
J Algebr Comb (2006) 23: 225–230

DOI 10.1007/s10801-006-7394-6

A combinatorial proof of Klyachko’s Theorem
on Lie representations
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Abstract Let L be a free Lie algebra of finite rank r over an arbitrary field K of characteristic

0, and let Ln denote the homogeneous component of degree n in L . Viewed as a module

for the general linear group GL(r, K ), Ln is known to be semisimple with the isomorphism

types of the simple summands indexed by partitions of n with at most r parts. Klyachko

proved in 1974 that, for n > 6, almost all such partitions are needed here, the exceptions

being the partition with just one part, and the partition in which all parts are equal to 1. This

paper presents a combinatorial proof based on the Littlewood-Richardson rule. This proof

also yields that if the composition multiplicity of a simple summand in Ln is greater than 1,

then it is at least n
6

− 1.
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Let V be a finite dimensional vector space over an arbitrary field of characteristic 0,

and let T be the the tensor algebra of V , so T = ⊕
n≥0 Tn with Tn = V ⊗n . Recall that the

tensor powers Tn are semisimple GL(V )-modules, and the isomorphism types of the simple

submodules of Tn correspond to the partitions of n into not more than dim V parts. The tensor

product of any two such irreducibles is then also a direct sum of such irreducibles, and the

relevant multiplicities are given by the Littlewood-Richardson rule.

Consider T a Lie algebra with respect to the Lie product [x, y] = x ⊗ y − y ⊗ x , and

denote by L the Lie subalgebra generated by V (= T1). Then L is freely generated by

any basis of V , L = ⊕
n≥1 Ln with Ln = L ∩ Tn , and Ln is a submodule of Tn . In 1942,

Thrall [12] asked for the composition multiplicities of these modules, and determined them

for n ≤ 10 (for n = 10, a correction was given in [1]). By 1949, Wever [14] gave a formula

for these multiplicities in terms of characters of symmetric groups; nowadays, the highly
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illuminating Kraśkiewicz-Weyman Theorem [5] (see also Chapter 8 in [8]) may be invoked

for an answer in terms of counting tableaux of certain kinds. Nevertheless, the work started

by Thrall still continues today, with the scope of the problem having increased greatly; for

further references and a recent overview, see [9].

A 1974 paper [4] of Alexander Klyachko provided a large impetus, and included the

following remarkable result.

Theorem 1. [Klyachko [4]] Let n ≥ 3 and let ν be a partition of n. There is a simple
submodule in Ln with isomorphism type corresponding to ν if and only if ν has no more than
dim V parts and ν is not one of (22), (23), (n), (1n).

The notation used here is best explained by an example: (2, 12) denotes the 3-part partition

2 + 1 + 1 of 4. If ν = (2, 12), we shall write the corresponding module simply as [ν] or [2, 12].

The reader is expected to interpret everything that follows in the light of the convention that

the GL(V )-module corresponding to a partition with more than dim V parts is 0, so then

there is no such simple module.

The multiplicity formulas mentioned above are very useful when one wants to deal with

one multiplicity at a time, but do not seem to help in proving global results like Klyachko’s

Theorem (or some others mentioned at the end of this note). As Schocker [10, p. 286] notes,

“it seems to be rather difficult to give a combinatorial proof [. . .] by some analysis [. . .] and

the Kraśkiewicz-Weyman Theorem only.” There have been other proofs, perhaps the latest by

Schocker [9, 10], built on the important developments which started with [4]. The aim of this

note is to present a proof which does not do so, but relies only on the Littlewood-Richardson

rule and on simple properties of free Lie algebras, and which has some further consequences.

It is based on the following observation.

Lemma 1. Let n = k + l with k > l > k/2. The subspace [Lk, Ll ] of Ln spanned by the
[u, w] with u ∈ Lk, w ∈ Ll is a submodule isomorphic to the tensor product Lk ⊗ Ll .

Proof: We shall argue in terms of a Hall basis H of L , but first we need to set the relevant

conventions, for standard sources vary in their choices. We follow Marshall Hall’s original

paper [2]. There H consists of homogeneous elements of L (so H ∩ Lm is always a basis of

Lm) and is fully ordered by a relation ≤ which extends the partial order given by degrees.

Every element of H of degree greater than 1 can be written uniquely in the form [u, w] where

u, w ∈ H and u > w. Finally, if u, w ∈ H and u > w, then [u, w] ∈ H if and only if either

the degree of u is 1 or u = [u′, u′′] with u′, u′′ ∈ H and u′ > u′′ ≤ w.

Let us turn to the proof of the lemma itself. Since GL(V ) acts on L by Lie algebra

automorphisms, the linear extension Lk ⊗ Ll → Ln of u ⊗ w 
→ [u, w] is in fact a module

homomorphism. The set { u ⊗ w | u ∈ H ∩ Lk, w ∈ H ∩ Ll } is a basis for Lk ⊗ Ll ; call it

B, say. We claim that the image [u, w] of an element u ⊗ w of B is always in H. The first part

of this claim is that u > w: this holds because k > l. The second part is that if u = [u′, u′′]
with u′, u′′ ∈ H, then u′′ ≤ w. In fact, u′′ < w, because u ∈ H implies u′ > u′′ and so the

degree of u′′ is at most k/2 and hence strictly smaller than the degree l of w. It follows

that our module homomorphism maps the basis B of its domain into a basis, H ∩ Ln , of its

codomain. Moreover, its restriction to B is one-to-one, because the expression of an element

of H in the form [u, w] with u, w ∈ H and u > w is unique. Consequently, the image of this

homomorphism is isomorphic to its domain. �
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The Littlewood-Richardson rule makes it possible to exploit this in an inductive argument.

To start that off, we need to recall some of the information tabulated by Thrall [12] for the

Ln with small n:

L1
∼= [1], L2

∼= [12], L3
∼= [2, 1], L4

∼= [3, 1] ⊕ [2, 12],

L5
∼= [4, 1] ⊕ [3, 2] ⊕ [3, 12] ⊕ [22, 1] ⊕ [2, 13],

L6
∼= [5, 1] ⊕ [4, 2] ⊕ [4, 12]⊕2 ⊕ [32] ⊕ [3, 2, 1]⊕3 ⊕ [3, 12] ⊕ [22, 12]⊕2 ⊕ [2, 14].

(1)

Next we have to deal with the extreme cases. These will need only very special cases of

the Littlewood-Richardson rule. One, that the simple modules which occur in [κ] ⊗ [λ] all

correspond to partitions which are extensions of κ (and of λ, of course). Two, that if κ is a

partition of k, then [κ] ⊗ [1] is the direct sum of one copy each of the [ν] as ν ranges over

the partitions of k + 1 which are extensions of κ .

Our notation for Lie products follows the left-normed convention: [u, v, w] stands for

[[u, v], w], etc. Since Ln is spanned by the [u, v] with u ∈ Ln−1, v ∈ V , the linear extension

of u ⊗ v 
→ [u, v] is a GL(V )-homomorphism of Ln−1 ⊗ V onto Ln . We shall find this

useful in proving the next result.

Lemma 2. For n ≥ 3, neither of the simple modules [n] and [1n] can occur in Ln, and neither
[n − 1, 1] nor [2, 1n−2] can occur with multiplicity greater than 1.

Proof: The list (1) provides the inital step for an induction on n, so we proceed to the

inductive step. The partition (n + 1) is not an extension of any partition of n except (n); by

the inductive hypothesis, [n] does not occur in Ln , so [n + 1] cannot occur in Ln ⊗ V ; as

Ln+1 is a homomorphic image of this tensor product, [n + 1] cannot occur in Ln+1 either.

The partition (n, 1) is not an extension of any partition of n other than (n) and (n − 1, 1);

by the inductive hypothesis, [n] does not occur in Ln and [n − 1, 1] occurs at most once, so

[n, 1] cannot occur in Ln ⊗ V with multiplicity greater than 1; as Ln+1 is a homomorphic

image of this tensor product, the multiplicity of [n, 1] in Ln+1 cannot be larger either. The

other cases are similar. �

Let ◦ and ∧ denote symmetric and exterior products, respectively, and recall that [n] is the

symmetric power V ◦n while [1n] is the exterior power V ∧n .

Lemma 3. For n ≥ 3, the simple module [n − 1, 1] occurs in Ln provided dim V ≥ 2, and
[2, 1n−2] also occurs if dim V ≥ n − 1.

Proof: There is a module homomorphism Ln → V ⊗ V ◦(n−1) such that

[v1, v2, v3, . . . , vn] 
→ v1 ⊗ (v2 ◦ v3 ◦ · · · ◦ vn) − v2 ⊗ (v1 ◦ v3 ◦ · · · ◦ vn)

(see [3, Theorem 3.1]), and this is clearly not zero when dim V ≥ 2. Since

V ⊗ V ◦(n−1) ∼= [1] ⊗ [n − 1] ∼= [n] ⊕ [n − 1, 1]

and we have seen that [n] does not occur in Ln , it follows that [n − 1, 1] must occur in Ln .
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It is also well known (see Levin [6] or Vaughan-Lee [13]) that

v1 ⊗ (v2 ∧ · · · ∧ vn) 
→
∑

σ

sgn(σ )[v1, vσ (2), . . . , vσ (n)],

where σ runs over all permutations of {2, . . . , n}, extends to a nonzero homomorphism

V ⊗ V ∧(n−1) → Ln whenever dim V ≥ n − 1. Since

V ⊗ V ∧(n−1) ∼= [1] ⊗ [1n−1] ∼= [1n] ⊕ [2, 1n−2]

and we have seen that [1n] does not occur in Ln , we conclude that [2, 1n−2] must occur in

it. �

Our last lemma concerns only GL(V )-modules, not Lie algebras, and may be of some

interest in itself. It does need the full generality of the Littlewood-Richardson rule, though

not its full force: instead of counting precise multiplicities, it is sufficient to know that

the relevant multiplicities are positive. For a complete statement and the terminology not

explained here, see Macdonald’s book [7, pp. 4–5, 68].

When we call a diagram or a skew-diagram a rectangle, we use the word in its everyday

sense. A partition will be called rectangular if its diagram is a rectangle, that is, if it is of the

form (r s). Let Un denote the direct sum of the [ν] as ν ranges through the non-rectangular
partitions of n. We shall use that if Klyachko’s Theorem holds for a particular value of n,

then for this value Ln has a submodule isomorphic to Un .

Lemma 4. Let n = k + l where k, l ≥ 3. If ν is a partition of n other than (n), (n − 1, 1),
(2, 1n−2), (1n), then [ν] does occur in Uk ⊗ Ul.

Proof: First we show that at least one of k and l has a partition κ such that (∗) κ is not

rectangular, κ ⊂ ν, and the skew diagram ν − κ is not a rectangle. If neither k nor l has a

rectangular partition contained in ν, then any partition κ of k contained in ν will do: indeed,

if ν − κ were an r × s rectangle, then (r s) would be a rectangular partition of l contained

in ν. Otherwise one of k and l, say k, has a rectangular partition, say (pq ), contained in

ν. If q = 1, take κ = (p − 1, 1): the conditions on ν garantee that κ ⊂ ν, and it is also

easy to see that ν − κ is not a rectangle. Indeed, ν − κ contains the 1, p box and at least

one of the 2, 2 or 3, 1 boxes, but not the 2, 1 box, so ν − κ is not convex and therefore it

cannot be a rectangle. Similarly, if p = 1, then we can take κ = (2, 1q−2). Now suppose that

p, q ≥ 2. Then ν contains either the 1, p + 1 box or the q + 1, 1 box. In the former case

κ = (p + 1, pq−2, p − 1) and in the latter case κ = (pq−1, p − 1, 1) will do.

Since the lemma is symmetric in k and l, we may assume that κ is a partition of k satisfying

(∗). We claim that then there exists a non-rectangular partition λ of l = n − k such that [ν]

occurs in [κ] ⊗ [λ]. To see this, consider the tableau T obtained by putting consecutive

numbers 1, 2, . . . down each column of the skew diagram ν − κ . It is easily seen that in

this way we get a tableau for which w(T) is a lattice permutation. Let the weight of T be

λ. Then the Littlewood-Richardson rule implies that [ν] occurs in [κ] ⊗ [λ]. If λ is not

rectangular, we are done, so it remains to deal with the case where λ is rectangular. This

can only happen if ν − κ consists of columns of equal length, and there must be at least

two columns since ν − κ is not a rectangle. Moreover, for the same reason we can find at

least one column whose last box is strictly lower than the last box of the rightmost column.

Take the last of those columns, and modify T and λ by adding 1 to the entry in its last box.
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This ensures that λ is not rectangular, while the word w(T) is still a lattice permutation.

Again, the Littlewood-Richardson rule implies that [ν] occurs in [κ] ⊗ [λ], and hence in

Uk ⊗ Ul . �

Proof of Klyachko’s Theorem: In view of the list (1), the theorem is valid for n ≤ 6. For

a proof by induction on n, we may therefore assume that n ≥ 7. Then one can write n as a

sum n = k + l with k > l > k/2 and k, l ≥ 3. By Lemma 1, Ln has a submodule isomorphic

to the tensor product Lk ⊗ Ll ; by the inductive hypothesis, the theorem holds for Lk and Ll ,

so Lk ⊗ Ll contains Uk ⊗ Ul ; therefore, by Lemma 4, every [ν] occurs in Ln except perhaps

[n], [n − 1, 1], [2, 1n−2] and [1n]. Finally, [n − 1, 1] and [2, 1n−2] do occur by Lemma 3,

while [n] and [1n] do not, by Lemma 2. This completes the inductive step. �

Remark. We have proved more than Klyachko’s Theorem, namely (see Lemmas 2 and 3)

that the multiplicities of [n − 1, 1] and [2, 1n−2] in Ln are 0 or 1, depending only on dim V .

This was proved by Zhuravlev [15, § 4] and by Schocker [9, 10]. In [9, 10], it was also shown

that no other multiplicity is 1 when n > 8. Instead of pursuing that here, we note that it is

easy to modify the proof of Lemma 1 to show that in Ln∑
n/2<k<2n/3

[Lk, Ln−k] ∼=
⊕

n/2<k<2n/3

(Lk ⊗ Ln−k).

(Indeed, if H is a Hall basis of L , then the right hand side has as basis the disjoint union⋃
n/2<k<2n/3

{ u ⊗ w | u ∈ H ∩ Lk, w ∈ H ∩ Ln−k }

and this basis is mapped by u ⊗ w 
→ [u, w] one-to-one into H, with the image spanning the

left hand side.) These sums have at least n
6

− 1 summands. If ν is a partition of n other than

(n), (n − 1, 1), (2, 1n−2), (1n), then [ν] does occur in each of these summands. It follows that

the multiplicity of such a [ν] in Ln is at least n
6

− 1 (provided of course that ν has no more

than dim V parts). In particular, if a multiplicity in Ln is larger than 1, then it is at least n
6

− 1.

Added in proof (March 8, 2006). Since this paper was submitted, Marianne Johnson at

the University of Manchester has been able to deduce Klyachko’s Theorem directly from

the Kraśkiewicz-Weyman Theorem (‘Standard tableaux and Klyachko’s Theorem on Lie

representations’, J. Combin. Theory Ser. A, to appear).
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