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Abstract The aim of this paper is to define and study pointed and multi-pointed partition

posets of type A and B (in the classification of Coxeter groups). We compute their character-

istic polynomials, incidence Hopf algebras and homology groups. As a corollary, we show

that some operads are Koszul over Z.
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Introduction

For every finite Weyl group W , there exists a generalized partition poset (cf. [2]) defined

through the hyperplane arrangement of type W . In the case An−1, this poset is the usual poset

of partitions of {1, . . . , n}. B. Fresse proved in [6] that this poset also arises from the theory

of operads. A pointed and a multi-pointed variation of this poset were defined by the second

author in [14], once again in the context of Koszul duality of operads. In this article, we

study the main properties of these two types of posets. One motivation for this article was

the idea that there should also exist a pointed partition poset and a multi-pointed partition

poset for other Weyl groups. Here we propose a definition for the pointed partition posets of

type B and check that it satisfies most of the properties which are expected in general and

hold in type A. This definition was guessed by similarity, but we hope that there is a general

definition of geometric nature, to be found.

Let us summarize briefly what properties the generalized pointed partition poset associated

to a Weyl group should have. Let h be the Coxeter number and n be the rank of the Weyl
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group W . Then its characteristic polynomial should be (x − h)n ; the number of maximal

elements should be h, with a transitive action of the Weyl group. Also the characteristic

polynomial of any maximal interval should be (x − 1)(x − h)n−1 and the homology must

be concentrated in maximal dimension. We prove that all these properties hold in type A
and B.

One can remark that the expected characteristic polynomial is the same as the charac-

teristic polynomial of the hyperplane arrangement called the Shi arrangement [1, 7]. One

difference is that there is no action of the Weyl group on the Shi arrangement. Going to the

limit where parallel hyperplanes come together gives the so-called double Coxeter arrange-

ment [12], which is no longer a hyperplane arrangement in the usual sense. Still the double

Coxeter arrangement is free, and all its degrees are the Coxeter number. Maybe the pointed

partition poset should be thought of as the missing intersection poset for the double Coxeter

arrangement.

It may be worth noting that there is a family of posets which are probably related to the

pointed partition posets of type A, in a rather non-evident way. It is made of some posets on

forests of labeled rooted trees, introduced by J. Pitman in [8], which seem to share the same

characteristic polynomials. Maybe there is a homotopy equivalence between these posets of

forests and the posets of pointed partitions.

Let us now state what are the expected properties of the multi-pointed partition posets

associated to a Weyl group. Let e1, . . . , en be the exponents of W . Then the characteristic

polynomial should be
∏n

i=1(x − (h + ei )) and the homology of the poset must be concentrated

in maximal dimension. This is true in type A. We were unable to guess what should be the

poset of type B, even if we have some evidence that it should exist.

The multi-pointed partition poset should be related to the so-called Catalan arrangement

[1]. The characteristic polynomials coincide, but the posets are different in general. As the

Weyl group acts on the Catalan arrangement, one may wonder if the action is the same on

the top homology of both posets, which should have the same dimension. If this is true, this

may come from a homotopy equivalence between the (realizations of the) two posets.

Just as in the Shi case, one can take the limit of the Catalan arrangement where parallel

hyperplanes come together. This gives the triple Coxeter arrangement [13]. This triple Coxeter

arrangement is free, and its degrees are the roots of the characteristic polynomial of the Catalan

arrangement.

In type A, just as for the usual partition lattices, the pointed and multi-pointed partition

posets give rise to interesting actions of the symmetric groups Sn on their homology groups.

We use the relations with the theory of Koszul operads (based on representations of Sn),

described by the second author in [14], to compute this action on the homology groups of

the pointed and multi-pointed posets. On the other way, the fact that the various posets are

Cohen-Macaulay over Z implies that some operads are Koszul over Z, which is an important

result in the study of the deformations of algebraic structures.

Since the posets studied here have nice properties for their intervals and products, we can

associate them an incidence Hopf algebra.

Conventions

All posets are implicitly finite. A poset � is said to be bounded if it admits one minimal and

one maximal element (denoted by 0̂ and 1̂). It is pure if for any x � y, all maximal chains

between x and y have the same length. If a poset is both bounded and pure, it is called a

graded poset. A pure poset with a minimal element is called ranked.
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For a graded or ranked poset � with rank function rk, the characteristic polynomial is

defined by the following formula:

χ (x) :=
∑
a∈�

μ(a)xn−rk(a), (1)

where μ denotes the Möbius function of the poset � and n is the rank of the maximal

elements.

Let K be the ring Z or any field. Denote by [n] the set {1, . . . , n}.

1. Pointed partition posets

In this section, we give the definitions of the pointed partition posets and some of their basic

properties.

1.1. Definitions

1.1.1. Type A

First, we recall the definition, introduced in [14], of the pointed partition poset of type An−1.

Definition 1 (Pointed partition). A pointed partition of [n] is a partition of [n] together with

the choice of one element inside each block, called the pointed element of this block.

The order relation on the set of pointed partitions of [n] is defined as follows. The under-

lying partitions must be related by the refinement order of partitions and the set of pointed

elements of the finer partition π must contain the set of pointed elements of the other one

ν. In this case, one gets π � ν. For instance, one has {1}{3}{24} � {13}{24}. We denote this

poset by �A
n . The example of �A

3 is given in Figure 1.

From the very definition of pointed partitions as non-empty sets of pointed sets, one can

see that the exponential generating function for the graded cardinalities of the posets of

pointed partitions of type A is given by exueu −1
x . Indeed the exponential generating function

Fig. 1 The poset �A
3
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for the pointed sets is ueu and the exponential generating function for the non-empty sets is

eu − 1. The additional variable x takes the number of parts into account.

The symmetric group on [n] acts by automorphisms on the poset �A
n . The set of maximal

elements has cardinality n and the action of the symmetric group is the natural transitive

permutation action. Hence all maximal intervals are isomorphic as posets. We denote this

poset by �A
n, 1.

The main property of this family of posets is the following one.

Proposition 1.1. Each interval of �A
n is isomorphic to a product of posets �A

λ1, 1 × · · · ×
�A

λk , 1, where λ1 + · · · + λk � n.

Proof: First, any interval can be decomposed into a product according to the parts of the

coarser partition. One can therefore assume that the maximal element of the interval is a

single block. One can then replace, in each element of the interval, each block of the minimal

element by a single element. This provides a isomorphism with some interval �A
λ, 1. �

Hence the Möbius number of a pointed partition is the product of the Möbius numbers of

its parts. This property will allow us to work by induction.

In general, the pointed partition posets are not lattices. They are bounded below, pure

posets and the rank of a pointed partition π of [n] is equal to n minus the number of blocks

of π .

1.1.2. Type B

Let us define the pointed partition poset of type Bn .

Let [−n] be the set {−1, . . . , −n}. Recall first the description of the usual partitions of

type Bn . They are the partitions of the set [n] � [−n] such that there is at most one block

containing some opposite indices and the other blocks come in opposite pairs. The block

with opposite elements is called the zero block.

Definition 2 (Pointed partition of type B). A pointed partition of type Bn is a partition of

type Bn together with the choice of an element of the zero block and the choice for each

pair of opposite blocks of a pair of opposite elements. The chosen elements are called

pointed.

For example, {3, −2}{−1, 1}{2, −3} is a pointed partition of type B3.

The order relation is as follows. The underlying partitions must be related by the refinement

order of partitions and the set of pointed elements of the finer partition must contain the

set of pointed elements of the other one. For instance, one has {3}{−2}{−1, 1}{2}{−3} �
{3, −2}{−1, 1}{2, −3}. We denote these posets by �B

n . The example of �B
2 is given in

Figure 2.

The hyperoctahedral group of signed permutations of [n] acts by automorphisms on the

poset �B
n . The set of maximal elements has cardinality 2n. Once again, the transitive action

of the hyperoctahedral groups on maximal intervals shows that they are all isomorphic as

posets. We denote this poset by �B ′
n .

In general, the pointed partition posets of type B are not lattices. They are bounded below,

pure posets and the rank of a pointed partition π of type B is equal to n minus the number

of pairs of opposite blocks of π .
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Fig. 2 The poset �B
2

Remark 1.2. We consider also a variation of pointed partitions of type B such that no element

is pointed in the zero block. Such partitions are called pointed partitions of type β. The partial

order between pointed partitions of type β is defined like the order in �B
n . We denote these

graded posets by �
β
n .

1.2. Characteristic polynomials

1.2.1. Characteristic polynomials in type A

The aim of this section is to compute the characteristic polynomials of the posets of pointed

partitions of type A. The proof uses the subposets of pointed partitions for which a fixed

subset of [n] is contained in the set of pointed elements. Up to isomorphism, these subposets

only depend on the cardinality of the fixed subset of pointed indices. For 1 ≤ i ≤ n, let �A
n,i

be the poset where the indices in [i] are pointed. This poset has rank n − i . Recall that the

pointed partition poset of type An−1 is denoted by �A
n and has rank n − 1.

Theorem 1.3. For 1 ≤ i ≤ n, the characteristic polynomial of �A
n,i is

χ A
n,i (x) = (x − i)(x − n)n−1−i , (2)

and its constant term C A
n,i is (−1)n−i i nn−1−i . The characteristic polynomial of �A

n is

χ A
n (x) = (x − n)n−1. (3)

Proof: The proof proceeds by induction on n. The statement of the Theorem is clearly true

for n = 1.

From now on fix n ≥ 2 and assume that the Theorem is proved for smaller n. Then the

proof is by decreasing induction on i from n to 1. In the case i = n, the poset �A
n,n has just

one element, so its characteristic polynomial is 1, which is the expected value.

So assume now that i is smaller than n. Suppose first that i is at least 2. Using the

decomposition of a partition into its parts, which gives a product for the Möbius number, the
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constant term C A
n,i is given by

∑
n1,...,ni

i∏
j=1

C A
n j ,1

(n j − 1)!
(n − i)!, (4)

where the sum runs over integers n j ≥ 1 with sum n.

Since n j < n for all j , we know by induction that C A
n j ,1

= (−1)n j −1n
n j −2

j and Lemma 1.5

then allows to compute the resulting sum:

C A
n,i = (−1)n−i i nn−1−i , (5)

as expected, when i is at least 2.

Let us now compute χ A
n,i . By Möbius inversion on subsets of [n] strictly containing [i], it

is given by

i nn−1−i (−1)n−i +
∑

[i]�S⊆[n]

(−1)|S|+i+1χ A
n,|S|x

|S|−i . (6)

By induction on i , one gets

inn−1−i (−1)n−i +
n∑

j=i+1

(−1) j+i+1

(
n − i

j − i

)
(x − j)(x − n)n−1− j x j−i . (7)

Then using Lemma 1.4, one finds the expected formula for χ A
n,i .

Let us consider now the case i = 1.

Here we can not use induction to compute C A
n,1, as Formula (4) becomes trivial when

i = 1. Instead we use the fact that the poset �A
n,1 is bounded, hence χ A

n,1 must vanish at x = 1

and this property characterizes the constant term if the others coefficients are known. So let

us guess what the constant term is and check later that the result vanishes at x = 1.

Let us therefore compute χ A
n,1 as before, assuming that C A

n,1 = (−1)n−1nn−2. By Möbius

inversion, it is given by

nn−2(−1)n−1 +
∑

[1]�S⊆[n]

(−1)|S|χ A
n,|S|x

|S|−1. (8)

By induction on i , one gets

nn−2(−1)n−1 +
n∑

j=2

(−1) j

(
n − 1

j − 1

)
(x − j)(x − n)n−1− j x j−1. (9)

Then using Lemma 1.4 again, one finds the expected formula for χ A
n,1. This formula

vanishes at x = 1, so the guess for the constant term was correct.

Let us consider now the case of �A
n . In this case, we just have to use our knowledge of the

other characteristic polynomials. Let us now compute χ A
n as before. By Möbius inversion, it
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is given by ∑
∅�S⊆[n]

(−1)|S|+1χ A
n,|S|x

|S|−1. (10)

By the previous results, one gets

n∑
j=1

(−1) j+1

(
n

j

)
(x − j)(x − n)n−1− j x j−1. (11)

Then using Lemma 1.4 one last time, one finds the expected formula for χ A
n .

This concludes the inductive proof of the Theorem. �

Lemma 1.4. For 0 ≤ i ≤ n, one has the following equality:

i nn−1−i (−1)n−i +
n−i∑
j=1

(−1) j+1

(
n − i

j

)
(x − ( j + i))(x − n)n−1−i− j x j

= (x − i)(x − n)n−1−i . (12)

Proof: Introduce a new variable y to get a homogeneous identity of degree n − i . Then

replace x by 1 and y by (1 − y)/n. The resulting identity is easy to check. �

Lemma 1.5. For 1 ≤ i ≤ n, one has the following equation:

∑
n1,...,ni

i∏
j=1

n
n j −1

j

n j !
= i

nn−1−i

(n − i)!
, (13)

where the sum runs over integers n j ≥ 1 with sum n.

Proof: Classical, see for example Proposition 2.5 in [15]. �

1.2.2. Characteristic polynomials in type B

Let us compute the characteristic polynomials of the posets of pointed partitions in type

B. The proof uses the subposets where i and −i are pointed for i in a fixed subset of [n].

Up to isomorphism, these subposets only depend on the cardinality of the fixed subset of

pointed pairs of indices. Let �B
n,i be the poset where the indices in [i] and [−i] are pointed.

By convention, let �B
n,0 denote the pointed partition poset �B

n . Recall that �B ′
n denotes a

maximal interval in �B
n .

Theorem 1.6. For 0 ≤ i ≤ n, the characteristic polynomial of �B
n,i is

χ B
n,i (x) = (x − 2n)n−i , (14)
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with constant term C B
n,i = (−2n)n−i . The characteristic polynomial of �B ′

n is

χ B ′
n (x) = (x − 1)(x − 2n)n−1, (15)

and its constant term is C B ′
n = (−1)n(2n)n−1.

Proof: The proof proceeds by induction on n. The statement of the Theorem is clearly true

for n = 1.

From now on fix n ≥ 2 and assume that the Theorem is proved for smaller n. Then the

proof is by decreasing induction on i from n to 0. In the case i = n, the poset �B
n,n has just

one element, so its characteristic polynomial is 1, which is the expected value.

So assume now that i is smaller than n. Suppose first that i is at least 1. Using the

decomposition of a partition of type B into its parts, which gives a product formula for the

Möbius number, the constant term C B
n,i is given by

∑
n1,...,ni ,m

i∏
j=1

C A
n j ,1

(n j − 1)!

C B ′
m

m!
2n−m−i 2m (n − i)!, (16)

where the sum runs over integers n j ≥ 1 and an integer m ≥ 0 with sum n.

Using the results for type A, induction on n to know C B ′
m and Lemma 1.8 to compute the

resulting sum, one gets that

C B
n,i = (−2n)n−i , (17)

as expected.

Let us now compute χ B
n,i . By Möbius inversion, one has the following equation:

χ B
n,i = (−2n)n−i +

∑
[i]�S⊆[n]

(−1)|S|+i+1χ B
n,|S|x

|S|−i . (18)

One gets by induction on i that

χ B
n,i = (−2n)n−i +

n∑
j=i+1

(−1) j+i+1

(
n − i

j − i

)
(x − 2n)n− j x j−i , (19)

from which the expected formula follows through the binomial formula.

There remains to compute χ B
n,0. For this, we need first to compute the characteristic

polynomial χ B ′
n of a maximal interval �B ′

n . Let us choose the maximal interval of elements

where n is pointed. Elements of this interval are of two distinct shapes: either n is in the zero

block or both n and −n are pointed. Let us split the computation of χ B ′
n accordingly, as the

sum of an unknown constant term, of xχ B
n,1 (already known) for the terms when n and −n

are pointed and of the remaining terms when n is in the zero block and the complement to

the zero block is not empty.

Let us compute this third part. There is a bijection between the set of such partitions and

the set of triples (S, π, ε) where S is a non-empty subset of [n] \ {n}, π is a pointed partition

of type A on the set S and ε is the choice of a sign for each element of S up to complete

change of sign of each block of π . The set S is the positive half of the complement of the
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zero block and π is the rest of the partition without its signs. Hence, one gets∑
∅�S⊆[n−1]

∑
π∈�A

|S|

2rk(π )μA
|S|(π )C B ′

n−|S|x
|S|−rk(π ), (20)

where rk(π ) is the rank in the poset �A
|S|. This can be rewritten using induction on n as

n−1∑
j=1

(
n − 1

j

)
(−1)n− j (2n − 2 j)n− j−12 j−1xχ A

j (x/2). (21)

Then one can use the known results for type A to obtain

n−1∑
j=1

(
n − 1

j

)
(−1)n− j (2n − 2 j)n− j−1x(x − 2 j) j−1. (22)

Using Lemma 1.7, this is seen to be

−(x − 2n)n−1 + (−2n)n−1. (23)

As χ B ′
n has to vanish at x = 1 because �B ′

n is bounded, one finds that its constant term is

(−1)n(2n)n−1. Hence χ B ′
n is (x − 1)(x − 2n)n−1 as expected.

Now one can complete the proof by computing χ B
n,0 by Möbius inversion, just as for χ B

n,i

for i > 0, because one now knows that C B ′
n = (−1)n(2n)n−1. �

Lemma 1.7. For all n ≥ 1, one has

n−1∑
j=0

(
n − 1

j

)
(y + u j)n− j−1(x − u j) j−1 = x−1(x + y)n−1. (24)

Proof: First set m = n − 1 and rewrite it as

m∑
j=0

(
m

j

)
(y + ju)m− j (x − ju) j−1 = x−1(x + y)m . (25)

Replace y by y + m and u by −1. The identity becomes

m∑
j=0

(
m

j

)
(y + m − j)m− j (x + j) j−1 = x−1(x + y + m)m, (26)

which is one of many forms of the classical Abel binomial identity, see [9] for example. �

Lemma 1.8. For 1 ≤ i ≤ n, one has the following equation:

∑
n1,...,ni ,m

i∏
j=1

n
n j −1

j

n j !

mm

m!
= nn−i

(n − i)!
, (27)

where the sum runs over integers n j ≥ 1 and an integer m ≥ 0 with sum n.
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Proof: Using the notations of Zvonkine [15], let

Y =
∑
n≥1

nn−1

n!
un and Z =

∑
n≥1

nn

n!
un . (28)

Then it is known ([15, Proposition 2.5]) that

Y i = i
∑
n≥i

nn−i−1

(n − i)!
un . (29)

Applying the Euler operator D = u∂u , one gets

i Y i−1 Z = i
∑
n≥i

nn−i

(n − i)!
un . (30)

and the result follows because Z = Y (1 + Z ). �

1.2.3. Characteristic polynomials in type β

Recall that �
β
n is the poset of partitions of type Bn where all blocks but the zero block are

pointed, which was defined in Remark 1.2. These posets appear as intervals in the posets

�B .

Theorem 1.9. The characteristic polynomial of �
β
n is

χβ
n = (x − 1)(x − (2n + 1))n−1, (31)

and its constant term is Cβ
n = (−1)n(2n + 1)n−1.

Proof: Let us prove the Theorem by induction on n. It is clearly true if n = 1. Let us

decompose the poset �
β
n according to the size j of the complement of the zero block. Then

the characteristic polynomial is

n∑
j=0

(
n

j

) ∑
π∈�A

j

μA
j (π )2rk(π )Cβ

n− j x
j−rk(π ), (32)

which can be rewritten as

n∑
j=0

(
n

j

)
2 j−1χ A

j (x/2)Cβ

n− j x . (33)

By known results on type A and induction, the only unknown term is the constant term

Cβ
n , which is therefore fixed by the fact that the characteristic polynomial must vanish at

x = 1.
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Let us assume that this constant term has the expected value. One has to compute

n∑
j=0

(
n

j

)
x(x − 2 j) j−1(−1)n− j (2(n − j) + 1)n− j−1. (34)

Decomposing the binomial coefficient into
(n−1

j−1

) + (n−1
j

)
and using twice the Abel bino-

mial formula, one gets

(x − 1)(x − (2n + 1))n−1, (35)

which vanishes at x = 1. This concludes the induction and the proof. �

1.3. Homology

The aim of this section is to compute the homology of the pointed partition posets of type A

and B. In the two cases, we show that the homology is concentrated in top dimension. For the

pointed partition poset of type A, we use the relation between Koszul duality for operads and

partition posets proved by the second author in [14] in order to compute the top homology

groups in terms of Sn-modules. As a corollary, we get that the operad Perm is Koszul

over K.

For the different notions encountered in this section (totally semi-modular, Cohen-
Macaulay), we refer to the article of A. Björner and M. Wachs [3].

1.3.1. Koszul duality for operads and partition posets

In this section, we recall the results of [14] between Koszul operads and partition posets.

Consider the symmetric monoidal category (Set, ×) of sets, equipped with the cartesian

product ×. We call an S-Set a collection (Pn)n∈N∗ of sets Pn equipped with an action of the

group Sn . The elements of Pn are to be thought of as operations with n inputs acting on alge-

braic structures. In order to represent the compositions of such operations (see Figure 3),we

define a monoidal product ◦ in the category of S-Sets by the formula

(P ◦ Q)n :=
∐

1�k�n
i1+···+ik =n

Pk ×Sk

(
Qi1

× · · · × Qik

)
.

Fig. 3 Example of composition of operations in (P ◦ Q)8
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Definition 3 (Set-operad). A monoid (P, μ, η) in the monoidal category (S-sets, ◦) is called

a set-operad.

Let (P, μ, η) be a set-operad. We use the elements of P to enrich classical partitions of

[n] and get a family of posets of partition type.

Let I be a set {x1, . . . , xn} of n elements. We consider

P(I ) :=
⎛⎝ ∐

f : bijection
[n]→I

Pn

⎞⎠
∼

,

where the equivalence relation ∼ is given by (νn, f ) ∼ (νn .σ, f ◦ σ−1) with σ ∈ Sn .

Definition 4 (P-partition). A P-partition of [n] is a set of components {B1, . . . , Bt } such

that each B j belongs to Pi j (I j ) where i1 + · · · + it = n and {I j }1� j�t is a partition of [n].

For every n, we define an order � betweenP-partitions of [n] with the refinement of partitions

and the composition product μ : P ◦ P → P of the set-operad P . This poset is denoted

�P (n).

The family of posets associated to the operad Com of commutative algebras is the classical

partition poset (see [6]). We proved in [14] that the poset �Perm(n) associated to the operad

Perm is the poset of pointed partitions �A
n (Proposition 12).

An algebraic operad is an operad in the category of K-modules with the tensor product ⊗.

To a set-operad P , one can consider the algebraic operad generated by the free K-modules

on P : P̃(n) := K[Pn]. We proved in [14], that the order complex �∗
(
�P (n)

)
is isomorphic

to the part of degree n of the normalized bar construction N∗(P̃)(n) of the operad P̃ . This

chain complex is quasi-isomorphic to the bar construction B∗(P̃)(n) of P̃ by a Theorem of B.

Fresse [6]. An algebraic operad is said to be Koszul if the homology of its bar construction is

concentrated in top dimension. Therefore, an operad is Koszul if and only if the homology of

the posets �P (n) is concentrated in top dimension. The hereditary property of the family of

posets {�P (n)}n gives that the operad is Koszul if and only if the posets are Cohen-Macaulay.

Moreover, the top homology groups are isomorphic to the Koszul dual (co)operad, which

allows us to describe them in terms of Sn-modules.

1.3.2. Homology of �A

Unlike the classical partition poset �n , which is a semi-modular lattice, the pointed partition

poset �A
n, 1 is not a lattice. Nevertheless, one has

Lemma 1.10. For every n ∈ N∗, the poset �A
n, 1 is totally semi-modular.

Proof: First, we prove that the poset �A
n, 1 is semi-modular for every n ∈ N∗. Let X and Y

be two different pointed partitions of [n] covering a third pointed partition T . Denote the

blocks of T by T = {T1, T2, . . . , Tk+1} and the pointed element of Ti by ti . Therefore, the

pointed partitions X and Y are obtained from T by the union of two blocks Ti and Tj and a

choice of a pointed element between ti and t j . (We will often choose to denote these blocks

by T1 and T2 for convenience). There are three possible cases.
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1. The pointed partitions X and Y are obtained by the union of the same blocks T1 and T2.

While t1 is emphasized in X , t2 is emphasized in Y . Since X is different from Y in the

bounded poset �A
n, 1, k must be greater than 2. Consider the pointed partition Z obtained

from T by the union of T1, T2 and T3 where t3 is pointed. Therefore, Z covers X and Y .

2. The pointed partition X is obtained from T by the union of T1 and T2 with t1 emphasized

and Y is obtained by the union of T3 and T4 with t3 emphasized. Consider the pointed

partition Z obtained from T by the union of T1 with T2 and the union of T3 with T4 where

t1 and t3 are emphasized. This pointed partition Z covers both X and Y .

3. The pointed partition X is obtained from T by the union of T1 and T2 with ti emphasized

(i = 1, 2) and Y is obtained by the union of T2 and T3 with t j emphasized ( j = 2, 3). We

consider the pointed partition Z obtained by the union of T1, T2 and T3. If i is equal to 1,

we point out the element t1 in Z . Otherwise, if i is equal to 2, we point out the element t j

in Z . The resulting pointed partition Z covers X and Y .

We can now prove that the poset �A
n, 1 is totally semi-modular for every n ∈ N∗. Let [U, V ]

be an interval of �A
n, 1. The poset [U, V ] is isomorphic to a product �A

λ1, 1 × · · · × �A
λk , 1 of

semi-modular posets. Therefore, [U, V ] is semi-modular. �

As a corollary, we get

Theorem 1.11. The posets �A
n, 1 are CL-shellable and Cohen-Macaulay.

Proof: CL-shellability follows from total semi-modularity by [3, Corollary 5.2]. Then the

Cohen-Macaulay property follows from shellability. �

Remark 1.12. We do not know whether the posets �A
n, 1 admit an EL-labelling. The relation

with operads allows us to compute the homology.

Theorem 1.13. The operad Perm is a Koszul operad over K (the ring Z or any field). The
homology of the posets �A

n, 1 is concentrated in top dimension. Moreover, the homology of
the posets �A

n with coefficients in K is given by the following isomorphism of Sn-modules

Hi (�
A
n ) ∼=

{
RT (n)∗ ⊗ sgnSn

if i = n − 1,

0 otherwise,

where RT (n) is the Sn-module induced by the free K-module on the set of rooted trees

(cf. [4]).

Proof: The set operad Perm gives rise to a family of posets (�Perm(n))n∈N∗ which are iso-

morphic to (�A
n )n∈N∗ . For every maximal pointed partition α of the shape {1, . . . , i, . . . , n},

the interval [0̂, α] is isomorphic to �A
n, 1. Therefore, Theorem 10 of [14] gives that the operad

Perm is Koszul if and only if the posets �A
n, 1 are Cohen-Macaulay. Since these posets are

CL-shellable, they are Cohen-Macaulay over the ring Z and over every field.

Once again, the results of [14] show that the homology groups of �A
n of top dimension

are isomorphic, as Sn-modules, to the Koszul dual operad of Perm, which is the operad

PreLie(n). And the operad PreLie is known to be described by the representations of the

symmetric groups on rooted trees. �
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1.3.3. Homology of �B

Once again, we show that the posets �B ′
n are totally semi-modular, CL-shellable and Cohen-

Macaulay, for every n ∈ N∗.

To do that, we need to understand the intervals of �B
n . Let us introduce a variation of

the posets �B
n and �

β
n such that there is at most one pointed element in the zero block. The

partial order is defined like the order of �B
n and �

β
n . The only difference is that if π � ν then

the number of pointed elements in the zero block of ν is greater than the number of pointed

elements in the zero block of π . We denote these posets by �
β B
n . The maximal interval of

�
β B
n such that the maximal element is a zero block with one pointed element is denoted

�
β B ′
n .

Proposition 1.14. Each interval of �B
n is isomorphic to a product of posets of the shape

�
β

λ × �A
λ1, 1 × · · · × �A

λk , 1 or of the shape �
β B ′
λ × �A

λ1, 1 × · · · × �A
λk , 1, where λ + λ1 +

· · · + λk ≤ n.

Proof: Let [U, V ] be an interval of �B
n . There are two possible cases.

If the pointed elements of the zero blocks of U and V are the same, then the refinement

of the zero block of V corresponds to a poset of type �
β

λ . The refinement of the other blocks

of V with blocks of U corresponds to posets of type �A
λi , 1.

If the pointed elements of the zero blocks of U and V are different, then the refinement

of the zero block of V corresponds to a poset of type �
β B ′
λ . �

Lemma 1.15. For every n ∈ N∗, the poset �B ′
n is totally semi-modular.

Proof: With Proposition 1.14, it is enough to show that the posets �
β
n and �

β B ′
n are semi-

modular.

Let X and Y cover T = {−Tk+1, . . . , −T1, T0, T1, . . . , Tk+1} in �
β
n . If the zero block of

X and Y is T0, then the proof is the same as in the case �A
n,1. Otherwise, there are three cases.

1. If X is given by −T1 ∪ T0 ∪ T1 and Y by T2 ∪ T3 (and −T2 ∪ −T3), then we consider Z
defined by −T1 ∪ T0 ∪ T1 and T2 ∪ T3, with the same choice of pointed elements.

2. If X is given by −T1 ∪ T0 ∪ T1 and Y by T1 ∪ T2 (and −T1 ∪ −T2), then we consider Z
defined by −T2 ∪ −T1 ∪ T0 ∪ T1 ∪ T2, with no pointed elements.

3. If X is given by −T1 ∪ T0 ∪ T1 and Y by −T2 ∪ T0 ∪ T2, then we consider Z defined

by −T2 ∪ −T1 ∪ T0 ∪ T1 ∪ T2, with no pointed elements.

In each case, the partition Z covers both X and Y .

Let X and Y cover T = {−Tk+1, . . . , −T1, T0, T1, . . . , Tk+1} in �
β B ′
n . The proof is mainly

the same as in the case �
β
n , except some choices of pointed elements in the zero blocks. The

only new case is the following one.

When X and Y are obtained from T by −T1 ∪ T0 ∪ T1 but a different choice of pointed

element. Therefore, we consider Z defined by −T2 ∪ −T1 ∪ T0 ∪ T1 ∪ T2 with a pointed

element coming from T2. �

Therefore, using the results of [3], we have the following theorem.

Theorem 1.16. The posets �B ′
n are CL-shellable and Cohen-Macaulay, for n ∈ N∗.
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Remark 1.17. Since the theory of operads is based on representations of the symmetric

groups Sn , we can not use it here to compute the homology groups of �B
n .

1.4. Extended pointed partition posets

Let us define �̂A
n as the bounded poset obtained from �A

n by adding of a maximal element 1̂.

Theorem 1.18. The poset �̂A
n is totally semi-modular, CL-shellable and Cohen-Macaulay.

Its homology is concentrated in top dimension and has dimension (n − 1)n−1.

Proof: Let us prove that this poset is semi-modular first. The proof is essentially the same

as for the poset �A
n . Only the first case can be different, when two blocks are gathered in two

different ways and there is no other block. Then 1̂ covers both.

Now any interval in �̂A
n is either an interval in �A

n , hence semi-modular, or an interval

[π, 1̂]. Such an interval is isomorphic to a poset �̂A
λ , hence semi-modular either.

From this, one deduces the shellability and Cohen-Macaulay property. This implies the

concentration of the homology in top dimension.

The Möbius number of �̂A
n is given by the opposite of the value at x = 1 of the charac-

teristic polynomial of �A
n . This gives the Euler characteristic, hence here the dimension of

the homology. �

Remark 1.19. The action of the symmetric groups on the top homology of the posets �̂A
n

certainly deserves further study. It should be related to the vertebrates (twice-pointed trees)

and to the generators of the free pre-Lie algebras as Lie algebras.

1.5. Incidence Hopf algebra in type A

Let us consider the set F of isomorphism classes of all intervals in all posets �A
n for n ≥ 1.

Then it follows from Section 1.1.1 that a set of representatives of isomorphism classes is

provided by arbitrary (possibly empty) products of the intervals �A
n,1 for n ≥ 2. This family

of intervals is therefore closed under products and taking subintervals. Such a family is called

hereditary in [10].

Hence one can introduce the incidence Hopf algebra of this family of intervals. For short,

let an be the isomorphism class of �A
n,1 for n ≥ 2. Then a Hopf algebra structure is defined

on the polynomial algebra H (F) in the an by the following coproduct:

� an :=
∑

π∈�A
n,1

[0̂, π ] ⊗ [π, 1̂], (36)

where [ ] denotes the isomorphism class of the underlying interval.

By convention, let a1 be the unit of the polynomial algebra in the variables an for n ≥ 2.

It corresponds to the class of the trivial interval.

Let us decompose the coproduct according to the rank of π . One gets

� an =
n∑

k=1

⎛⎜⎜⎝ ∑
π∈�A

n,1
rk(π )=n−k

k∏
i=1

aπi

⎞⎟⎟⎠ ⊗ ak, (37)

where the πi denotes the size of the blocks of the pointed partition π (
∑k

i=1 πi = n).
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Then decomposing the pointed partition π into its parts, with a distinguished part con-

taining 1, one gets

� an =
n∑

k=1

⎛⎜⎝n+1−k∑
π1=1

∑
π2 ,...,πk ≥1

π1+···+πk =n

(n − 1)!

(π1 − 1)!π2! . . . πk!

∏k
i=2 πi

(k − 1)!

k∏
i=1

aπi

⎞⎟⎠ ⊗ ak . (38)

This formula can be rewritten as

�
an

(n − 1)!
=

n∑
k=1

⎛⎜⎝ ∑
π1 ,π2 ,...,πk ≥1
π1+···+πk =n

aπ1
. . . aπk

(π1 − 1)! . . . (πk − 1)!

⎞⎟⎠ ⊗ ak

(k − 1)!
. (39)

This has the following interpretation.

Theorem 1.20. The incidence Hopf algebra of the family of pointed partition posets of type
A is isomorphic to the Hopf algebra structure on the polynomial algebra in the variables
(an)n≥2 given by the composition of formal power series of the following shape :

x +
∑
n≥2

an
xn

(n − 1)!
. (40)

Proof: This follows from the explicit formula (39) for the coproduct on the generators. �

As a corollary, the Möbius numbers of the intervals �A
n,1 can be deduced from the fact that

the inverse for composition of x exp(x) is the Lambert W function whose Taylor expansion

is known to be

W (x) =
∑
n≥1

(−1)n−1nn−2 xn

(n − 1)!
. (41)

2. Multi-pointed partition posets

In this section, we give the definition of the multi-pointed partition poset of type A and its

basic properties.

2.1. Type A

Let us define the multi-pointed partition poset of type An−1.

Definition 5 (Multi-pointed partition). A multi-pointed partition of [n] is a partition of [n]

together with the choice of a non-empty subset of each block, called the pointed subset of

this block.

The order relation is as follows. First the underlying partitions must be related by the

refinement order of partitions. Then if two partitions are related by the gathering of two

blocks, the set of pointed elements of the big block is either one of the sets of pointed elements
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Fig. 4 The poset M�A
3

of the two small blocks or their union. For instance, one has {12}{356}{478} � {12356}{478}.
The poset of multi-pointed partitions of type An−1 is denoted by M�A

n . The example of the

poset M�A
3 is displayed in Figure 4.

As the multi-pointed partitions are just non-empty sets of pairs made of a non-empty set

and a set, the generating series for the graded cardinality is given by exeu (eu −1)−1
x .

Of course, the symmetric group Sn acts on the poset M�A
n .

Let us denote by M�A′
n,i the maximal interval under a partition with a single block and

i pointed elements. Up to isomorphism, this does not depend on the choice of the pointed

elements. By convention, let M�A′
n,0 denote the multi-pointed partition poset M�A

n of type

An−1.

The following proposition will play a crucial role in the sequel.

Proposition 2.1. Each interval of M�A
n is isomorphic to a product of posets M�A′

λ1, ν1

× · · · × M�A′
λk , νk

, where λ1 + · · · + λk � n and 1 � νi � λi .

Proof: As for the pointed partition posets, any interval can be decomposed into a product

according to the parts of the coarser partition. One can therefore assume that the maximal

element of the interval is a single block. One can then replace, in each element of the interval,

each block of the minimal element by a single element. This provides an isomorphism with

some interval M�A′
λ, ν . �

2.2. Characteristic polynomials in type A

Let us compute the characteristic polynomials of the posets of multi-pointed partitions of

type A. The proof uses the subposets of elements where a fixed subset of [n] is pointed. Up

to isomorphism, these subposets only depend on the cardinality of the fixed subset of pointed

indices. For 1 ≤ i ≤ n, let M�A
n,i be the poset where the indices in [i] are pointed.
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Let us introduce the following convenient (if not traditional) notation:

〈n〉 =
n∏

j=1

(x − j). (42)

Let us remark that M�A
n,n and M�A′

n,n are both isomorphic to the classical partition poset

of type An−1 whose characteristic polynomial is known to be 〈n − 1〉.

Theorem 2.2. For 1 ≤ i ≤ n, the characteristic polynomial of M�A
n,i is

Mχ A
n,i (x) = x − 2i

x − i

〈i〉〈2n − 1〉
〈n + i〉 , (43)

and its constant term MC A
n,i is (−1)n−12 i!(2n−1)!

(n+i)!
. For 0 ≤ i ≤ n, the characteristic polynomial

of M�A′
n,i is

Mχ A′
n,i (x) = 〈i〉〈2n − i − 1〉

〈n〉 , (44)

and its constant term MC A′
n,i is (−1)n−1 i!(2n−i−1)!

n!
.

Proof: Let us prove the Theorem by induction on n. It is clearly true for n = 1. Let us now

assume that it is proved for smaller n. The proof goes in three steps. The first step is to

compute Mχ A′
n,i by decreasing induction on i for i > 0. The statement is clear if i = n. Let

us assume that the chosen pointed elements are [i]. The poset M�A′
n,i can be decomposed

according to the size and number of pointed elements of the block p1 containing 1. Let J be

the intersection of p1 with [i]. This is exactly the set of pointed elements of p1. Let S be the

complement of J in p1, contained in [n] \ [i]. Then the result is

∑
[1]⊆J⊆[i]

∑
∅⊆S⊆[n]\[i]

∑
π∈M�A′

n−|S|−|J |,i−|J |

Mχ A′
|J |+|S|,|J |μ(π )xn−rk(π )−|S|−|J |+1, (45)

where rk(π ) is the rank in the poset M�A′
n−|S|−|J |,i−|J |. Hence one gets the following equation

for Mχ A′
n,i :

i∑
j=1

(
i − 1

j − 1

) n−i∑
s=0

(
n − i

s

)
MC A′

j+s, j Mχ A′
n− j−s,i− j x . (46)

The only unknown term is the constant term when s = n − i and j = i . This coefficient

is determined by the fact that Mχ A′
n,i must vanish at x = 1. So let us assume that it has

the expected value and check later that the result vanishes at x = 1. One therefore has to
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compute

i∑
j=1

(
i − 1

j − 1

) n−i∑
s=0

(
n − i

s

)
(−1) j+s−1 j!(2s + j − 1)!

(s + j)!

× 〈i − j〉〈2n − 2s − j − i − 1〉
〈n − j − s〉 x1. (47)

Using Lemma 2.3 to compute the inner summation on s and then Lemma 2.4 to compute

the remaining summation on j , one gets the expected formula for Mχ A′
n,i . As this formula

vanishes at x = 1, the guess for the constant term was correct.

The second step is to compute Mχ A
n,i by decreasing induction on i . By a decomposition

as above according to the block containing 1, one gets the following equation for Mχ A
n,i :

i∑
j=1

(
i − 1

j − 1

) n−i∑
s=0

(
n − i

s

)
MC A

j+s, j Mχ A
n− j−s,i− j x . (48)

The only unknown term is the constant term when s = n − i and j = i . This coefficient

is given by ∑
[i]⊆S⊆[n]

MC A
n,|S|. (49)

This quantity is computed in Lemma 2.5 and found to be as expected. To determine Mχ A
n,i ,

one therefore has to compute

i∑
j=1

(
i − 1

j − 1

) n−i∑
s=0

(
n − i

s

)
(−1) j+s−12

j!(2s + 2 j − 1)!

(s + 2 j)!

× (x − 2(i − j))

x − (i − j)

〈i − j〉〈2n − 2s − 2 j − 1〉
〈n − 2 j − s + i〉 x . (50)

Using Lemma 2.3 to compute the inner summation on s and then Lemma 2.4 to compute

the remaining summation on j , one gets the expected formula for Mχ A
n,i .

The last step is to compute Mχ A′
n,0 by Möbius inversion on non-empty subsets of [n].

Indeed it is clear that

xMχ A′
n,0 =

∑
∅�S⊆[n]

(−1)|S|+1Mχ A
n,|S|. (51)

So we have to show that

x
〈2n − 1〉

〈n〉 =
n∑

j=1

(
n

j

)
(−1) j+1(x − 2 j)

〈 j − 1〉〈2n − 1〉
〈n + j〉 . (52)
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This can be restated as the vanishing of

n∑
j=0

(
n

j

)
(−1) j (x − 2 j)

〈 j − 1〉
〈n + j〉 . (53)

In hypergeometric terms, this is equivalent to

3 F2 (−n, y, y/2 + 1; y/2, y + n + 1; 1) = 0. (54)

This follows from a known identity, see Appendix (III.9) in [11] for example, with a = y
and b = y/2 + 1. �

Lemma 2.3. For all m ≥ 0 and j, k ≥ 1, one has

m∑
s=0

(
m

s

)
(−1)s j(2s + j − 1)!

(s + j)!

(x − k)〈2(m − s) + k − 1〉
〈m − s + k〉

= (x − ( j + k))〈2m + j + k − 1〉
〈m + j + k〉 (55)

Proof: Once reformulated using the Pochhammer symbol, this is a direct consequence of

the product formula associated to the following hypergeometric function:

ψx (θ ) = 2 F1

(
x

2
,

1 + x

2
; 1 + x ; θ

)
=

(
2

1 + √
1 − θ

)x

, (56)

which can be found for example as Formula (5), page 101 in [5]. More precisely, one

takes the constant term with respect to y in the Taylor coefficients with respect to θ of the

identity

ψy(θ )ψx (θ ) = ψx+y(θ ). (57)

�

Lemma 2.4. For all k ≥ 1, one has

x
k∑

j=1

(
k − 1

j − 1

)
(−1) j−1( j − 1)!〈k − j − 1〉 = 〈k − 1〉. (58)

Proof: Once reformulated using Pochhammer symbols, this becomes equivalent to

2 F1 (−k, 1; −y − k + 1; 1) = y + k

k
, (59)

which is just one instance of the Gauss identity. �
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Lemma 2.5. One has the following identity:

n∑
j=i

(
n − i

j − i

)
j!(2n − j − 1)!

n!
= 2

i!(2n − 1)!

(n + i)!
. (60)

Proof: Once reformulated using hypergeometric functions, this becomes equivalent to

2 F1 (i + 1, −m; −2m − i + 1; 1) = 2
(m + i)!(2m + 2i − 1)!

(m + 2i)!(2m + i − 1)!
, (61)

which is just another instance of the Gauss identity. �

2.3. Homology of M�A

In this section, we compute the homology of the posets M�A
n, 0. Once again, we use the

methods of [14] and Koszul duality for operads. As a corollary, we get that the operad

ComT rias is Koszul over K.

We show that each maximal interval of M�A
n, 0 is totally semi-modular. Therefore, the

homology of M�A
n, 0 is concentrated in top dimension. And we use Koszul duality theory for

operads to compute this homology in terms of Sn-modules.

Lemma 2.6. For every n ∈ N∗ and every 1 � i � n, the poset M�A′
n, i is totally semi-modular.

Proof: Since each interval of M�A′
n, i is isomorphic to a product M�A′

λ1, ν1
× · · · × M�A′

λk , νk
,

where λ1 + · · · + λk � n and 1 � ν j � λ j , it is enough to show that every M�A′
n, i is a semi-

modular poset.

Let X and Y be two different multi-pointed partitions of [n] covering a third multi-pointed

partition T in M�A′
n, i . Denote the blocks of T by T = {T1, . . . , Tk+1} and the set of pointed

elements of Ti by Ti . Therefore, the multi-pointed partitions X and Y are obtained from T
by the union of two blocks Ti and Tj and a choice of a pointed elements between Ti , T j or

both. (We will often choose to denote these blocks by T1 and T2 for convenience). There are

three possible cases.

1. The multi-pointed partitions X and Y are obtained by the union of the same blocks T1

and T2. Since X is different from Y in the bounded poset M�A′
n, i , k must be greater than

2. Consider the multi-pointed partition Z obtained from T by the union of T1, T2 and T3

where the set T3 is pointed. Therefore, Z covers X and Y .

2. The multi-pointed partition X is obtained from T by the union of T1 and T2 with the set

X1 of pointed elements. The multi-pointed partition Y is obtained by the union of T3 and

T4 with the set Y2 of pointed elements. Consider the multi-pointed partition Z obtained

from T by the union of T1 with T2 and the union of T3 with T4 where the set X1 ∪ Y2 of

element is emphasized. This multi-pointed partition Z covers both X and Y .

3. The multi-pointed partition X is obtained from T by the union of T1 and T2 and Y is

obtained by the union of T2 and T3 where Y2 denotes the set of pointed chosen elements. If

only the elements of T1 or the elements of T2 are emphasized in X , then we built the same

kind of covering partition Z as in the proof of Lemma 1.10. If the elements of T1 ∪ T2 are

pointed in X , we consider the multi-pointed partition Z given by the union T1 ∪ T2 ∪ T3

where only the elements of T3 are pointed, if the elements of T2 are not pointed in Y ,
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and where the elements of T1 ∪ Y2 are pointed otherwise. In any case, the multi-pointed

partition Z covers X and Y . �

As a consequence, using results of [3], we have

Theorem 2.7. The posets M�A′
n, i are CL-shellable and Cohen-Macaulay.

Then the relation with operads allows us to determine the homology, as follows.

Theorem 2.8. The operad ComT rias of commutative trialgebras is a Koszul operad over K
(the ring Z or any field). The homology of the posets M�A′

n, i is concentrated in top dimension.
Moreover, the homology of the posets M�A

n with coefficients in K is given by the following
isomorphism of Sn-modules

Hi (M�A
n ) ∼=

{
Lie ◦ Mag(n)∗ ⊗ sgnSn

if i = n − 1,

0 otherwise,

where Lie ◦ Mag(n) is the Sn-module induced by plethysm or equivalently by the operadic
composition of the operadLie, of Lie algebras, with the operadMag, of magmatic algebras.

Proof: The partition posets associated to the operad ComT rias are isomorphic to the posets

M�A
n , for n ∈ N∗. Since the Koszul dual operad of the operad ComT rias is the operad

PostLie, which is isomorphic as S-module to the composition Lie ◦ Mag (cf. [14]), we

conclude by the same arguments as in the proof of Theorem 1.13. �

References

1. C. A. Athanasiadis, Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes. Bull.
London Math. Soc., 36(3) (2004), 294–302.

2. A. Björner and M. Wachs, Geometrically constructed bases for homology of partition lattices of types A,
B and D. Electron. J. Combin., 11, no. 2, Research Paper 3, (2004/05), 26 pp. (electronic).

3. A. Björner and M. Wachs, On lexicographically shellable posets. Trans. Amer. Math. Soc., 277(1) (1983),
323–341.

4. F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad. IMRN, 8 (2001), 395–408.
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