 The fan F2,n is equal to the fan Fn−3.

Proof: First let us describe the fan F2,n as explicitly as possible. Note that if we label the
regions of Web2,n with the variables x1, . . . , xn−3 from right to left, then all of the maps
TropPK are of the form

min(x1 + x2 + · · · + xi , x1 + x2 + · · · + xi+1, . . . , x1 + x2 + · · · + x j ),

where 0 ≤ i ≤ j ≤ n. Since this map has the same domains of linearity as the map

θi j := min(xi , xi + xi+1, . . . , xi + · · · + x j ),

we can work with the maps θi j instead. Let F(i, j) be the fan whose cones are the domains
of linearity of θi j . Then F2,n is the simultaneous refinement of all fans F(i, j) where
0 ≤ i ≤ j ≤ n.

Now note that the previous lemma actually gives us an algorithm for determining which
cone CT a generic point (x1, . . . , xn−3) ∈ Rn−3 lies in. Namely, if we are given such a
point, compute the partial sums of x1 + · · · + xi−1, for 1 ≤ i ≤ n − 2. Choose i such that
x1 + · · · + xi−1 is the minimum of these sums. (If i = 1, the sum is 0.) Then the root of the
tree T is i . The left subtree of T consists of vertices {1, . . . , i − 1}, and the right subtree of
T consists of vertices {i + 1, . . . , n − 2}. We now compute min{0, x1, x1 + x2, . . . , x1 +
· · · + xi−2} and min{xi , xi + xi+1, . . . , xi + · · · + xn−3} in order to compute the roots of
these two subtrees and so forth.

Now take a point (x1, . . . , xn−3) in a cone C of F2,n . This means that the point is in a
domain of linearity for all of the piecewise linear functions θi j = min{xi , xi +xi+1, . . . , xi +
· · · + x j } where 0 ≤ i ≤ j ≤ n, and we take x0 to be 0. In other words, for each i and
j , there is a unique k such that xi + · · · + xk = min{xi , xi + xi+1, . . . , xi + · · · + x j }. In
particular, we can reconstruct the tree T such that (x1, . . . , xn−3) ∈ CT , and every point
x ∈ C belongs to this same cone CT .

Finally, we can show by induction that CT ⊂ C . (We need to show that all of the functions
θi j are actually linear on CT .) This shows that each cone C in F2,n is actually equal to a
cone CT in Fn−3, and conversely.

6. Trop+Gr3,6 and the type D4 associahedron

In connection with their work on cluster algebras, Fomin and Zelevinsky [5] recently in-
troduced certain polytopes called generalized associahedra corresponding to each Dynkin
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Table 1. Rays and Inequalities for F3,6.

e1 x1 ≤ 5

e2 x2 ≤ 7

e3 x3 ≤ 7

e4 x4 ≤ 10

−e1 −x1 ≤ 0

−e2 −x2 ≤ −2

−e3 −x3 ≤ −2

−e4 −x4 ≤ −5

e1 − e2 x1 − x2 ≤ 0

e1 − e3 x1 − x3 ≤ 0

e1 − e4 x1 − x4 ≤ −1

−e1 + e4 −x1 + x4 ≤ 9

e2 − e4 x2 − x4 ≤ 0

e3 − e4 x3 − x4 ≤ 0

e1 − e2 − e3 x1 − x2 − x3 ≤ −3

e2 + e3 − e4 x2 + x3 − x4 ≤ 6

type, of which the usual associahedron is the type A example. When we computed F3,6,
the fan associated with Trop+Gr3,6, we found that it was closely related to the normal fan
of the type D4 associahedron, in a way which we will now make precise. (We defer the
explanation of our computations to the end of this section.)

Proposition 6.1 The f -vector of F3,6 is (16, 66, 98, 48). The rays of F3,6 are listed in
Table 1, along with the inequalities defining the polytope that F3,6 is normal to.

Using the formulas of [5], we calculated the f -vector of the normal fan to the type D4

associahedron: it is (16, 66, 100, 50). More specifically, our fan has two cones which are of
the form of a cone over a bipyramid. (Type FFFGG in the language of [18].) If we subdivide
these two bipyramids into two tetrahedra each, then we get precisely the D4 associahedron.

In Section 8, we will give some background on cluster algebras and formulate a conjecture
which explains the relation of F3,6 to the normal fan to the type D4 associahedron.

We depict the intersection of F3,6 with a sphere in figures 7 and 8. Each of the figures
is homeomorphic to a solid torus, and the two figures glue together to form the sphere
S3. The bipyramids in question have vertices {e2 + e3 − e4, −e1, e2, e3, −e1 + e4} and
{e1 − e2 − e3, −e4, e1 − e2, e1 − e3, e1 − e4}.

Now we will explain how we computed F3,6. We used two methods: the first method was
to use computer software (we used both cdd+ and Polymake) to compute the fan which we
described in Section 4. The second method was to figure out which subfan of Trop Gr3,6

(which was explicitly described in [18]) was positive.
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Figure 7. Glue bottom and top together to form a torus.

To implement our first method, we used the well-known result that if F1 and F2 are fans
which are normal to polytopes Q1 and Q2, then the fan which is the refinement of F1 and
F2 is normal to the Minkowski sum of Q1 and Q2. Since the fan Fk,n is the simultaneous
refinement of all the fans F(PK ), we found explicit coordinates for polytopes Q(PK ) whose
normal fans were the fans F(PK ), and had the programs cdd+ and Polymake compute the
Minkowski sum Qk,n of all of these polytopes. We then got explicit coordinates for the fan
which was normal to the resulting polytope.

For the second method, we used the results in [18]: we checked which of the rays of
Trop Gr3,6 did not lie Trop+Gr3,6, and checked which facets of Trop Gr3,6 did lie in
Trop+Gr3,6. As Trop+Gr3,6 is a closed subfan of Trop Gr3,6, this implied that every face
of Trop Gr3,6 which lay in a totally positive facet was in Trop+Gr3,6 and every face of
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Figure 8. Glue left and right ends together to form a torus.

Trop Gr3,6 which contained a non-totally positive ray was not in Trop+Gr3,6; for every face
of Trop Gr3,6, this proved sufficient to determine whether it was in Trop+Gr3,6 or not.

7. Trop+Gr3,7 and the type E6 associahedron

As in the case of F3,6, we used computer software to compute F3,7, the fan associated to
Trop+Gr3,7.

Proposition 7.1 The f -vector of F3,7 is (42, 392, 1463, 2583, 2163, 693). Its rays are
listed in Table 2, along with the inequalities defining the polytope that F3,7 is normal to. Of
the facets of this fan, 595 are simplicial, 63 have 7 vertices, 28 have 8 vertices and 7 have
9 vertices. All faces not of maximal dimension are simplicial.

Using the formulas of [5], we calculated the f -vector of the fan normal to the type E6

associahedron: it is (42, 399, 1547, 2856, 2499, 833).
In Section 8, we will explain why F3,7 differs from the E6 fan, and how one can refine

F3,7 to get a fan combinatorially equivalent to the fan dual to the type E6 associahedron. In
this refinement, the simplicial facets remain facets. The 7, 8 and 9 vertex facets split into 2,
3 and 4 simplices respectively. The following table shows how the vertices of the 7, 8, and
9 vertex facets are grouped into simplices.

<ABCDEFG> =⇒ <ABCDEF> ∪ <ABCDEG> ∪ <ABCDGH>

<ABCDEFGH> =⇒ <ABCDEF> ∪ <ABCDFG>

<ABCDEFGHI> =⇒ <ABCDEF> ∪ <ABCEFG> ∪ <ABCFGH>

∪<ABCGHI>
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Table 2. Rays and Inequalities for F3,7.

e1 x1 ≤ 10

e2 x2 ≤ 16

e3 x3 ≤ 19

e4 x4 ≤ 14

e5 x5 ≤ 26

e6 x6 ≤ 35

−e1 −x1 ≤ −1

−e2 −x2 ≤ −4

−e3 −x3 ≤ −10

−e4 −x4 ≤ −5

−e5 −x5 ≤ −17

−e6 −x6 ≤ −26

e1 − e2 x1 − x2 ≤ −1

e1 − e3 x1 − x3 ≤ −4

e1 − e4 x1 − x4 ≤ −1

e1 − e5 x1 − x5 ≤ −7

e1 − e6 x1 − x6 ≤ −17

e2 − e3 x2 − x3 ≤ −1

e2 − e5 x2 − x5 ≤ −4

e2 − e6 x2 − x6 ≤ −12

e3 − e6 x3 − x6 ≤ −10

e4 − e5 x4 − x5 ≤ −5

e4 − e6 x4 − x6 ≤ −14

e5 − e6 x5 − x6 ≤ −5

−e1 + e5 −x1 + x5 ≤ 23

−e2 + e5 −x2 + x5 ≤ 21

−e2 + e6 −x2 + x6 ≤ 28

e2 + e4 − e5 x2 + x4 − x5 ≤ 8

e2 + e4 − e6 x2 + x4 − x6 ≤ 1

e3 + e4 − e6 x3 + x4 − x6 ≤ 3

e3 + e5 − e6 x3 + x5 − x6 ≤ 13

e1 − e2 + e6 x1 − x2 + x6 ≤ 33

e1 − e2 − e4 x1 − x2 − x4 ≤ −7

e1 − e3 − e4 x1 − x3 − x4 ≤ −12

e1 − e3 − e5 x1 − x3 − x5 ≤ −19

e2 − e3 − e5 x2 − x3 − x5 ≤ −17

−e1 + e5 − e6 −x1 + x5 − x6 ≤ −7

e1 + e2 − e3 − e5 x1 + x2 − x3 − x5 ≤ −9

e2 + e4 − e5 − e6 x2 + x4 − x5 − x6 ≤ −19

e1 − e2 − e4 + e6 x1 − x2 − x4 + x6 ≤ 26

e2 − e3 + e4 − e5 x2 − x3 + x4 − x5 ≤ −7

−e1 + e3 + e5 − e6 −x1 + x3 + x5 − x6 ≤ 11
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8. Cluster algebras

Cluster algebras are commutative algebras endowed with a certain combinatorial structure,
introduced in [2] and expected to be relevant in studying total positivity and homogeneous
spaces, such as Grassmannians.

We will not attempt to give a precise definition of a cluster algebra here, but will rather
describe their key properties. Slightly varying definitions can be found in [2, 3] and [17];
we follow [17] but do not believe these small variations are important.

A cluster algebra is an algebra A over a field k, which in our examples can be thought
of as R. Additionally, a cluster algebra carries two subsets C and X ⊂ A, known as the
coefficient variables and the cluster variables. C is finite, but X may be finite or infinite. If
X is finite, A is known as a cluster algebra of finite type. There is also a nonnegative integer
r associated to a cluster algebra and known as the rank of the algebra.

There is a pure (r −1)-dimensional simplicial complex called the cluster complex whose
vertices are the elements of X and whose maximal simplices are called clusters. We will
denote the cluster complex by S(A). If x ∈ X and � ∈ S(A) is a cluster containing x , there
is always a unique cluster �′ with �∩�′ = � \ {x}. Let �′ = (� \ {x}) ∪ {x ′}. Then there
is a relation xx ′ = B where B is a binomial in the variables of (� ∩ �′) ∪ C .

For any x ∈ X and any cluster�, x is a subtraction-free rational expression in the members
of � ∪ C and is also a Laurent polynomial in the members of � ∪ C . Conjecturally, this
Laurent polynomial has non-negative coefficients. Note that this conjecture does not follow
from the preceding sentence: x3+y3

x+y = x2 − xy + y2 is a subtraction-free expression in x
and y, and a polynomial in x and y, but it is not a polynomial with positive coefficients.

It was demonstrated in [17] that the coordinate rings of Grassmannians have natural
cluster algebra structures. Usually these cluster algebras are of infinite type, making them
hard to work with in practice, but in the cases of Gr2,n , Gr3,k for k ≤ 8 and their duals, we
get cluster algebras of finite type.

In the case of Gr2,n , the coefficient set C is {�12, �23, . . . , �(n−1)n, �1n} and the set of
cluster variables X is {�i j : i < j and i − j 	≡ ±1 mod n}. (Note that these �’s are Plücker
coordinates and not simplices.) Label the vertices of an n-gon in clockwise order with the
indices {1, 2, . . . , n} and associate to each member of X ∪ C the corresponding chord of
the n-gon. The clusters of Gr2,n correspond to the collections of chords which triangulate
the n-gon. Thus, S(A) in this example is (as an abstract simplicial complex) isomorphic to
the dual of the associahedron. Since we have shown that the fan of Trop+Gr2,n is combi-
natorially equivalent to the normal fan of the associahedron, it follows that Trop+Gr2,n is
(combinatorially) the cone on S(A).

In the case of Gr3,6, the coefficient set C is equal to {�123, �234, �345, �456, �561, �612}.
X contains the other 14 Plücker coordinates, but it also contains two unexpected elements:
�134�256 −�156�234 and �236�145 −�234�156. By definition, all Plücker coordinates are
positive on the totally positive Grassmannian, so by the results above on subtraction-free
rational expressions, these new coordinates are positive on the totally positive Grassmannian
as well.

The new coordinates turn out to be Laurent polynomials with positive coefficients in
the region variables of Section 3. Thus, we can tropicalize these Laurent polynomials and
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associate a fan to each of them. When we refine F3,6 by these fans, the refinement subdivides
the two bipyramids and yields precisely the normal fan to the D4 associahedron, which is
again the cone over S(A).

In the case of Gr3,7, C again consists of {�i(i+1)(i+2)} where indices are modulo 7. X
contains all of the other Plücker variables and the pullbacks to Gr3,7 of the two new cluster
variables of Gr3,6, along with the 7 rational coordinate projections Gr3,7 → Gr3,6. Thus,
X contains 28 Plücker variables and 14 other variables.

As in the case of Gr3,6, the 14 new variables are Laurent polynomials with positive coef-
ficients in the region variables of Section 3, so to each one we can associate a corresponding
fan. When we refine F3,7 by these 14 new fans, we get a fan combinatorially equivalent to
the fan normal to the E6 associahedron.

We can describe what we have seen in each of these Grassmannian examples in terms of
the general language of cluster algebras as follows:

Observation when A is the coordinate ring of a Grassmannian. Embed SpecA in affine
space by the variables X � C . Then Trop+SpecA is a fan with lineality space of dimension
|C |. After taking the quotient by this lineality space, we get a simplical fan abstractly
isomorphic to the cone over S(A).

This observation does not quite hold for an arbitrary cluster algebra of finite type. For
example, if we take the cluster algebra of Gr2,6 and set all coefficient variables equal to
1, we get a different cluster algebra which is still of type A3. However, when we compute
the positive part of the corresponding tropical variety, we get a fan whose lineality space
has dimension 1, not 0 as the above would predict. Our fan is a cone over a hexagon cross
a 1-dimensional lineality space, which is a coarsening of the fan normal to the type A3

associahedron. Based on this and other small examples, it seems that in order to see the
entire cone over S(A), one needs to use “enough” coefficients.

Conjecture 8.1 Let A be a cluster algebra of finite type over R and S(A) its associated
cluster complex. If the lineality space of Trop+SpecA has dimension |C | then Trop+SpecA
modulo its lineality space is a simplicial fan abstractly isomorphic to the cone over S(A).
If the condition on the lineality space does not hold, the resulting fan is a coarsening of the
cone over S(A).

Remark The condition on the lineality space can be restated without mentioning tropi-
calizations. Consider the torus (R∗)X∪C acting on the affine space RX∪C and let G be the
subgroup taking SpecA to itself. We want to require that dim G = |C |.

Remark In the notation of [2] and [3], the condition on the dimension of the lineality
space is equivalent to requiring that the matrix B̃ be of full rank. We thank Andrei Zelevinsky
for pointing this out to us.

Note how surprising this conjecture is in light of how the two complexes are computed.
The fan described in the conjecture is computed as the refinement of a number of fans,
indexed by the vertices of S(A). That the rays of this fan, which arise as the intersections
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of many hypersurfaces, should again be in bijection with the vertices of S(A) is quite
unexpected.

We expect an analogous statement to hold for infinite type cluster algebras.
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20. B. Sturmfels, “Gröbner bases and convex polytopes,” American Mathematical Society, Providence,
1991.

21. B. Sturmfels, “Solving systems of polynomial equations,” American Mathematical Society,
Providence, 2002.

22. L. Williams, “Enumeration of totally positive Grassmann cells,” Adv. Math. 190 (2005), 319–342.


