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Abstract Let T be a torus of dimension n > 1 and M a compact T -manifold. M is a GKM

manifold if the set of zero dimensional orbits in the orbit space M/T is zero dimensional

and the set of one dimensional orbits in M/T is one dimensional. For such a manifold these

sets of orbits have the structure of a labelled graph and it is known that a lot of topological

information about M is encoded in this graph.

In this paper we prove that every compact homogeneous space M of non-zero Euler

characteristic is of GKM type and show that the graph associated with M encodes geometric
information about M as well as topological information. For example, from this graph one

can detect whether M admits an invariant complex structure or an invariant almost complex

structure.

Keywords GKM graph . Homogeneous spaces . Equivariant cohomology

1. Introduction

Let T be a torus of dimension n > 1, M a compact manifold,

τ : T × M → M

a faithful action of T on M , and M/T the orbit space of τ . M is called a GKM manifold
if the set of zero dimensional orbits in the orbit space M/T is zero dimensional and the set
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of one dimensional orbits in M/T is one dimensional. Under these hypotheses, the union,

� ⊂ M/T , of the set of zero and one dimensional orbits has the structure of a graph: Each

connected component of the set of one-dimensional orbits has at most two zero-dimensional

orbits in its closure; so these components can be taken to be the edges of a graph and the

zero-dimensional orbits to be the vertices. Moreover, each edge, e, of � consists of orbits of

the same orbitype: namely, orbits of the form Oe = T/He, where He is a codimension one

subgroup of T . Hence one has a labelling

e → He (1.1)

of the edges of � by codimension one subgroups of T .

It has recently been discovered that if M has either a T -invariant complex structure or

a T -invariant symplectic structure, the data above—the graph � and the labelling [1.1]—

contain a surprisingly large amount of information about the global topology of M . For

instance, Goresky, Kottwitz, and MacPherson proved that the ring structure of the equivariant

cohomology ring H∗
T (M) = H∗

T (M ; C) is completely determined by this data, and Knutson

and Rosu have shown that the same is true for the ring KT (M) ⊗ C.

The manifolds M which we will be considering below will be neither complex nor sym-

plectic; however we will make an assumption about them which is in some sense much

stronger then either of these assumptions. We will assume that T is the Cartan subgroup of

a compact, semisimple, connected Lie group G, and that G acts transitively on M , i.e. M
is a G-homogeneous space. There is a simple criterion for such a manifold to be a GKM

manifold.

Theorem 1.1. Suppose M is a G-homogeneous manifold. Then the following are equivalent.

(1) The action of T on M is a GKM action;
(2) The Euler characteristic of M is non-zero;
(3) M is of the form M = G/K , where K is a closed subgroup of G containing T .

If K is connected, then K is the identity component of the centralizer in G of the center

of K , which in this case is the same as the identity component of the normalizer in G of the

center of K (see [2]).

As we mentioned above, the data [1.1] determine the ring structure of H∗
T (M) if M is

either complex or symplectic. This result is, in fact, true modulo an assumption which is

weaker than either of these assumptions; and this assumption - equivariant formality—is

satisfied by homogeneous spaces which satisfy the hypotheses of the theorem. Hence, for

these spaces, one has two completely different descriptions of the ring H∗
T (M): the graph

theoretical description above and the classical Borel description. In Section 2 we will compute

the graph � of a space M of the form G/K , with T ⊂ K , and show that it is a homogeneous
graph, i.e. we will show that the Weyl group of G, WG , acts transitively on the vertices of �

and that this action preserves the labelling [1.1]. We will then use this result to compare the

two descriptions of H∗
T (M).

One of the main goals in this paper is to show that for homogeneous manifolds M of

GKM type, some important features of the geometry of M can be discerned from the graph

� and the labelling (1.1). One such feature is the existence of a G−invariant almost complex

structure. The subgroups, He, labelling the edges of � are of codimension one in T ; so, up

to sign, they correspond to weights, αe, of the group T . It is known that the WK −invariant
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labelling (1.1) can be lifted to a WK −invariant labelling

e → αe (1.2)

if M is a coadjoint orbit of G (hence, in particular, a complex G−manifold). Moreover,

this labelling has certain simple properties which we axiomatize by calling a map with

these properties an axial function (see Section 3.1). In Section 3 we prove the following

result.

Theorem 1.2. The homogeneous space M admits a G–invariant almost complex struc-
ture if and only if � possesses a WK –invariant axial function (1.2) compatible with
(1.1).

This raises the issue: Is it possible to detect from the graph theoretic properties of the axial

function (1.2) whether or not M admits a G−invariant complex structure? Fix a vector ξ ∈ t

such that αe(ξ ) �= 0 for all oriented edges, e, of �, and orient these edges by requiring that

αe(ξ ) > 0. We prove in Section 4 the following theorem.

Theorem 1.3. A necessary and sufficient condition for M to admit a G−invariant complex
structure is that there exist no oriented cycles in �.

Remarks:

(1) M admits a G-invariant complex structure if and only if it admits a G-invariant sym-

plectic structure; and, by the Konstant-Kirillov theorem, it has either (and hence both)

of these properties if and only if it is a coadjoint orbit of G.

(2) By the Goresky-Kottwitz-MacPherson theorem, the graph � and the labelling (1.1)

determine the cohomology ring structure of M . The additive cohomology of M , i.e.

its Betti numbers, βi , can be computed from (1.2) by the following simple recipe: For

each vertex, p, of the graph �, let σp be the number of oriented edges issuing from p
with the property that αe(ξ ) < 0. Then

βi =
{

0, if i is odd,

#{p; σp = i/2}, if i is even.

(3) To streamline the exposition of the material above, we will assume from now on that

K is connected, or, equivalently, that G/K is simply connected. However, many of the

results of this paper (for instance Theorems 1.2 and 1.3) are true without this assumption

and can be deduced from the results in the simply connected case by covering space

arguments.

One question we have not addressed in this paper is the question: When is a labelled graph

the GKM graph of a homogeneous space of the form G/K with T ⊂ K ? For some partial

answers to this question see [11].
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2. The equivariant cohomology of homogeneous spaces

2.1. The Borel description

Let G be a compact semi-simple Lie group, T a Cartan subgroup of G, K a connected, closed

subgroup of G such that

T ⊂ K ⊂ G,

and let t ⊂ k ⊂ g be the Lie algebras of T , K , and G.

Let �K ⊂ �G be the roots of K and G, with �+
K ⊂ �+

G sets of positive roots, let

�G,K = �G − �K ,

and let WK ⊂ WG be the Weyl groups of K and G. We will regard an element of WG

both as an element of N (T )/T and as a transformation of the dual Lie algebra t∗ (or as a

transformation of t, via the isomorphism t∗ 	 t given by the Killing form). Also, we will

assume for simplicity that G is simply connected and that the homogeneous space G/K is

oriented.

Now suppose M is a G-manifold. Then the equivariant cohomology ring H∗
T (M) is related

to the cohomology ring H∗
G(M) by

H∗
T (M) = H∗

G(M) ⊗S(t∗)WG S(t∗).

(see [8], Chap. 6), where S(t∗) is the symmetric algebra of t∗. In particular, let M = G/K ,

where K acts on G by right multiplication. Then G acts on M by left multiplication and

H∗
G(M) = H∗

G(G/K ) = S(k∗)K = S(t∗)WK ,

hence

H∗
T (G/K ) = S(t∗)WK ⊗S(t∗)WG S(t∗). (2.1)

This is the Borel description of H∗
T (G/K ). Throughout this paper, unless stated otherwise,

M is the homogeneous space G/K .

2.2. The GKM graph of M

In the following subsections, we will show that M is equivariantly formal and is a GKM

space. Then we will relate the the GKM description of the equivariant cohomology ring of

M to the description above.

2.2.1. Equivariant formality

The S(t∗)–module structure of the equivariant cohomology ring H∗
T (M) can be computed

by a spectral sequence (see [8], p. 70) whose E2 term is H (M) ⊗ S(t∗), and if this spectral
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sequence collapses at this stage, then M is said to be equivariantly formal. If M = G/K ,

with T ⊂ K , then,

H odd (M) = 0,

(see [5], p. 467), and from this it is easy to see that all the higher order coboundary opera-

tors in this spectral sequence have to vanish by simple degree considerations. Hence M is

equivariantly formal. One implication of equivariant formality is the following:

Theorem 2.1. The restriction map

H∗
T (M) → H∗

T (MT ) (2.2)

is injective.

Proof: By a localization theorem of Borel (see [1]), the kernel of (2.2) is the torsion submod-

ule of H∗
T (M). However, if M is equivariantly formal, then H∗

T (M) is free as an S(t∗)−module,

so the kernel has to be zero. �

Thus H∗
T (M) imbeds as a subring of the ring

H∗
T (MT ) = H 0(MT ) ⊗C S(t∗). (2.3)

We will give an explicit description of this subring in Section 2.3.

2.2.2. The Euler characteristic

If M is a homogeneous space of the form G/K , with T ⊆ K , then the odd cohomology of

M vanishes and the Euler characteristic of M is equal to

χ (M) =
∑

i

dim H 2i (M);

in particular, the Euler characteristic is non-zero. It is easy to see that the converse is true as

well.

Proposition 2.1. If M = G/K and the rank of K is strictly less than the rank of G, then the
Euler characteristic of G/K is zero.

Proof: Let h be an element of T with the property that

{hN ; −∞ < N < ∞}

is dense in T . Suppose that the action of h on G/K fixes a coset g0 K . Then g−1
0 hg0 ∈ K ,

i.e. h is conjugate to an element of K and hence conjugate to an element h1 of the Cartan

subgroup T1 of K . However, if the iterates of h are dense in T , so must be the iterates of

h1 and hence T1 = T . Suppose now that h = exp ξ, ξ ∈ t. If h has no fixed points, then
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the vector field ξM can have no zeroes and hence the Euler characteristic of M has to be

zero. �

2.2.3. The fixed points

We prove in this section that the action of T on M is a GKM action; i.e. that the set of zero

dimensional orbits in the orbit space M/T is zero dimensional, and the set of one dimensional

orbits is one dimensional. It is easy to see that these properties are equivalent to

(1) MT is finite;

(2) For every codimension one subgroup H of T , dim M H ≤ 2.

We will show that if M is of the form G/K , with T ⊆ K , then it has the two properties

above, and we will also show that it has the following third property:

(3) For every subtorus H of T and every connected component X of M H , X T �= ∅.

It is well known that these properties hold for the homogeneous space O = G/T . The

first two properties can be checked directly (see [9]), and the third property holds because

O is a compact symplectic manifold and the action of T is Hamiltonian. Therefore, to prove

that M satisfies Properties 1–3, it suffices to prove the following theorem.

Theorem 2.2. For every subtorus H of T , the map

O = G/T → G/K = M (2.4)

sends OH onto M H .

Proof: Let p0 be the identity coset in M and q0 the identity coset in O. Let h be an element

of H with the property that

{hN ; −∞ < N < ∞}

is dense in H . If p = gp0 ∈ M H , then g−1hg ∈ K ; so g−1hg = ata−1, with a ∈ K and

t ∈ T . Thus hga = gat and hence hq = q, where q = gaq0. But under the map (2.4), q0 is

sent to p0, so q is sent to gap0 = gp0 = p. �

In particular, Theorem 2.2 tells us that the map OT → MT is surjective. However,

OT = NG(T )/T = WG,

so MT is the image of WG = NG(T )/T in G/K . But NG(T ) ∩ K = NK (T ), the normalizer

of T in K , so

(NG(T ) ∩ K )/T = WK ,

and hence we proved:
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Proposition 2.2. There is a bijection

MT 	 WG/WK ;

in particular, WG = NG(T )/T acts transitively on MT .

2.2.4. Points stabilized by codimension one subgroups

Next we compute the connected components of the sets M H , where H is a codimension one

subgroup of T . Let X be one of these components. By Theorem 2.2, X is the image in M of a

connected component ofOH , and each connected component ofOH is a compact Hamiltonian

T -space. Therefore its T-fixed point set is non-empty and hence X T �= ∅. Moreover, since

M is simply connected, it is orientable, and hence every connected component of M H is

orientable. So, if X is not an isolated point of M H , then it has to be either a circle, a

2-torus, or a 2-sphere, and the first two possibilities are ruled out by the condition X T �= ∅.

We conclude:

Theorem 2.3. Let H be a codimension one subgroup of T and let X be a connected com-
ponent of M H . Then X is either a point or a 2-sphere.

Remark . By the Korn-Lichtenstein theorem, every faithful action of S1 on the 2-sphere is

diffeomorphic to the standard action of “rotation about the z-axis.” Therefore the action of

the circle S1 = T/H on the 2-sphere X in the theorem above has to be diffeomorphic to the

standard action. In particular, #X T = 2.

We now explicitly determine what these 2-spheres are. By Proposition 2.2, each of these

2-spheres is the conjugate by an element of NG(T ) of a 2-sphere containing the identity coset

p0 ∈ M = G/K ; so we begin by determining the 2-spheres containing p0.

2.2.5. The space g/k

The tangent space Tp0
M can be identified with g/k, and the isotropy representation of T on

this space decomposes into a direct sum of two-dimensional T -invariant subspaces

Tp0
M = ⊕V[α], (2.5)

labelled by the roots modulo ±1,

α ∈ �G,K / ± 1. (2.6)

One can also regard this as a labelling by the positive roots in �G,K ; however, since this

set of positive roots is not fixed by the natural action of WK on �G,K , this is not an in-
trinsic labelling. (This fact is of importance in Section 3, when we discuss the existence of

G-invariant almost complex structures on M .) Now let H be a codimension one subgroup

of T , let h ⊂ t be the Lie algebra of H , and let M H be the set of H -fixed points. Then

Tp0
M H = (Tp0

M)H .
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Hence, if X is the connected component of M H containing p0, and if X is not an isolated

point, then (Tp0
M)H has to be one of the V[α]’s in the sum (2.5). Hence the adjoint action of

H on g/k has to leave V[α] pointwise fixed. However, an element g = exp t of T acts on V[α]

by the rotation

χα(g) =
(

cos α(t) − sin α(t)

sin α(t) cos α(t)

)
, (2.7)

so the stabilizer group of V[α] is the group

Hα = {g ∈ T ; χα(g) = 1}. (2.8)

Let C(Hα) be the centralizer of Hα in G and let Gα be the semisimple component of

C(Hα). Then Gα is either SU (2) or SO(3), and since Gα is contained in C(Hα), Gα p0 is

fixed pointwise by the action of H . Moreover, since Gα � K , the orbit Gα p0 can’t just consist

of the point p0 itself; hence

Gα p0 = X. (2.9)

The Weyl group of Gα is contained in the Weyl group of G and consists of two elements:

the identity and a reflection, σ = σα , which leaves fixed the hyperplane ker α ⊂ t, and maps

α to −α. Therefore, since α �∈ �K , σα p0 �= p0, and hence p0 and σα p0 are the two T -fixed

points on the 2-sphere (2.9).

Now let p = wp0 be another fixed point of T , with [w] ∈ WG/WK . Let a be a represen-

tative for w in NG(T ) and let La : G → G be the left action of a on G. If X is the 2-sphere

(2.9), then the 2-sphere La(X ) intersects MT in the two fixed points wp0 and wσα p0, and its

stabilizer group in T is the group

aHαa−1 = wHαw−1 = Hwα, (2.10)

where Hα is the group (2.8).

2.2.6. The GKM graph of M

This concludes our classification of the set of 2-spheres in M which are stabilized by codi-

mension one subgroups of T . Now note that if X is such a two-sphere and H is the subgroup

of T stabilizing it, then the orbit space X/T consists of two T -fixed points and a connected

one dimensional set of orbits having the orbitype of T/H . Thus these X ’s are in one-to-

one correspondence with the edges of the GKM graph of M . Denoting this graph by � we

summarize the graph-theoretical content of what we’ve proved so far:

Theorem 2.4. The GKM data associated to the action of T on the homogeneous space
M = G/K is the following.

(1) The vertices of � are in one-to-one correspondence with the elements of WG/WK ;
(2) Two vertices [w] and [w′] are on a common edge of � if and only if [w′] = [wσα] for
some α ∈ �G,K ;
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(3) The edges of � containing the vertex [w] are in one-to-one correspondence with the
roots, modulo ±1, in the set �G,K ;

(4) If α is such a root, then the stabilizer group (1.1) labelling the edge corresponding to
this root is the group (2.10).

In particular, the labelling (1.1) of the graph � can be viewed as a labelling by elements

[α] of �G/ ± 1. We call this labelling a pre-axial function. These graphs may have vertices

joined by several distinct edges, as in Figures 1 and 2 (see section 5).

2.2.7. The connection on �

One last structural component of the graph � remains to be described: Given any graph, �,

and vertex, p, of �, let E p be the set of oriented edges of � with initial vertex p. A connection
on � is a function which assigns to each oriented edge, e, a bijective map

θe : E p → Eq ,

where p is the initial vertex of e and q is the terminal vertex. The graph � described in

Theorem 2.4 has a natural such connection. Namely, let e be an oriented edge of � joining

[w] to [wσα] and labeled by [wα]. If e′ ∈ E[w] is an oriented edge joining [w] to [wσβ ] and

labeled by [wβ], then let θe(e′) = e′′, where e′′ is an edge joining [wσα] to [wσασβ ] and

labeled by [wσαβ]. This connection is compatible with the pre-axial function (1.1) in the

sense that, for every vertex p, and every pair of oriented edges, e, e′ ∈ E p, the roots labelling

e, e′, and e′′ = θe(e′) are coplanar in t∗.

2.2.8. Simplicity

A graph is said to be simple if every pair of vertices is joined by at most one edge. Most of

the graphs above don’t have this property. There is however an important class of subgroups,

K , for which the graph associated with G/K does have this property.

Theorem 2.5. If K is the stabilizer group of an element of t, then the graph � is simple.

Proof: A root α ∈ �G is in �K if and only if the restriction of α to the subspace tWK of t is

zero. Let α, β ∈ �G,K such that α �= ±β, and let σα, σβ be the reflections of t defined by α

and β. Then σα �= σβ and the subspace of t fixed by σασβ is the codimension 2 subspace on

which both α and β vanish. If σασβ ∈ WK , then this subspace contains tWK , so α and β are

both vanishing on tWK , contradicting our assumption that α, β �∈ �K . �

Another way to prove Theorem 2.5 is to observe that M = G/K is a coadjoint orbit of the

group G. In particular, it is a Hamiltonian T -space and � is the one-skeleton of its moment

polytope.

2.3. The GKM definition of the cohomology ring

We recall how the data encoded in the GKM graph determines the equivariant cohomology

ring H∗
T (M). The inclusion i : MT → M induces a map in cohomology

i∗ : H∗
T (M) → H∗

T (MT ) = Maps(MT , S(t∗)) = Maps(WG/WK , S(t∗)),
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and the fact that M is equivariantly formal implies that i∗ is injective. Let H∗
T (�) be the set

of maps

f : WG/WK → S(t∗) (2.11)

that satisfy the compatibility condition:

f ([wσα]) − f ([w]) ∈ (wα)S(t∗). (2.12)

for every edge ([w], [wσα]) of �.

The Goresky, Kottwitz, and MacPherson theorem [6] asserts that

H∗
T (M) 	 i∗(H∗

T (M)) = H∗
T (�).

In the next section we construct a direct isomorphism between this ring H∗
T (M) and the Borel

ring given in (2.1).

2.4. Equivalence between the Borel picture and the GKM picture

From the inclusion, i , of MT into M , one gets a restriction map

i∗ : H∗
T (M) → H∗

T (MT ); (2.13)

and, since M is equivariantly formal, i∗ maps H∗
T (M) bijectively onto the subring H∗

T (�) of

H∗
T (MT ). However, as we pointed out in Section 2.1,

H∗
T (M) 	 S(t∗)WK ⊗S(t∗)WG S(t∗);

so, by combining (2.13) and (2.1), we get an isomorphism

K : S(t∗)WK ⊗S(t∗)WG S(t∗) → H∗
T (�). (2.14)

The purpose of this section is to give an explicit formula for this map. Note that since MT

is a finite set,

H∗
T (MT ) =

⊕
p∈MT

H∗
T (p) =

⊕
p∈MT

S(t∗) = Maps(MT , S(t∗)).

Theorem 2.6. On decomposable elements, f1 ⊗ f2, of the product (2.1),

K( f1 ⊗ f2) = g ∈ Maps(MT , S(t∗)), (2.15)

where, for w ∈ WG and p = wp0 ∈ MT ,

g(wp0) = (w f1) f2. (2.16)
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Proof: We first show that (2.15) and (2.16) do define a ring homomorphism of the ring (2.1)

into H∗
T (�). To show that (2.16) doesn’t depend on the representative w chosen, we note that

if wp0 = w′ p0, then σ = w(w′)−1 ∈ WK . Thus

g(w′ p0) = (w′ f1) f2 = (wσ f1) f2 = (w f1) f2 = g(wp0),

since f1 ∈ S(t∗)WK . Next, we note that if f ∈ S(t∗)WG , then

K( f1 f ⊗ f2) = K( f1 ⊗ f f2),

since

w( f1 f ) f2 = (w f1)(w f ) f2 = (w f1) f f2.

Thus, by the universality property of tensor products, K does extend to a mapping of the ring

(2.1) into the ring Maps(MT , S(t∗)).

Next, let α be a root and let σ ∈ WG be the reflection that interchanges α and −α and that

is the identity on the hyperplane

h = {ξ ∈ t ; α(ξ ) = 0}.

Suppose that p and p′ are two adjacent vertices of � with p′ = σ p. To show that

g = K( f1 ⊗ f2) is in H∗
T (�), we must show that the quotient

g(p′) − g(p)

α

is in S(t∗). However, if p = wp0, then

g(p′) − g(p) = (σw f1 − w f1) f2,

and since σ is the identity on h, the restriction of the polynomial wσ f1 to h is equal to the

restriction of the polynomial w f1 to h; hence

g(p′) − g(p)

α
∈ S(t∗).

Next we will show that the domain and range of the map (2.14) are equipped with intrinsic

WG-actions and that this map is WG-equivariant. We first observe that if M is any G-manifold,

then the action of N (T ) on M induces an action of N (T ) on H∗
T (M). If a ∈ N (T ) is an

element of the normalizer of T in G, then one can define maps τa : M → M (the action of a
on M) and φa : T → T (conjugation by a). Then τa is φa−equivariant, therefore it induces

a homomorphism ψa : H∗
T (M) → H∗

T (M). The action of N (T ) is trivial when restricted to

T , hence it descends to an action of WG = N (T )/T on H∗
T (M). We claim that

H∗
G(M) = H∗

T (M)WG . (2.17)

(See for instance [8], Theorem 6.8.2). Thus the G-equivariant cohomology of M is determined

by this action of WG on H∗
T (M). Conversely, as we pointed out in Section 2.1, there is
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an isomorphism

H∗
T (M) 	 H∗

G(M) ⊗S(t∗)WG S(t∗) (2.18)

coming from the pullback maps H∗
T (pt) → H∗

T (M) and H∗
G(M) → H∗

T (M). The WG-action

on the right hand side corresponding to the above WG-action on H∗
T (M) is the tensor prod-

uct of the trivial WG-action on the first factor and the intrinsic action of WG on S(t∗). As

corroboration of this fact we note that the WG-invariant subring of this tensor product is

H∗
G(M) ⊗S(t∗)WG S(t∗)WG

or H∗
G(M), as in (2.17). We also observe that since T acts trivially on MT the group, WG ,

acts on MT itself and hence

H∗
T (MT ) = H∗(MT ) ⊗ S(t∗)

is a WG-module, the action of WG on the right being the tensor product of the induced

action of WG on the first factor and the intrinsic action of WG on S(t∗). Finally, we note

that if H∗
T (M) and H∗

T (MT ) are equipped with these WG actions, then the map (2.13) is a

WG-module morphism.

Let’s apply these remarks to the case at hand, M = G/K . As we just observed, if we make

the identifications

H∗
G(M) = S(t∗)WK

and

H∗
T (M) = S(t∗)WK ⊗S(t∗)WG S(t∗)

the action of WG on H∗
T (M) is the action defined by

w( f1 ⊗ f2) = f1 ⊗ w f2;

and, if we make the identifications

MT = WG/WK

and

H∗
T (MT ) = Maps (MT , S(t∗)) ,

the action of WG on H∗
T (MT ) is the action

f w(p) = w f (w−1 p),

and these two actions are intertwined by the map (2.14). To show that the map, K, defined

by (2.15) and (2.16) coincides with (2.14) we will first show that it too intertwines these two
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actions. In other words we will show that if

g = K( f1 ⊗ f2) and gw = K( f1 ⊗ w f2),

then for all points p = σ p0,

gw(p) = (wg)(p).

However,

gw(p) = (σ f1)(w f2) = w((w−1σ f1) f2) = wg(w−1 p) = (wg)(p).

Let us now prove that the map K coincides with the map (2.14). We first note that K is a

morphism of S(t∗)−modules. For f ∈ S(t∗),

K( f1 ⊗ f2 f ) = K( f1 ⊗ f2) f.

Thus, it suffices to verify that K agrees with the map (2.14) on elements of the form f1 ⊗ 1.

That is, in view of the identification (2.14), it suffices to show that K, restricted to S(t∗)WK ⊗
1, agrees with the map (2.14), restricted to H∗

T (M)WG . However, if f ∈ H∗
T (M)WG , then

i∗ f ∈ H∗
T (MT )WG , so it suffices to show that i∗ f and K( f ⊗ 1) coincide at p0, the identity

coset of M = G/K . This is equivalent to showing that in the diagram below

H∗
G(M) ——−→H∗

K (M) ——−→H∗
K (p0)

↓ ↓
S(k∗)WK ————————-−→ S(k∗)WK

the bottom arrow is the identity map. However, the bottom arrow is clearly the identity on

S0(k∗)K = C and the two maps on the top line are S(k∗)K −module morphisms. �

3. Almost complex structures and axial functions

3.1. Axial functions

A G-invariant almost complex structure on M = G/K is determined by an almost complex

structure on the tangent space Tp0
M ,

Jp0
: Tp0

M 	 g/k → g/k.

For an arbitrary point gp0 ∈ M , the almost complex structure on

Tgp0
M = (d Lg)p0

(Tp0
M)

is given by

Jgp0
((d Lg)p0

(X )) = (d Lg)p0
(Jp0

(X )),
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for all X ∈ g/k. This definition is independent on the representative g chosen if and only if

Jp0
is K−invariant. Therefore G-invariant almost complex structures on G/K are in one to

one correspondence to K−invariant almost complex structures on g/k.

If M = G/K has a G-invariant almost complex structure, then the isotropy representations

of T on Tp0
M is a complex representation, and therefore its weights are well-defined (not

just well-defined up to sign). Let

Tp0
M = g/k =

⊕
[β]

V[β]

be the root space decomposition of g/k. Then V[β] is a one-dimensional complex representa-

tion of T ; let β̃ ∈ {±β} be the weight of this complex representation:

exp t · X β̃ = ei β̃(t) X β̃ , for all t ∈ t.

Thus, the map

s : �G,K /±1 → �G,K , s([β]) = β̃, (3.1)

is a WK -equivariant right inverse of the projection �G,K → �G,K /{±1}. Let �0 ⊂ �G,K be

the image of s.

The existence of a map (3.1) is equivalent to the condition

wα �= −α , for all w ∈ WK , α ∈ �G,K = �G − �K , (3.2)

hence (3.2) is a necessary condition for the existence of a G-invariant almost complex

structure on M . We will see in the next section that this condition is also sufficient.

We can now define a labelling of the oriented edges, E� , of the GKM graph �, as follows.

Let [w] ∈ WG/WK be a vertex of the graph and let e = ([w], [wσβ ]) be an oriented edge

of the graph, with β ∈ �0. This edge corresponds to the subspace V[wβ] (see (2.10)) in the

decomposition

T[w] M =
⊕
β∈�0

V[wβ],

and the G-invariance of the almost complex structure implies that T acts on V[wβ] with weight

wβ. We define α : E� → t∗ by

α([w], [wσβ ]) = wβ, for all β ∈ �0, w ∈ WG . (3.3)

Theorem 3.1. The map α : E� → t∗ has the following properties:

(1) If e1 and e2 are two oriented edges with the same initial vertex, then α(e1) and α(e2) are
linearly independent;

(2) If e is an oriented edge and ē is the same edge, with the opposite orientation, then
α(ē) = −α(e);

(3) If e and e′ are oriented edge with the same initial vertex, and if e′′ = θe(e′), then α(e′′)
− α(e′) is a multiple of α(e).
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Proof: The first assertion is a consequence of the fact that the only multiples of a root α that

are roots are ±α.

If e is the oriented edge that joins [w] to [wσβ ] and that is labelled by wβ ∈ w�0, then

α(ē) = (wσβ )(β) = −wβ = −α(ē).

Finally, if e joins [w] to [wσβ ] and if e′ joins [w] to [wσγ ] (with β, γ ∈ �0), then e′′ joins

[wσβ ] to [wσβσγ ], and

α(e′′) − α(e) = wσβγ − wγ = w(σβγ − γ ) = −〈γ, β〉wβ = −〈γ, β〉α(e).

�

Equivalently, Theorem 3.1 says that α : E� → t∗ is an axial function compatible with the

connection θ , in the sense of [9].

3.2. Invariant almost complex structures

As we have seen in Section 3.1, (3.2) is a necessary condition for the existence of a

G-invariant almost complex structure on M = G/K ; in this section we show that it is also a

sufficient condition.

Theorem 3.2. If the condition

wα �= −α, for all w ∈ WK , α ∈ �G,K = �G − �K ,

is satisfied, then M admits a G-invariant almost complex structure.

Proof: Consider the complex representation of K on (g/k)C = gC/kC and let

(g/k)C =
⊕

j

Vj

be the decomposition into irreducible representations; (g/k)C is self dual, hence⊕
j

Vj = (g/k)C = (g/k)∗C =
⊕

j

V ∗
j =

⊕
j

Vj

Therefore Vj = Vl for some l. If α is a highest weight of Vj , then condition (3.2) implies

that −α is not a weight of Vj ; however, −α is a weight of Vj , hence Vj �= Vj . Therefore

(g/k)C =
⊕

j

(Vj ⊕ Vj ) = U ⊕ U

as complex K−representations, and this induces a K−invariant almost complex structure

J : g/k → g/k
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as follows: If x ∈ g/k, then there exists a unique y ∈ g/k such that x + iy ∈ U , and we define

J (x) = y. As we have shown before, this is equivalent to the existence of a G-invariant

almost complex structure on M . �

An alternative way of proving Theorem 3.2 is to observe that the condition (3.2) is equiv-

alent to the existence of a WK −equivariant section s : �G,K /±1 → �G,K . Let s be such a

section and let �0 ⊂ �G − �K be the image of s. Then (see (2.5))

g/k =
⊕
α∈�0

V[α]

and one can define a K−invariant almost complex structure J by requiring that for each

α ∈ �0, J acts on V[α] by

J

(
Xα

X−α

)
=

(
X−α

−Xα

)
. (3.4)

4. Morse theory on the GKM graph

4.1. Betti numbers

Henceforth we assume that M admits a G-invariant almost complex structure, determined

(see (3.4)) by the image �0 ⊂ �G,K of a section s : �G,K /±1 → �G,K . Let � be the GKM

graph of M and let

α : E� → t
∗

be the axial function (3.3). Then the edges whose initial vertex is the identity coset in WG/WK

are labelled by vectors in �0.

Let ξ ∈ t be a regular element of t, i.e.

β(ξ ) �= 0, for all β ∈ �G ⊂ t
∗.

For a vertex [w] ∈ WG/WK , let E[w] be the set of oriented edges issuing from [w]. We define

the index of [w] to be

ind[w] = #{e ∈ E[w] ; α(e)(ξ ) < 0},

and for each k ≥ 0, let the k−th Betti number of � be defined by

βk(�) = #{[w] ∈ WG/WK ; ind[w] = k}.

The index of a vertex obviously depends on ξ , but the Betti numbers do not.

Theorem 4.1([9]). The Betti numbers βk(�) are combinatorial invariants of � (i.e. are
independent of ξ ).
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In general these Betti numbers are not equal to the Betti numbers

β2k(M) = dim H 2k(M)

of M = G/K ; see Example 5.2. However, we show in the next section that there is a large

class of homogeneous spaces for which they are equal.

4.2. Morse functions

Let ξ ∈ t be a regular element.

Definition 4.1. A function f : WG/WK → R is called a Morse function compatible with ξ if

for every oriented edge e = ([w], [w′]) of the GKM graph, the condition f ([w′]) > f ([w])

is satisfied whenever α(e)(ξ ) > 0.

Morse function do not always exist; however, there is a simple necessary and sufficient

condition for the existence of a Morse function: Every regular element ξ ∈ t determines

an orientation oξ of the edges of �: an edge e ∈ E� points upward (with respect to ξ ) if

αe(ξ ) > 0, and points downward if αe(ξ ) < 0. The associated directed graph (�, oξ ) is the

graph with all upward-pointing edges.

Proposition 4.1. There exists a Morse function compatible with ξ if and only if the directed
graph (�, oξ ) has no cycles.

4.3. Invariant complex structures

In this section we show that the existence of Morse functions on the GKM graph, which is a

combinatorial condition, has geometric implications for the space M = G/K .

Theorem 4.2. The GKM graph (�, α) admits a Morse function compatible with a regular
ξ ∈ t if and only if the almost complex structure determined by α is a K−invariant complex
structure on M. Moreover, if this is the case, then the combinatorial Betti numbers agree
with the topological Betti numbers. That is,

bk(�) = b2k(M).

Proof: Let f : WG/WK → R be a Morse function compatible with ξ , and let [w] be a

vertex of the GKM graph where f attains its minimum. If we replace ξ by w−1(ξ ) and f by

(w−1)∗ f , then the minimum of this new function is p0. Thus, without loss of generality, we

may assume that the minimum vertex [w] is the identity coset in WG/WK . Then

�0 = {β ∈ �G,K ; β(ξ ) > 0}.

Let gC be the complexification of g and, for β ∈ �0, let gβ be the one-dimensional complex

root space. The root space gβ corresponds to invariant vector fields on M which are holomor-

phic with respect to the almost complex structure defined by �0. Since [gβ1
, gβ2

] ⊂ gβ1+β2

and �0 + �0 ⊂ �0, it follows that the invariant almost complex structure defined by �0 is

integrable, hence it is an invariant complex structure on M .
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Let

p = kC ⊕
( ⊕

β∈�0

gβ

)
.

Then p is a parabolic subalgebra of gC. If GC is the simply connected Lie group with Lie

algebra gC and P is the Lie subgroup of GC corresponding to p, then

M = G/K 	 GC/P,

hence M is a flag variety. Then M is a Hamiltonian T -space and the GKM graph of M is the

1-skeleton of the moment polytope. If μ : M → t∗ is the moment map, then μξ : M → R
is a Morse function on M whose critical points are the fixed points MT . The index of μξ

at a point p ∈ MT is twice the index of the vertex of � corresponding to p. Therefore the

combinatorial Betti numbers agree with the topological Betti numbers.

On the other hand, if the almost complex structure is integrable then p is a parabolic

subalgebra of gC, M = G/K ⊂ g∗ is a coadjoint orbit of G, and for a generic direction

ξ ∈ t ⊂ g, the map f : WG/WK → R given by

f ([w]) = 〈[w], ξ〉

(with WG/WK → G/K → g∗) is a Morse function on the GKM graph compatible with ξ .

�

5. Examples

5.1. Non-existence of almost complex structures

Let G be a compact Lie group such that gC is the simple Lie algebra of type B2. Let α1, α1 +
α2 be the short positive roots and let α2, α2 + 2α1 be the long positive roots. Let K be

the subgroup of G corresponding to the root system consisting of the short roots. Then

kC = D2 = A1 × A1 and K 	 SU (2) × SU (2). The quotient WG/WK has two classes: the

class of σα1
∈ WK and the class of σα2

∈ WG − WK .

The GKM graph � has two vertices, joined by two edges, and the edges are labelled by

[α2], [α2 + 2α1] ∈ �G,K /±1 (see Figure 1). If w = σα1+α2
σα1

∈ WK , then wα2 = −α2 and

α2 ∈ �G,K , hence one can’t define an axial function on �. In this example, G/K = S4, which

does not admit an almost complex structure [12, paragraph 41.20].

α

α

  

2 1

1 2[α  ] 2

α 21α  +α2 2α   +α 2

[α   +2α  ]1

[σ     ]α 1

[σ     ]

Fig. 1 The root system for SO (5) and the GKM graph for the homogeneous space SO(5)/(SU(2) × SU(2))
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α

α

 

α

2 1 1 1

1

1

1 2

2

1

α

α

1

2
[σ   ]

[σ   ]

3α  +2α2

α  +α 2α  +α 3α  +α2 2 2

3α  +α −3α  −2α 2

Fig. 2 The root system for G2 and the GKM graph for the homogeneous space G2/GU(3)

5.2. Non-existence of Morse functions

Let G be a compact Lie group such that gC is the simple Lie algebra of type G2. Let

α1, α1 + α2, and 2α1 + α2 be the short positive roots and let α2, 2α2 + 3α1, α2 + 3α1 be the

long positive roots. Let K be the subgroup of G corresponding to the root system consisting

of the short roots. Then kC = A2 and K 	 SU (3). The quotient WG/WK has two classes:

the class of σα1
∈ WK and the class of σα2

∈ WG − WK .

The GKM graph � has two vertices, joined by three edges, and the edges are la-

belled by [α2], [2α2 + 3α1], [α2 + 3α1] ∈ �G,K /±1. There are two WK −equivariant sec-

tions of the projection �G,K → �G,K /±1, corresponding to {α2, α2 + 3α1, −2α2 − 3α1}
and {−α2, −α2 − 3α1, 2α2 + 3α1}. If

�0 = {α2, α2 + 3α1, −2α2 − 3α1},

then the axial function is shown in Figure 2 and there is no Morse function on �: the

corresponding almost complex structure is not integrable. In this example, G/K = S6, which

admits an almost complex structure, but no invariant complex structure.

5.3. The existence of several almost complex structures

Let G = SU (3) and K = T . Then the homogeneous space G/K is the manifold of complete

flags in C3. The root system of G is A2, with positive roots α1, α2, and α1 + α2 of equal

length. The Weyl group of G is WG = S3, the group of permutations of {1, 2, 3}, and WK = 1,

hence WG/WK = WG = S3.

The GKM graph is the bi-partite graph K3,3: it has 6 vertices and each vertex has 3 edges

incident to it, labelled by [α1], [α2], and [α1 + α2]. There are 23 possible WK −invariant

sections, hence eight G-invariant almost complex structures on G/K . If

�0 = {α1, α2, α1 + α2},

then the corresponding almost complex structure is integrable and there is a Morse function

on � compatible with ξ ∈ t such that both α1(ξ ), and α2(ξ ) are positive. A Morse function is

given by f (w) = �(w), where �(w) is the length of w. In this case, �(w) is the same as the

number of inversions in w (see [10], p. 13). For example, the transposition (321) has length

three and has three inversions, corresponding to positions (1, 2), (1, 3), and (2, 3).
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(123)

(321)

(132)

(312)

(213)

(231)

(321)

(312)

(123)

(213)

(231)

(132)

αα

α  +α

α  +α 

αα

α

α

α  +α

αα

α +α α  +α −α

−α −α −α

1 2

1 2

1 2 1

2 1

1 2

2 1 2

1 2

2 1

1 2
1

α α1 2

2

(a) (b)

Fig. 3 GKM graphs corresponding to integrable and non-integrable almost complex structures on SU(3)/T

However, if

�0 = {α1, α2, −α1 − α2},

then the corresponding almost complex structure is not integrable and there is no Morse

function on (�, α) : for every vertex w of �, there exist three edges e1, e2, and e3, going out

of w, such that

αe1
+ αe2

+ αe3
= 0,

hence there is no vertex of � on which a Morse function compatible with some ξ ∈ t can

achieve its minimum. These two examples are shown in Figure 3.

In general, if G is a compact, connected, semisimple Lie group and T is a maximal torus,

then the number of G-invariant almost complex structures on G/T is 2r , where r is the

number of positive roots. The integrable almost complex structures correspond bijectively to

systems of positive roots, hence there are #WG invariant complex structures.
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