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Abstract In this paper, we classify the finite generalized quadrangles of order
(s, t), s, t > 1, which have a line L of elation points, with the additional property
that there is a line M not meeting L for which {L , M} is regular. This is a first funda-
mental step towards the classification of those generalized quadrangles having a line
of elation points.
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1. Introduction and statement of the main result

A (finite) generalized quadrangle (GQ) of order (s,t) is an incidence structure S =
(P, B, I ) in which P and B are disjoint (nonempty) sets of objects called points
and lines respectively, and for which I is a symmetric point-line incidence relation
satisfying the following axioms.

(1) Each point is incident with t + 1 lines (t ≥ 1) and two distinct points are incident
with at most one line.

(2) Each line is incident with s + 1 points (s ≥ 1) and two distinct lines are incident
with at most one point.

(3) If p is a point and L is a line not incident with p, then there is a unique point-line
pair (q, M) such that pIMIqIL.
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If s = t , then S is also said to be of order s.
There is a point-line duality for GQ’s of order (s, t) for which in any definition or

theorem the words “point” and “line” are interchanged and also the parameters. Nor-
mally, we assume without further notice that the dual of a given theorem or definition
has also been given. Also, sometimes a line will be identified with the set of points
incident with it without further notice. This will be done frequently.

For notation and definitions not explicitly mentioned here, we refer to the mono-
graph FINITE GENERALIZED QUADRANGLES by S.E. Payne and J.A. Thas [25]. For an
extensive survey on recent results on automorphisms and characterizations of GQ’s,
see [34].

Let S = (P, B, I ) be a GQ of order (s, t), s, t > 1.
An elation about the point p is either the identity, or a collineation of S that fixes p

linewise and no point of P\p⊥. By definition, the identity is an elation (about every
point). If p is a point of the GQ S for which there exists a group G of elations about p
which acts regularly on the points of P\p⊥, then S is said to be an elation generalized
quadrangle (EGQ) with elation point p and elation group (or base-group) G, and we
often write (S (p), G) for S, or (S p, G).

The natural models of finite generalized quadrangles for which each point is an
elation point are the so-called ‘classical’ and ‘dual classical’ examples, as defined by
J. Tits in [10]. Those are constructed as follows.

(a) Consider a nonsingular quadric of Witt index 2, that is, of projective index 1, in
PG(3, q), PG(4, q), PG(5, q), respectively. The points and lines of the quadric
form a generalized quadrangle which is denoted by Q(3, q),Q(4, q),Q(5, q),
respectively, and has order (q, 1), (q, q), (q, q2), respectively.

(b) The points of PG(3, q) together with the totally isotropic lines with respect to a
symplectic polarity form a GQ W (q) of order q.

(c) Let H be a nonsingular Hermitian variety in PG(3, q2), respectively PG(4, q2).
The points and lines of H form a generalized quadrangle H (3, q2), respectively
H (4, q2), which has order (q2, q), respectively (q2, q3).

Vice versa, using the CLASSIFICATION OF FINITE SIMPLE GROUPS (CFSG), see e.g.
[9, 15], F. Buekenhout and H. Van Maldeghem were the first to obtain the converse
[4]: if a finite generalized quadrangle has the property that each point is an elation
point, then it is one of the classical or dual classical examples. Recently, the author
of this paper and H. Van Maldeghem found a classification-free proof of that result.
Now consider an EGQ S of order (s, t), s �= 1 �= t . Then, by transitivity, we clearly
have the following possibilities for S:

(a) S has precisely one elation point;
(b) S has a line L of elation points;
(c) each point of S is an elation point, and S is classical or dual classical.

In this paper, we will be concerned with the classification of GQ’s of Type (b). Without
additional hypotheses, this case seems completely hopeless at present, even if one
allows the use of CFSG. In [37], such a classification was obtained with the following
additional hypothesis:

(AB) There is a point on L so that the corresponding elation group is abelian.
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If pIL is such a point, then p is called a translation point. If (AB) is satisfied, all
points incident with L are translation points. The result we obtained was the following
(for notions not explicitly defined yet, see Section 2, or [25] and [34]):

Theorem 1.1. (K. Thas [37]) Supposes S is a generalized quadrangle of order
(s, t), s �= 1 �= t , with two distinct collinear translation points. Then we have one
of the following:

(i) s = t and S ∼= Q(4, s);
(ii) t = s2, s is even and S ∼= Q(5, s);

(iii) t = s2, s is odd, and S is the translation dual of the point-line dual of a flock GQ
S(F).

If a GQ S has two non-collinear translation points, then S is always of classical type,
i.e. isomorphic to one of Q(4, s),Q(5, s).

In [38], the converse of (iii) was (unexpectedly) obtained:

Theorem 1.2. (K. Thas [38]) The non-classical GQ’s of order (s, t), where 1 < s <

t , which have distinct translation points are precisely those GQ’s S which are the
translation dual of the point-line dual of a flock GQ S(F), where F is nonlinear.

Each of these examples has the following essential properties (which characterizes the
examples by Theorem 1.2, see [38]):

(a) they have some line L each point of which is an elation point (in fact, each of these
points is a translation point);

(b) each line M of the GQ which meets L is a regular line (including L).

Therefore, we propose the (theoretically much more general) problem to classify the
finite generalized quadrangles of order (s, t), s, t > 1, having a line L of elation points,
satisfying the following additional assumption:

(R) There exists a line M not concurrent with L so that {L , M} is a regular pair of
lines.

The following main result will be obtained:

Main Theorem. Suppose S is a generalized quadrangle of order (s, t), s �= 1 �= t ,
which has a line L each point of which is an elation point. Furthermore, suppose that
Property (R) is satisfied for L. Then we have one of the following:

(i) s = t and S ∼= Q(4, s);
(ii) t = s2, s is even and S ∼= Q(5, s);

(iii) S is the translation dual of the point-line dual of a flock GQ S(F).

Conversely, each of the classes described in (i)-(ii)-(iii) satisfies the assumptions of
the theorem.

We wish to obtain the main result in a “local-to-global” sense, such as in the spirit
of [22] and [36, 37, 41], so that each step in the proof is as transparent as possible
for applications in more general situations. As such, the main result will be merely
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a corollary of much more general observations, see especially Theorem 5.1 (Main
Structure Theorem).

In an appendix, we will describe a direct, but less general, approach for the case
s = t .

Remark 1.3. (Near polygons and spreads of symmetry) B. De Bruyn [5], see also
[6], has developed a construction method for near polygons [27] from spreads of
symmetry of generalized quadrangles, and new spreads of symmetry would yield
new near polygons. Many new classes of near polygons were thus discovered. For
generalized quadrangles of order (s, s2), s > 1, only one class of examples is known
admitting spreads of symmetry, namely the classical example Q(5, q), q = s, arising
from a nonsingular elliptic quadric in PG(5, q) (and in that case there is a unique class
of spreads of symmetry).

In [7], the authors started to investigate theoretically general classes of GQ’s admitting
a spread of symmetry. The following is taken from [7].

Theorem 1.4. (B. De Bruyn and K. Thas [7]) (i) Let S be a TGQ of order (s, t), t >

s > 1, which admits a spread of symmetry. Then S is isomorphic to Q(5, s).
(ii) Let S be an EGQ of order (s, s2), s > 1 and s even, which admits a spread of
symmetry. Then S is isomorphic to Q(5, s).

In [40], the odd case for Theorem 1.4(ii) was then obtained:

Theorem 1.5. (K. Thas [40]) SupposeS is an elation generalized quadrangle of order
(s, s2), s > 1 and s odd, which has a spread of symmetry T. Then S ∼= Q(5, s).

Each of the (abstract) GQ’s considered in Theorem 1.4 and Theorem 1.5 satisfies the
assumptions of the Main Theorem. (Theorem 1.4(i) does not follow from it, however.
Theorem 1.5 does, in combination with Theorem 1.4, but its proof is used in the proof of
the Main Theorem. Also, here we need more group theory than in the proof of Theorem
1.5; we will need the classification of finite projective planes of Lenz-Barlotti class
III [17].)

2. Finite generalized quadrangles: further theory

2.1. Further theory

Let S = (P, B, I ) be a (finite) generalized quadrangle of order (s, t), s �= 1 �= t . Then
|P| = (s + 1)(st + 1) and |B| = (t + 1)(st + 1). Also, s ≤ t2 and, dually, t ≤ s2, and
s + t divides st(s + 1)(t + 1).

If S is a GQ, then by SD we denote its point-line dual.
Let p and q be points of S. If p = q or if p and q are on the same line (and then they

are called ‘collinear’), then we write p ∼ q . The same notation is used for lines (and in
that case, we speak of ‘concurrent lines’). For p ∈ P , put p⊥ = {q ∈ P‖q ∼ p}. For a
pair of distinct points {p, q}, the trace of {p, q} is defined as p⊥ ∩ q⊥, and we denote
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this set by {p, q}⊥. Then |{p, q}⊥| = s + 1 or t + 1, according as p ∼ q or p �∼ q.
More generally, if A ⊆ P, A⊥ is defined by A⊥ = ⋂{p⊥‖p ∈ A}. For p �= q, the span
of the pair {p, q} is sp(p, q) = {p, q}⊥⊥ = {r ∈ P‖r ∈ s⊥ for all s ∈ {p, q}⊥}. We
have that |{p, q}⊥⊥| = s + 1 or |{p, q}⊥⊥| ≤ t + 1 according as p ∼ q or p �∼ q. If
p ∼ q �= p, or if p �∼ q and |{p, q}⊥⊥| = t + 1, we say that the pair {p, q} is regular.
The point p is regular provided {p, q} is regular for every q ∈ P\{p}. Regularity for
lines is defined dually. One easily proves that either s = 1 or t ≤ s if S has a regular
pair of non-collinear points.

If (p, L) is a non-incident point-line pair of a GQ, then by projp L , we denote the
unique line of the GQ which is incident with p and concurrent with L. Dually, one
defines projL p.

A subquadrangle, or also subG Q,S ′ = (P ′, B ′, I ′) of a GQS = (P, B, I ) of order
(s, t), s, t > 1, is a GQ for which P ′ ⊆ P, B ′ ⊆ B, and where I′ is the restriction of I
to (P ′ × B ′) ∪ (B ′ × P ′). A subGQ of order (s, 1), s > 1, is sometimes called a grid
(or (s + 1) × (s + 1) − grid).

2.2. Symmetry in generalized quadrangles

A collineation or automorphism of a generalized quadrangleS = (P, B, I ) is a permu-
tation of P ∪ B which preserves P, B and I. Here, Aut(S) denotes the automorphism
group of S.

An axis of symmetry L of S is a line for which there is a full group of size s of
collineations of S fixing L⊥ elementwise. Dually, one defines a center of symmetry.
If a GQ (S (p), G) is an EGQ with elation point p, and if each line incident with p is an
axis of symmetry, then we say that S is a translation generalized quadrangle (TGQ)
with translation point p and translation group (or base-group) G. In such a case, G is
uniquely defined; G is generated by all symmetries about every line incident with p,
and G is the set of all elations about p, see 8.3.2 of [25]. That p is indeed a translation
point in the sense of Section 1 follows from Theorem 2.2 below.

Theorem 2.1. ([25], 8.3.1) Let S = (P, B, I ) be a GQ of order (s, t), s, t > 1. Sup-
pose each line through some point p is an axis of symmetry, and let G be the group
generated by the symmetries about the lines through p. Then G is elementary abelian
and (S (p), G) is a TGQ.

Theorem 2.2. ([25], 8.2.3) Suppose (S (x), G) is an EGQ of order (s, t), s �= 1 �= t .
Then (S (x), G) is a TGQ if and only if G is an (elementary) abelian group.

Remark 2.3. (i) Each line of the GQ’s Q(4, s) and Q(5, s) is an axis of symmetry.
(ii) Each known GQ (see Chapter 3 of [41] for a detailed account), except for H (4, q2)

and H (4, q2)D , contains axes of symmetry or is constructed from a GQ with axes of
symmetry (up to duality), see [41] for a classification of the possible configurations
of axes of symmetry in GQ’s.

Finally, the following result will be essential for the proof of the Main Result:
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Theorem 2.4. (I. Bloemen, J. A. Thas and H. Van Maldeghem [2]) Each EGQ of
order (p, t), p, t > 1, with p a prime, is isomorphic to W (p),Q(4, p) or Q(5, p).

3. Split BN-pairs of rank 1

A (group with a) split BN-pair of rank 1 is a permutation group (Y, G), where G acts
on Y, which satisfies the following properties.

(BN1) G acts 2-transitively on Y;
(BN2) for every y ∈ Y the stabilizer of y in G has a normal subgroup (called a root

group) which acts regularly on Y\{y}.
If Y is a finite set, then the split BN-pair of rank 1 also is called finite. The following
theorem classifies all finite split BN-pairs of rank 1 without using CFSG, see [26] and
[18].

Theorem 3.1. ([18, 26]) Suppose (Y, G) is a group with a finite split BN-pair of rank
1, and suppose |Y | = s + 1, with s < ∞. Then G must be one of the following (up to
isomorphism):

(i) a sharply 2-transitive group on Y;
(ii) PSL(2, s);

(iii) the Ree group R( 3
√

s) with 3
√

s an odd power of 3;
(iv) the Suzuki group Sz(

√
s) with

√
s an odd power of 2;

(v) the unitary group PSU(3,
3
√

s2),

each in its natural action of degree s + 1.

Every root group has order s. In all of the cases except in Case (i), s is a prime
power. We have that |PSL(2, s)| = (s + 1)s(s − 1) or (s + 1)s(s − 1)/2, according to
whether s is even or odd; in the other cases, we have that |R( 3

√
s)| = (s + 1)s( 3

√
s −

1), |Sz(
√

z)| = (s + 1)s(
√

s − 1), and |PSU(3,
3
√

s2)| = (s+1)s( 3√s2−1)
gcd(3, 3√s+1)

(gcd(a, b) de-
notes the greatest common divisor of a and b; a, b ∈ N).

4. Proof of the main theorem

STANDING HYPOTHESIS. In this section, unless otherwise explicitly mentioned, S =
(P, B, I ) is a GQ of order (s, t), s, t > 1, and L ∈ B is a line of elation points so that
Property (R) holds (w.r.t. M). We will also suppose that s > 2, and refer to Chapter 6
of [25] for the case s = 2.

NOTATION. Let pIL. Then by G p we denote the elation group of size s2t of elations
with center p as defined to exist by the STANDING HYPOTHESIS.

First of all, we note that L is a regular line. For, suppose M ′ is an arbitrary line of
B\L⊥. If M ∼ M ′, then there is some element of GprojL (M ∩ M ′) mapping M onto
M ′. So {L , M ′} is also a regular pair of lines. Now suppose M ′ �∼ M . By [3], there
is a set of lines {M0 = M, M1, . . . , Mr = M ′}, where r ∈ N, so that each Mi does
not meet L, and so that Mi ∼ Mi+1 for i = 0, 1, . . . , r − 1. It now readily follows
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that there is some collineation in Aut(S) mapping M onto M ′, and hence {L , M ′} is
a regular line pair. So L is regular. Note that, as L is regular, we have that s ≤ t . We
distinguish some cases.

THE CASE s EVEN

First suppose s to be even. Then as L is regular, by [16], [8] and [33], each point
incident with L is a translation point. By Theorem 1.1, it thus follows that we have
one of the following possibilities:

(a) s = t and S ∼= Q(4, s);
(b) t = s2 and S ∼= Q(5, s).

THE CASE s = t

Let s be odd. Define the following incidence structure �L :� Lines. Are just the lines of L⊥;� Points. Are all spans of the form {V, W }⊥⊥, where V and W are distinct lines in
L⊥;1� Incidence. Is inversed inclusion.

Then by 1.3.1 of [25], �L is a projective plane of order s. Fix some point xIL, and
consider a line N �∼ L . Then (Gx )N has size s. In �L , (Gx )N fixes x linewise, and
the point corresponding to {L , N }⊥. One notes that (Gx )N acts faithfully on �L . As
(Gx )N has size s as a collineation group of �L , the line N ′ = projx N is an axis of
(Gx )N (and in S, projN x is linewise fixed by (Gx )N ). So �L is (x, qx)-transitive for
each point xIL, implying that �L is a plane of Lenz-Barlotti class III. By [17], �L is
Desarguesian, and hence

�(N ) = � = 〈(G p)N ‖pI L〉

acts as SL(2, s) on �L .2 Also, by the preceding considerations, we immediately have
the following property:� PROPERTY (M)l . For each pIL, and each L ′ �∼ L , the group (G p)L ′ fixes projL ′p

linewise.

Assume that {L , N }⊥⊥ = {L , N = N1, N2, . . . , Ns}, and define

�(Ni ) = 〈(G p)Ni ‖pI L〉.

Let i �= j ; i, j ∈ {1, 2, . . . , s}, and consider �i, j = �(Ni ) ∩ φ(N j ). Let Ni be the
kernel of the action of �(Ni ) on X = {L , N }⊥. Then �i, j/(Ni ∩ �i, j ) is a subgroup

1 If V ∼ W , we sometimes identify {V, W }⊥⊥ with V ∩ W .
2 In fact, this observation could also be applied for the problem considered in [22, 36]. The proofs presented
there use more elementary results, though.
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of �(Ni )/Ni
∼= PSL(2, s) of size at least (s + 1)s/2, with the additional property that

gcd(|�i, j/(Ni ∩ �i, j )|, s) �= 1.
Now recall Dickson’s classification of the subgroups of PSL(2, q), with q = ph, p

a prime (see [20, Hauptsatz 8.27, p. 213]); we list the possible subgroups H ≤
PSL(2, q), as follows:

(a) H is an elementary abelian p-group;
(b) H is a cyclic group of order k, where k divides q±1

r , where r = gcd(q − 1, 2);
(c) H is a dihedral group of order 2k, where k is as in (ii);
(d) H is the alternating group A4, where p > 2 or p = 2 and h ≡ 0 mod 2;
(e) H is the symmetric group S4, where p2h − 1 ≡ 0 mod 16;
(f) H is the alternating group A5, where p = 5 or p2h − 1 ≡ 0 mod 5;
(g) H is a semidirect product of an elementary abelian group of order pm with a cyclic

group of order k, where k divides pm − 1 and ph − 1;
(h) H is a PSL(2, pm), where m divides h, or a PGL(2, pn), where 2n divides h.

We only have the following four possibilities for �i, j/(Ni ∩ �i, j ) if �i, j/(Ni ∩
�i, j ) �= PSL(2, s) (for reasons of convenience, we will write �′ for �i, j/(Ni ∩ �i, j )):

(1) �′ is a semidirect product of an elementary abelian group of order ph with a cyclic
group of order ph − 1; in that case, �i, j contains the Sylow p-subgroups of �(Ni ),
and hence coincides with �(Ni ), contradiction;

(2) �′ ∼= A4, then |�′| = 12, and so s = 3;
(3) �′ ∼= A5, then |�′| = 60, and so s ≤ 9;
(4) �′ ∼= S4, then |�′| = 24, and so s ≤ 7.

As s is odd, we hence have that s ∈ {3, 5, 7, 9} if �′ �= PSL(2, s). But as S is an EGQ
(for each point on [∞]), S is classical by Theorem 2.4 if s �= 9, so S is isomorphic to
one of Q(4, s), W (s), s ∈ {3, 5, 7}. As S contains a regular line, the dual of 3.3.1(i)
of [25] yields that S ∼= Q(4, s), s ∈ {3, 5, 7}. If s = 9, then by Theorem 6.3 of the
Appendix, S is a TGQ, so that the result follows from [24] (see also the Appendix for
more details).

Hence we infer that �i, j/(Ni ∩ �i, j ) = �(Ni )/Ni , and it readily follows that each
element of �(Ni ) fixes N j (and thus also that each element of �(Ni ) fixes Ni ). So
�(Ni ) fixes all lines of {L , N }⊥⊥.

Now fix an arbitrary O ∈ {L , N }⊥, and define H (O) = (Go)Ni , where o = O ∩ L
and i is arbitrary, and note that this definition is independent of i by the preceding
observations. Then H (O) is a subgroup of Go of size s, fixing O pointwise. Thus
by Property (M)l , we have that H (O) fixes O⊥ elementwise, and hence O is an axis
of symmetry. So each line of L⊥ is regular (note that Aut(S)L acts transitively on
L⊥\{L}), and so each line of S is regular (as S is of order s – see 1.3.6(iv) of [25]).
By the dual of 5.2.1 of [25], S ∼= Q(4, s).

This concludes the proof of the main result for the case where s = t .
In fact, we can now obtain the following result:

Theorem 4.1. LetS be a GQ of order s, s > 1 and s �= 9, for which L is a regular line.
Suppose N �∼ L is a line such that for each nIN, S admits a group of automorphisms
fixing projLn linewise and acting regularly on N\{n}. Then S ∼= Q(4, s).
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Proof: First suppose that s > 9 and that s is odd. By essentially the same arguments
as in THE CASE s = t (where one now defines �0, j as (�(N0))N j , with N0 = N and
0 �= j , to conclude that �0, j = �), it follows that each line of {L , N }⊥ is an axis of
symmetry, thus S is span-symmetric (in the terminology of Section 10.7 of [25]). All
span-symmetric GQ’s of order s > 1 are classified, see [22], and, independently [36];
they are isomorphic to Q(4, s).

Now suppose that s is even. With �0, j as above, �0, j/(N0 ∩ �0, j ) is a subgroup
of �(N0)/N0

∼= PSL(2, s) of size at least (s + 1)s, with the additional property that
gcd(|�0, j/(N0 ∩ �0, j )|, s) �= 1. Thus we may conclude the result if we are not in one
of the cases (2)-(3)-(4). Now suppose we are. Then s ≤ 4, and the theorem follows
from 6.3 of [25] (recall that s is a prime power).

Finally, suppose that s ≤ 8; then s ∈ {3, 5, 7}, and s is a prime. Fix a point pIL, and
consider the group H = (G p)N of size s. Then clearly, H fixes all lines of {L , N }⊥⊥,
and thus projp N is an axis of symmetry. The result follows as before. �

A USEFUL OBSERVATION

From now on, we suppose that t > s.
Let N be, as before, non-concurrent with L. Put {L , N }⊥ = X = {M0, M1, . . . , Ms}.

For each i ∈ {0, 1, . . . , s}, put yi = Mi ∩ L (so L = {y0, y1, . . . , ys}), and let Hi =
(G yi )N . Finally, put ni = Mi ∩ N (so N = {n0, n1, . . . , ns}). We will sometimes write
� for the set of points incident with the lines of {L , N }⊥.

Let � be an arbitrary �-orbit inS\�. Each Hi , i = 0, 1, . . . , s, clearly fixes at least
one line Oi through yi different from L and Mi , which is, as a point set, contained in
� (recall that s is a prime power). Each point of Oi is a point of � ∪ �, and hence
the points on the lines of {Oi , L}⊥ are completely contained in � ∪ �. Let W be
a line of {Oi , L}⊥ which is not contained in X. The stabilizer �W of W in � acts
transitively on X\{Z}, where Z ∼ W and Z ∈ X . Hence each point of L\{Z ∩ W } is
incident with at least s lines different from L, of which the point sets are completely
contained in � ∪ �. As � acts transitively on the points of L, we thus obtain that
|�| ≥ |�| ≥ s3 − s. So, for each Mi , M j ∈ X, i �= j , and U an arbitrary line through
yi , Mi �= U �= L , we have that

|U (�Mi )M j | ≥ s − 1. (∗)

Now suppose that t < s2, and that there is a point xIL and a point y �∼ x for which
|{x, y}⊥⊥| ≥ 3. Then clearly, by transitivity, the latter holds for every point x incident
with L and every y �∼ x . So |{ni , y j }⊥⊥| ≥ 3. But then (∗) implies that

|{ni , y j }⊥⊥| ≥ s − 1,

contradicting 1.4.1 of [25] and the fact that s < t .
If t = s2, each span of non-collinear points has size 2 by 1.4.1 of [25].
We have obtained the following observation:

Observation 4.2. Suppose S satisfies the assumptions of the STANDING HYPOTHESIS.
If s < t , then for each xIL, the elation group Gx is the full set of such elations.
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Proof: The proof follows immediately from the fact that each span of non-collinear
points which contains x has size 2, in combination with 8.2.4 of [25]. �

GENERALIZED QUADRANGLES OF ORDER (s,t) WITH A REGULAR LINE OF

ELATION POINTS, AND SPLIT BN-PAIRS OF RANK 1.

We use the notation of the preceding paragraph.
Then note the following properties:� � acts 2-transitively on X;� for every Mi ∈ X, Hi is a normal subgroup of �Mi which acts regularly on X\{Mi };

this normal subgroup is the group of elations about xi which acts regularly on N\{ni },
which is guaranteed to be unique by Observation 4.2.

Hence (X, �/N) is a (finite) split BN-pair of rank 1, where N is the kernel of the
action of � onto X, and �/N is one of the following groups as listed in Theorem 3.1
(recall that s is odd):

(a) a sharply 2-transitive group;
(b) PSL(2, s);
(c) R( 3

√
s);

(d) PSU(3,
3
√

s2).

THE SHARPLY 2-TRANSITIVE CASE, s < t ≤ s2

Suppose � acts sharply 2-transitively on X (which has size s + 1). Then by Theorem
3.4B (i) of [11], s + 1 is a prime power. As s is odd, s + 1 is a power of 2, say 2m .
Also, by [14], the fact that S is an EGQ and that s ≤ t , implies that s is the power of
some (odd) prime p. Let us write pn + 1 = 2m .

We distinguish two cases:

(a) n = 2n′ IS EVEN. Then (pn′ + 1)(pn′ − 1) + 2 = 2m , a contradiction, as p is odd.
(b) n IS ODD. Then pn′ + 1 = (p + 1)(pn−1 − pn−2 + . . . + 1), and this is only pos-

sible when n = 1. So S is of order (p, t), where p is a prime. So by Theorem 2.4,
S is classical or dual classical (a situation which can only occur when s = 3, as �

acts sharply 2-transitively on X).

Note that we have, in fact, obtained a proof of the following theorem:

Theorem 4.3. (i) Let S be an EGQ of order (s, t), s, t > 1, where s is the power of
an odd prime. If S has some line L so that the stabilizer of L in the automorphism
group of S contains a subgroup which acts sharply 2-transitively on L, then s = 3,
and S is isomorphic to W (3),Q(4, 3) or Q(5, 3).

(ii) Let S be an EGQ of order (s, t), s, t > 1, where s ≤ t and s is odd. If S has
some line L so that the stabilizer of L in the automorphism group of S contains a
subgroup which acts sharply 2-transitively on L, then s = 3, and S is isomorphic
to W (3),Q(4, 3) or Q(5, 3).
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THE CASES (B)-(C)-(D), s < t ≤ s2

In this paragraph, (X, �/N) is a finite split BN-pair of rank 1, and we may assume
that �/N is one of the following groups:

(b) PSL(2, s);
(c) R( 3

√
s);

(d) PSU(3,
3
√

s2).

As N leaves X elementwise invariant, N and the Hj ’s normalize each other. Also,
for each Hi we have that Hi ∩ N = {1}, thus, as the Hj ’s generate �, we have
that N is in the center Z (�) of � (actually, N is the center of � if we are not
in Case (a), as Z (�/N) = {1}). We now recall an argument due to W. M. Kantor,
cf. [22]. In each of the groups considered in (b)-(c)-(d), we have that, for arbitrary
i = 0, 1, . . . , s, HiN/N ∼= Hi is contained in (�Mi /N)′. As the actions of �Mi on Hi

and HiN/N are equivalent, it follows that Hi ≤ �′, so that � ≤ �′. So � is a perfect
group, and � is a so-called perfect central extension of �/N. Now by, e.g., [40], it
follows that as �/N does not act sharply 2-transitively on X, �/N ∼= PSL(2, s).

Remark 4.4. (Alternative Argument) There is an alternative way to obtain the pre-
vious observation – that is, to obtain that �/N ∼= PSL(2, s). Fix an arbitrary point
pIL, and consider G p. Let nIN be arbitrary but non-collinear with p, and let L0 =
L , L1, . . . , Lt , be the lines incident with p. For i = 0, 1, . . . , t , define Ni = projn Li ,
and put Hi = (G p)Ni . Then since L is an axis of symmetry, H0 is a normal subgroup of
G p. By Theorem 2.1 (2.1.3) of [16], each element of {H1, H2, . . . , Ht } is an (elemen-
tary) abelian group. In particular, (G p)N is abelian. Hence the split BN-pair (X, �/N)
has abelian root groups. The only such groups are given by:

(a) sharply 2-transitive groups;
(b) PSL(2, s).

By exactly the same argument as in THE CASE s = t , that is, by using Dickson’s
classification, we may now conclude that � fixes each line of X⊥ (note that it is
essential to identify �/N with PSL(2, s)).

Assume that � acts semiregularly on S\�. Let � be an arbitrary �-orbit in S\�.
As |�| ≥ s3 − s, and as � is a perfect central extension of �/N ∼= PSL(2, s), by
[15, p. 302] we may conclude that |�| = s3 − s and that � ∼= SL(2, s). Note that if
x ∈ �, and if MIx and M ∼ L , that M\projL x is completely contained in � (cf. A
USEFUL OBSERVATION). Since � has size s3 − s, each point of L is incident with
precisely s + 1 lines which are completely contained in � ∪ � (as point sets). Define
the following point-line incidence structure S ′ = (P ′, B ′, I ′):� Lines. The elements of B ′ are the lines of S ′ and they are of two types:

(1) the lines of {L , N }⊥ ∪ {L , N }⊥⊥;
(2) the lines of S which contain a point of � and a point of �.� Points. The elements of P ′ are the points of the incidence structure and they are just
the points of � ∪ �.
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Then by [40], S ′ is a subGQ of S of order s. Thus, by 2.2.2(ii) of [25], t = s2. Each of
the elation points of L in S is also an elation point of S ′ (by a combination of 2.2.2 and
8.1.1 of [25]), and L is a regular line in S ′, so by THE CASE s = t,S ∼= Q(4, s). As
there are s + 1 distinct �-orbits in S\�, it immediately follows that L is contained in
at least (and then precisely, by straightforward counting) s3 + s2 distinct subGQ’s ofS
of order s, all isomorphic to Q(4, s). By [38] (see also, implicitly, [30]), it follows that
each point incident with L is a translation point, and so by [37], S is the translation
dual of the point-line dual of a flock GQ S(F). Now suppose that � does not act
semiregularly on S\�. As � fixes X⊥ elementwise, we then have that � contains
a nonidentity element which fixes a subGQ S ′ of S of order s pointwise. Hence, by
2.2.2(ii) of [25] we can infer that t = s2. Again, we have that S ′ ∼= Q(4, s). If N′ is the
kernel of the action of � on S ′, it follows that |N′| = 2 (by 1.4.2(ii) of [25]). As N′ is
a normal subgroup of � of size 2, N′ ≤ Z (�). On the other hand, if one considers the
restriction of � to S ′ ∼= Q(4, s), then it is straightforward to see that �/N′ ∼= SL(2, s)
(as each of the Hi ’s induces a full group of symmetries about Mi in S ′, and recalling
[22, 36]). But this implies that � is a perfect central extension of SL(2, s) of size
2(s3 − s), which cannot occur (see p. 302 of [15]).

The main result follows.

5. From elation points to centers of transitivity, and beyond

It is our purpose to obtain the following result, that generalizes (but uses the proof of)
the Main Result of [37], and Main Theorem 2 of [41]. The proof almost completely
follows from the above, except for the sharply 2-transitive case. There, we have to
use a group theoretical technique of [22]. As a corollary, we will show that in the
main result, one can replace ‘elation point’ by ‘center of transitivity’. In fact, we will
even show that in each of the (local) subresults, one can replace ‘regular action’ by
‘transitive action’.

Theorem 5.1. (Main Structure Theorem) Let S be a GQ of order (s, t), s, t > 1 and
s �= 9, for which L is a regular line. Suppose N �∼ L is a line such that for each nIN,
S admits a group of automorphisms fixing projLn linewise and acting transitively on
N\{n}. Then one of the following holds:

(i) S ∼= Q(4, s);
(ii) t = s2, and there are precisely s + 1 subGQ’s of order s, all isomorphic toQ(4, s),

which mutually intersect in the (s + 1) × (s + 1)-grid defined by {L , N }⊥⊥.

Proof: First put s = t .
Start with assuming that s is even. Write s = pu1

1 pu2
2 · · · pur

r , where p1, p2, . . . , pr

are distinct primes (one of them being 2), and where u1, u2, . . . , ur are natural numbers.
Let G p be the group of all whorls about p, that is, the group of collineations fixing
p linewise, where pIL is arbitrary (but fixed). Let i ∈ {1, 2, . . . , r}, and consider a
Sylow pi -subgroup H of (G p)N . In the projective plane �L , H induces (faithfully) a
collineation group fixing the point corresponding to p linewise, and fixing the point
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corresponding to {L , N }⊥. As gcd(|H |, s − 1) = 1, H fixes the line projp N (as a line
of �L ) pointwise. We conclude that H, as a collineation group of S, fixes projN p
linewise. Now consider the group

H∗ = 〈H ′‖H ′ is a Sylow p j -subgroup of (G p)N for some j〉.

Then |H∗| is divisible by s, and H∗ is a group of whorls about both p and projN p.
Suppose that |H∗| > s. Then by 8.1.1 of [25], there is a nontrivial element θ ∈ H∗

fixing precisely a subGQ � of S of order (1, s) elementwise. One notes that the order
of θ divides s − 1 (and hence that order is at least 3). Also, 〈θ〉 acts semiregularly
on the points of S\�. Now consider a line U ∈ {L , N }⊥ which is not incident with a
point of �. Then |U 〈θ〉| ≥ 3, and each line of U 〈θ〉 is contained in {L , N }⊥. Moreover,
each line of U 〈θ〉, and hence of {L , N }⊥, is concurrent with the same s + 1 lines of �.
This is a contradiction (for, in a GQ of order (s, t), s, t > 1, a span of a regular pair of
non-concurrent lines cannot have the property that its trace is contained in a subGQ
of order (1, t)), so |H∗| = s, and it follows that H∗ is a normal subgroup of (G p)N .
Hence with � the group generated by the H∗’s (letting p vary), and with N the kernel
of its action on X, (X, �/N) is a split BN-pair of rank 1.

Let s be odd. Suppose xIL is so that there is some point y I N , y �∼ x for which
{x, y}⊥⊥ has size at least 3. Then by A USEFUL OBSERVATION, we have that {x, y} is
a regular pair of points, and this is true for all xIL and all y I N , x �∼ y. Now applying
the same deduction as in the even case, and with the same notation, we may conclude
that (X, �/N) is a split BN-pair of rank 1 (in fact, it will be clear later on that this
case cannot occur).

Now suppose, for general (s, t), 1 �= s ≤ t , that each span of two non-collinear
points of which one point is incident with L and the other with N, has size 2, and note
that if s < t , we already knew that this is always the case (the case where s is even has
the same proof). Let yi I L be arbitrary. Consider the group H (Mi , yi ) of all whorls
about yi fixing N. Then by the proof of 8.1.1 of [25], we have that each element θ

of H (Mi , yi ) that fixes at least two distinct elements of X\{Mi }, is the identity on
X (and then also on S, as θ is a whorl about yi , and by 2.2.2 and 2.4.1 of [25]). So
(X\{Mi }, H (Mi , yi )) is a Frobenius group, and the Theorem of Frobenius (cf. [11,
p. 86]) implies that H (Mi , yi ) has a unique normal subgroup Hi acting regularly on
X\{Mi } and it has size s as an automorphism group of S. Hence with � the group
generated by the H (M j , y j )’s and N the kernel of the action of � on X, (X, �/N) is
a finite split BN-pair of rank 1.

By the preceding considerations, we can conclude that we have the following pos-
sibilities:

(a) �/N is a sharply 2-transitive group on X;
(b) �/N ∼= PSL(2, s), t = s2 and we have the conclusion of Theorem 5.1, except

when s = 4 and � is a perfect central extension of SL(2, 4) of size 2(s3 − s) = 120
(which gives no contradiction with p. 302 of [15]); then we have that S ∼= Q(5, 4)
by [29], as S contains a subGQ of order 4 isomorphic to Q(4, 4) (by the end of
Section 4);

(c) �/N ∼= PSL(2, s), t = s and we have the conclusion of Theorem 5.1.
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Regarding Case (a), we refer to [22]. �

We are ready to obtain:

Theorem 5.2. SupposeS is a generalized quadrangle of order (s, t), s �= 1 �= t , which
has a line L each point of which is a center of transitivity. Furthermore, suppose that
Property (R) is satisfied for L. Then we have one of the following:

(i) s = t and S ∼= Q(4, s);
(ii) t = s2, s is even and S ∼= Q(5, s);

(iii) S is the translation dual of the point-line dual of a flock GQ S(F).

Conversely, each of the classes described in (i)-(ii)-(iii) satisfies the assumptions of
the theorem.

Proof: By Theorem 5.1, we only have to consider the case s = t = 9 (the case s =
9 < t then follows from the proof of Theorem 5.1 and the proof of the Main Result).
Let s = t = 9. By the proof of the previous result, we know that we are in one of the
following cases:

(a) for each xIL and y �∼ x, {x, y}⊥⊥ = {x, y};
(b) each point incident with L is regular.

Suppose we are in Case (a), and fix some point pIL. Then by 8.2.4 of [25], the group
of all whorls about p contains a normal subgroup which acts regularly on the points
of S not collinear with p. Therefore S p is an EGQ, and the result follows from the
Appendix to this paper.

Suppose we are in Case (b). As s = 9 is odd, 1.5.2(v) of [25] implies that L is
antiregular (cf. 1.3 of [25]). This contradicts the fact that L is regular. The theorem is
proved. �

6. Local moufang conditions and the main observations: classification

J. Tits [32] defines a generalized quadrangle of Moufang type, or a Moufang gener-
alized quadrangle, as a generalized quadrangle S = (P, B, I ) in which the following
conditions hold:

(M) for any dual panel (p, L , q) of S (so pI L I q �= p), the group of all automor-
phisms of S fixing p and q linewise and L pointwise is transitive on the points
which are incident with a given line UIp, U �= L , and different from p;

(M′) the point-line dual notion of (M).

A GQ which satisfies either Property (M) or Property (M′) is generally called half
Moufang.

The Moufang condition for generalized quadrangles is a special case of the Mo-
ufang condition for generalized polygons, as introduced by Tits in [44]. Generalized
quadrangles are precisely the generalized 4-gons. One of the great subtheories in the
theory of finite projective planes — i.e. the generalized 3-gons — is the Lenz-Barlotti
classification [23, 1], which determines the possible subconfigurations of point-line
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pairs (p, L) of a projective plane for which the plane is (p, L)-transitive. If pIL, then
one also speaks of the Lenz classification of projective planes.

For GQ’s, a Lenz classification would be a determination of the possible subconfig-
urations of triples (p, L , q) of a GQ, where pI L I q �= p, for which the GQ is Moufang.
Some configurational results were already obtained by several authors, see [39] for a
detailed account:

– the result of J.A. Thas, S.E. Payne and H. Van Maldeghem [32], which asserts that
every half Moufang GQ is automatically Moufang;

– the result of P. Fong and G.M. Seitz [12, 13] for generalized quadrangles, which
implies that each Moufang GQ is classical or dual classical3;

– the classification of K. Thas and H. Van Maldeghem [43] of the GQ’s for which each
point is an elation point (the so-called ‘strong elation generalized quadrangles’),
which is more general than the first result in this enumeration.

In [41], we then presented a theory which classified the possible subconfigurations

{(p, L , q)|| (p, L , q) is Moufang and L is regular},

i.e. the possible subconfigurations of axes of symmetry of a GQ. That manuscript also
contains the solutions of several open problems in the field.

The most general natural Moufang condition for GQ’s S = (P, B, I ), which was
introduced in [43, 42], is the following:

(UM) for any panel (p, L , q) of S, and any line M I q, M �= L , the group of all auto-
morphisms of S fixing all lines incident with p and fixing M, acts transitively
on the set of points incident with M, and different from q;

(UM′) The point-line dual notion of (UM).

The main result of the present paper, especially the formulation of Theorem 5.1,
immediately translates into the following contribution to the problem:

Theorem 6.1. Let S be a GQ of order (s, t), s, t > 1 and s �= t , for which L is a
regular line.

(i) Suppose s �= 9, and let N �∼ L be a line such that for each nIN, (projLn, N , n)
satisfies (UM). Then one of the following holds:

(a) S ∼= Q(4, s);
(b) t = s2, and there are precisely s + 1 subGQ’s of order s, all isomorphic

to Q(4, s), which mutually intersect in the (s + 1) × (s + 1)-grid defined by
{L , N }⊥⊥.

(ii) Suppose that for all N �∼ L and each nIN, (projLn, N , n) satisfies (UM). Then one
of the following holds:

3 Later on, work of S.E. Payne and J.A. Thas culminated in an almost complete, elementary proof of that
result, see Chapter 9 of [25]. Using slightly more group theory, first W.M. Kantor [21] and then the author
[34] completed this geometric approach. Without any group theory, J.A. Thas recently obtained the same
result [31]. We also refer to the work of J. Tits and R. Weiss [46].
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(a) S ∼= Q(4, s);
(b) t = s2, s is even and S ∼= Q(5, s);
(c) S is the translation dual of the point-line dual of a flock GQ S(F).

The converse also holds.

Remark 6.2. If one replaces (UM) in Theorem 6.1 by (M), then it is not so hard to
obtain the same conclusion of Theorem 6.1, only with the use of the classification of
span-symmetric generalized quadrangles of order s, the main result of [37] and Main
Theorem 2 of [41]. We leave the proof for the interested reader.

Appendix A: Alternative Proof for the Case s = t

In the appendix, we will obtain the Main Result for THE CASE s = t as a corollary of
the following theorem.

Theorem 6.3. Let (S x , H ) be an EGQ of order s, s > 1, for which there is a regular
line L incident with x. Then (S x , H) is a TGQ.

Proof: If s is even, see [33]. Suppose s is odd. By [33], H contains a (full) group of
symmetries H (L) of size s about L. It is clear that H (L) is a normal subgroup of H.
Now consider the affine plane AL which arises from �L by deleting L and the points
incident with L. ThenAL is a translation plane (cf. [19, p. 100]) with translation group
H/H (L), hence H/H (L) is (elementary) abelian. By Theorem 2.3 of [16], it follows
that H is abelian, and the theorem follows. �

So, under the STANDING HYPOTHESIS of the main result (and using the same notation),
it follows that each point on L is a translation point, hence every line of S is regular.
So S ∼= Q(4, s) by the point-line dual of 5.2.1 of [25], and by 3.2.1 of loc. cit.

We also have

Corollary 6.4. Let S = (S x , H ) be an EGQ of order 9, for which there is a regular
line L incident with x. Then S ∼= Q(4, 9).

Proof: By Theorem 6.3, (S x , H ) is a TGQ with translation point x. The corollary
then follows from IX of [24]. �
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