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Abstract Using Ram’s theory of alcove walks we give a proof of the Bernstein pre-
sentation of the affine Hecke algebra. The method works also in the case of unequal
parameters. We also discuss how these results help in studying sheaves of nearby
cycles on affine flag manifolds.

1 Introduction

1.1 Main result

In a recent paper [14], Ram has introduced the notion of alcove walk and used it in
order to describe the affine Hecke algebra associated to a root datum.

In these notes we will show that, with a little extra work, this concept yields a proof
of the Bernstein presentation of the affine Hecke algebra H. The method applies to
the case of unequal parameters as well (see Sect. 3.4), and we obtain a proof which
might be considered less technical than the one given by Lusztig [13].

The main new ingredient beyond Ram’s paper is the following theorem which we
will state here in the introduction in a special case without using the language of
alcove walks. Let Wa be the affine Weyl group associated with some root system,
and let s0, . . . , sr denote the simple reflections, which generate Wa . Denote by a the
base alcove in the “standard apartment”.

Theorem 1.1.1 Let w ∈ Wa . For an expression

w = si1 · · · sin (1.1.1)
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of w as a product in the generators (which does not have to be reduced), consider the
element

�(w) := T ε1
si1

· · ·T εn
sin

in the affine Hecke algebra, where the εν ∈ {±1} are determined as follows. Let b
be an alcove far out in the anti-dominant chamber (“far out” depends on w, and the
result will then be independent of b, see Sect. 2.3 for a precise definition). For each ν,
consider the alcove cν := si1 · · · siν−1a, and denote by Hν the affine root hyperplane
containing its face of type iν . We set

εν =
{1 if cν is on the same side of Hν as b

−1 otherwise

Then the element �(w) is independent of the choice of expression (1.1.1).

This is a special case of Theorem 3.1.1 in the text. It is implicitly contained in
Ram’s paper, and I actually learned its statement from Ram before his paper was
finished. As an anonymous referee pointed out to me, the theorem (as stated above)
follows immediately from Schwer’s results, cf. [16] Lemma 6.1 and the discussion
following it; see also [15].

We use this theorem to infer, from Ram’s arguments, a proof of the Bernstein
presentation of the affine Hecke algebra, starting from the Iwahori-Matsumoto pre-
sentation. Ram takes the Bernstein presentation as the definition of the affine Hecke
algebra.

As a corollary to Theorem 3.1.1, we get the existence of so-called minimal expres-
sions (cf. the paper [11] by Haines and Pettet) for the elements �λ ∈ H. These are
related to certain nearby cycles sheaves on the affine flag variety. See Sect. 4.

2 The alcove walk algebra

2.1 Notation

In this section we will collect the relevant notation; for more details on these notions,
see Humphreys’ book [12] and the papers by Lusztig [13], Haines and Pettet [11] and
Haines, Kottwitz, and Prasad [9], for instance. Note that Lusztig uses a setup which
is dual to ours: he works with roots where we use coroots, and conversely.

Let (X∗,X∗,R,R∨,�) be a reduced and irreducible based root datum with
� being the set of simple roots, and denote by W its Weyl group, generated by
the simple reflections {sα; α ∈ �}. Denote by W̃ := X∗ � W the extended affine
Weyl group. For λ ∈ X∗, we denote by ελ the corresponding element in W̃ . Let
Sa = {sα; α ∈ �} ∪ {s0}, where s0 = εα̃∨

sα̃ and where α̃ is the unique highest root.
The subgroup Wa ⊆ W̃ generated by Sa is the affine Weyl group of the root system
associated with our root datum, and (Wa,Sa) is a Coxeter system.

We define a length function 
: W̃ −→ Z as follows:


(wελ) =
∑
α>0

w(α)<0

|〈α,λ〉 + 1| +
∑
α>0

w(α)>0

|〈α,λ〉|.
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This function extends the length function on Wa . We have a short exact sequence

1 −→ Wa −→ W̃ −→ X∗/Q∨ −→ 0,

where Q∨ is the coroot lattice, i.e. the subgroup of X∗ generated by R∨. The restric-
tion of the projection W̃ −→ X∗/Q∨ to the subgroup � ⊆ W̃ of elements of length

0 is an isomorphism �
∼=−→ X∗/Q∨.

We extend the Bruhat order on Wa by declaring

wτ ≤ w′τ ′ ⇐⇒ w ≤ w′, τ = τ ′, w,w′ ∈ Wa, τ, τ ′ ∈ �.

For an affine root β = α − n, α ∈ R, n ∈ Z, we have the hyperplane Hβ = Hα,n =
{x ∈ X∗,R; 〈α,x〉 = n} in X∗,R := X∗ ⊗Z R. An alcove is a connected component of
the complement of the union of all affine root hyperplanes inside X∗,R. The choice
of � determines a base alcove a which is the unique alcove contained in the dom-
inant finite Weyl chamber whose closure contains the origin. The group W̃ acts on
X∗,R, and since the union of all affine root hyperplanes is stable under this action,
we have an action of W̃ on the set of alcoves. The affine Weyl group Wa acts simply
transitively on the set of alcoves, so we can identify Wa with the set of alcoves in the
standard apartment X∗,R by mapping w ∈ Wa to the alcove wa. On the other hand,
the group � of elements of length 0 in W̃ is precisely the stabilizer of the base alcove
inside W̃ . If λ denotes the image of the origin under τ ∈ �, then τw0w = ελ, where
w is the longest element in the stabilizer Wλ of λ in W , and w0 is the longest element
in W .

Define an equivalence relation on X∗,R by saying that x ∼ y if and only if for each
affine root hyperplane H , either x, y ∈ H , or x and y lie in the same half-space of
X∗,R with respect to H . The equivalence classes are called facets. The support of a
facet is the affine subspace it generates. The alcoves are precisely the facets whose
support is X∗,R, and the facets whose support has codimension 1 are called faces.
Given an alcove a, the faces (and facets) contained in the closure of a are called faces
(and facets, resp.) of a. The faces of the base alcove correspond bijectively to the
simple affine roots, and hence to the elements of Sa . The concerning element of Sa is
called the type of the face, and we extend this notion to all faces using the action of
Wa .

Let r = #� be the semi-simple rank of the root datum. We order the simple re-
flections in some way and denote them by s1, . . . , sr in the sequel. The group � acts
on the set of simple affine reflections (resp. on the set of simple affine roots) and for
τ ∈ � we define τ(i) by τsiτ

−1 = sτ(i).
Let us also briefly recall the definition of the affine Hecke algebra. We fix a ground

ring k, an invertible element v ∈ k and set q = v2. For example, k might be a field (as
in [14]), or we could let k = Z[v, v−1] be the ring of Laurent polynomials over the

integers. We will often write q
1
2 instead of v. The braid group of W̃ is the group with

generators

Tw, w ∈ W̃ ,

and relations

TwTw′ = Tww′ for w,w′ ∈ W̃ with 
(ww′) = 
(w) + 
(w′).
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The affine Hecke algebra H is the quotient of the group algebra of the braid group
(over our fixed ground ring k), by the two-sided ideal generated by

(Ts + 1)(Ts − q), s ∈ Sa.

We denote the image of Tw in H again by Tw . We sometimes abbreviate Tsi to Ti .
Further, it is often useful to use the element T̃w := q−
(w)/2Tw instead of Tw . We use
T̃i as an abbreviation for T̃si .

For λ ∈ X∗, we define �λ ∈H as follows: write λ = λ1 −λ2 with λ1, λ2 dominant,
and let �λ = T̃ελ1 T̃

−1
ελ2

(which is well-defined as an element of H).

It is not hard to see that the elements Tw , w ∈ W̃ form a k-basis of H. We note the
following lemma which exhibits variants of this basis and which is easily proved by
using that T −1

i = q−1Ti + (q−1 − 1).

Lemma 2.1.1 Fix a reduced expression w = si1 · · · si
τ for each w ∈ W̃ , and fix signs

εi(w) ∈ {±1}. Then the set of all elements T
ε1(w)
i1

· · ·T ε
(w)
i


Tτ ∈ H is a k-basis of H.

Similarly, the elements �λTw , λ ∈ X∗, w ∈ W (and likewise the elements Tw�λ)
form a k-basis of H. (See [13], Prop. 3.7, or [9] Lemma 1.7.1.)

2.2 Definition of the alcove walk algebra

The alcove walk algebra A is the (non-commutative) k-algebra with generators

c+
i , c−

i , f +
i , f −

i , i = 0, . . . , r, tτ , τ ∈ �

and relations

c−
i = c+

i + f −
i , f −

i = −f +
i , i = 0, . . . , r,

tτ ?i =?τ(i)tτ , ? ∈ {c+, c−, f +, f −}, τ ∈ �,

tτ tτ ′ = tττ ′ , τ, τ ′ ∈ �

The elements c+
i , c−

i , f +
i , f −

i are called the positive crossing, the negative crossing,
the positive folding and the negative folding of type i, respectively. We have a nat-
ural map �:A −→ H from the alcove walk algebra to the affine Hecke algebra by
mapping

c+
i �→ T̃i , c−

i �→ T̃ −1
i , f +

i �→ q
1
2 − q− 1

2 , f −
i �→ q− 1

2 − q
1
2 , tτ �→ Tτ .

We will determine the kernel of this map (see Proposition 3.2.1), and hence get a
new description of the affine Hecke algebra as a certain quotient of the alcove walk
algebra.

2.3 Orientation

In order to explain the terminology alcove walk algebra, we fix an orientation in the
following sense.
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Definition 2.3.1 A root hyperplane orientation is given by distinguishing, for each
affine root hyperplane H , a positive half-space among the two half-spaces which
form the complement of H in X∗,R, such that either

(1) for any finite set of affine root hyperplanes, the intersection of the corresponding
negative half-spaces is non-empty (and hence contains an alcove), or

(2) for any finite set of affine root hyperplanes, the intersection of the corresponding
positive half-spaces is non-empty.

(Here the half-space in X∗,R \ H which is not positive, is called negative.)

Given an orientation of type (1), and an alcove b in the intersection of the negative
half-spaces associated to a fixed finite set of affine root hyperplanes, we can say
that for these hyperplanes the orientation is given by prescribing that crossing the
hyperplane “in the positive direction”, i.e. from the negative to the positive half-space,
is the same as “walking away” from b.

There are two obvious examples for orientations:

Example 2.3.2 If b is a fixed alcove, we can use it to define an orientation by say-
ing that for each hyperplane, the negative half-space is the one containing b. We
can express this by saying that the most negative point of the orientation lies inside
b. Analogously, we get another orientation by saying that for each hyperplane, the
positive half-space is the one containing b.

Example 2.3.3 The orientation which will be most important for us is given by call-
ing, for each positive root α, and each j ∈ Z, the half-space

{x ∈ X∗,R; 〈x,α〉 > j}
the positive half-space. In other words (cf. [3]), the negative half-space is the unique
half-space which contains a quartier of the form y + C−, where C− denotes the anti-
dominant Weyl chamber. We can describe this orientation by saying that the most
negative point lies infinitely deep in the anti-dominant chamber. We will call this
orientation the standard orientation; it is the one used in [14]. It also occurs in the
paper [8] by Gaussent and Littelmann.

Alternatively, we could replace the anti-dominant chamber by any other Weyl
chamber. Orientations of this type implicitly play a role in [7].

2.4 Alcove walks

We will now give a formal definition of the notion of alcove walk, and simultaneously
define the end-point end(γ ) ∈ W̃ for an alcove walk γ . For a more “pictorial”, and
probably more accessible definition, see [14].

Definition 2.4.1 Fix an orientation as defined in the previous section. Alcove walks
are pairs (w, τ) where w is a word in the c+

i , c−
i , f +

i , f −
i , i ∈ {0, . . . , r}, and where

τ ∈ �, subject to certain conditions. The length of the alcove walk is by definition
the length of the word w. We define the conditions an alcove walk has to satisfy by
induction on its length.
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(1) If τ ∈ �, then (∅, τ ) is an alcove walk of length 0 (where ∅ denotes the empty
word). Its end point is end((∅, τ )) = τ ∈ W̃ .

(2) If (w, τ) is an alcove walk, with w = w1 · · ·wn a word of length n, and wn+1 ∈
{c+

i , c−
i , f +

i , f −
i }, such that either

• end((w,0))a is on the negative side of the wall of type i adjacent to the alcove
end((w,0))a, and wn+1 ∈ {c+

i , f −
i }, or

• end((w,0))a is on the positive side of the wall of type i adjacent to the alcove
end((w,0))a, and wn+1 ∈ {c−

i , f +
i },

then (wwn+1, τ ) is an alcove walk, and its end point is

end((wwn+1, τ )) =
{

end((w,0))siτ if wn+1 ∈ {c+
i , c−

i }
end((w, τ)) if wn+1 has the form f ±

i .

(3) All alcove walks arise in this way.

Since we put the �-part into the second component, the property of being an
alcove walk is actually independent of the �-component, and furthermore for the end
points we have end((w, τ)) = end((w,0))τ . Because in the definition given here, we
build the walks “from left to right”, we always have to insert the next step between
the given walk and the τ , so that the relevant information about the orientation of the
adjacent walls is given by end((w,0)) rather than by end((w, τ)).

The sequence of end points

end((w1,0)), end((w1w2,0)), . . . , end((w1 . . .wn,0)) ∈ Wa

should be seen as a sequence of alcoves in the standard apartment X∗,R—hence the
name alcove walk.

We call an alcove walk (w, τ) non-folded, if no symbols of the form f +
i , f −

i occur
in the word w. We consider alcove walks as elements of the alcove walk algebra in
the obvious way. As the following lemma shows, we can see the choice of orientation
as the choice of a basis of the alcove walk algebra.

Lemma 2.4.2 The set of alcove walks is a basis of the alcove walk algebra as a
k-module.

Proof This is [14], Lemma 3.1; since Ram does not give a proof, for the convenience
of the reader we produce a proof here. To simplify the notation, let us suppose that
� = {0}. Because of the relations c−

i = c+
i + f −

i , f +
i = −f −

i , it is clear that A is
isomorphic to the free algebra with generators c+

i , f −
i . Hence the set B of words in

{c+
i , f −

i ; i = 0, . . . , r} is a k-basis of A. Now fix an orientation and denote by W the
set of alcove walks. We have an obvious bijection W −→ B by mapping each walk
to the element of B obtained by changing all exponents of c’s to +, and all exponents
of f ’s to −. We order W in some way, such that whenever a walk w1 has more c’s
in it than a walk w2, then w1 > w2. The bijection W ∼= B induces an order on B
with the same property. Now if we express each walk in W in terms of the basis B
and take the coefficients as the column vector of an (infinite) square matrix (using the
order we defined), then this matrix will be upper triangular with 1’s on the diagonal,
and it follows that W is a basis as well. �
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3 The independence result

3.1 Product expressions

We again fix an orientation as defined in Sect. 2.3. Given a word si1 · · · sik τ (not
necessarily reduced) in the extended affine Weyl group, we can associate to it, or to
the corresponding gallery, a unique non-folded alcove walk c

ε1
i1

· · · cεk

ik
tτ , εi ∈ {+,−}.

On the other hand, we can associate to the given word the element

T
ε1
i1

· · ·T εk

ik
Tτ

in the affine Hecke algebra. We also denote this element by

T ε
i1

· · ·T ε
ik
τ,

i.e. we let ε denote the appropriate sign, depending on ν ∈ {1, . . . , k}.
As a variant, we can consider alcove walks which do not start at the base alcove,

but at another alcove, say at wa. We will denote by

T
ε(w)
i1

· · ·T ε(w)
ik

the corresponding element in H, where again ε(w) is understood to vary with ν ∈
{1, . . . , k}.

Theorem 3.1.1 Let w ∈ W̃ be an element in the extended affine Weyl group, and let

w = si1 · · · sik τ = sj1 · · · sj

τ

be expressions for w (which need not be reduced). Then in the affine Hecke algebra,
we have the equality

T ε
i1

· · ·T ε
ik
Tτ = T ε

j1
· · ·T ε

j

Tτ .

Proof We clearly may assume that τ = id, i.e. that w actually is an element of the
affine Weyl group Wa . The affine Weyl group is a Coxeter group, and its presentation
by generators and relations implies that we can get the expression sj1 · · · sj


from
si1 · · · sik by applying transformations of the following kinds (in a suitable order):

(1) nil-move: delete a subexpression of the form sisi from the word
(2) inverse nil-move: insert a subexpression of the form sisi somewhere
(3) braid move: replace a subexpression sisi′si · · · by si′sisi′ · · ·, where both these

words consist of mi,i′ letters, mi,i′ being the entry in the Coxeter matrix corre-
sponding to i, i′.

(In fact a much stronger property, the so-called word property holds: we can get
from one reduced expression to any other reduced expression using only braid moves
(see [17], [1], Theorem 3.3.1).)

Hence it is enough to prove that these types of transformations do not change the
product T ε

i1
· · ·T ε

ik
(of course the signs ·ε have to be taken into account). For nil-moves
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and inverse nil-moves this is obvious, since the two adjacent T ’s will have exponents
1 and −1 (or −1 and 1), thus will cancel.

What remains to show is that for all i, j , and for all w ∈ Wa , we have

T
ε(w)
i T

ε(w)
j T

ε(w)
i · · · = T

ε(w)
j T

ε(w)
i T

ε(w)
j · · · , (∗) (3.1.1)

where both products have mi,j factors. (Of course, in the case that all the ε(w)’s are
equal, the equality follows immediately from the braid relations in the affine Weyl
group.)

Since only finitely many alcoves are involved in the alcove walk, by the defini-
tion of orientation, there is an alcove b = va, v ∈ Wa , such that the positive/negative
direction is determined by whether we are approaching b, or not. We may assume
without loss of generality that b is the most negative point (rather than the most pos-
itive point) for the finitely many hyperplanes involved, because otherwise we could
replace the orientation by its “inverse”: the equality we have to check is the same
for both of these orientations. Denote by o the orientation given by making the base
alcove the most negative point, and by εo the signs defined with respect to o. We then
have

ε(w) = εo(v
−1w)

in the obvious sense. Hence it is enough to check the assertion of the theorem for
the orientation o, i.e. we may assume that the signs are determined by whether we
come closer to a fixed point in the interior of the base alcove, or not; in other words
whether the length of the element in the affine Weyl group corresponding to the alcove
decreases, or increases.

The coset wWi,j of the parabolic subgroup Wi,j ⊆ Wa generated by si , sj has a
unique element of minimal length, and a unique element of maximal length, and there
are two ways to go from the minimal length element to the maximal length element.
We multiply (3.1.1) on the right by the inverse of the right hand side, and get an
equation of the form

T
ε1
i T

ε2
j · · ·T ε2mi,j

j = 1,

and the alcove walk corresponding to the left hand side of this equation starts at wa
and then comes back to wa, seeing each alcove in the coset wWi,j exactly once.
Since the situation is symmetric, we may and will assume that we start in the positive
direction. Then we continue in the positive direction until we get to the element of
maximal length, from there we go in the negative direction until we get to the element
of minimal length, and finally go in the positive direction back to wa, where we
started.

The string of T ’s corresponding to the part of the walk going from the maximal to
the minimal element is a string of length mi,j , and all T ’s have an exponent −1. We
may hence replace this string with the string which has i and j exchanged because of
the braid relations in the affine Weyl group, and we then get that the whole product
cancels. �

Note that the statement of the proposition remains true, if we replace Ti by T̃i

everywhere (the same proof applies).
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3.2 The kernel of �

As before, we fix an orientation. Recall that the notion of alcove walk depends on
the orientation, but that neither the definition of the alcove walk algebra, nor the
morphism �:A −→H do. Therefore the following proposition is a little surprising.

Proposition 3.2.1 The kernel of �:A −→H is the two-sided ideal J ⊆ A generated
by

f +
i − (q

1
2 − q− 1

2 ), i = 0, . . . , r,

p − p′ for p,p′ non-folded alcove walks with the same end point.

We remark that this definition implies in particular that c−
i − (c+

i )−1 ∈ J for all i

(of course, these elements obviously lie in ker�).

Proof Theorem 3.1.1 shows that � factors through a morphism A/J −→H which of
course is again surjective. Fixing a non-folded walk pw from a to wa for each w ∈ W̃

gives us a set of elements in A/J which generates A/J as a k-module. Lemma 2.1.1
implies that this set is mapped to a basis of H, and hence the morphism A/J −→ H
is an isomorphism. �

Each choice of orientation hence gives us a basis of H consisting of the images of
non-folded walks to wa, w ∈ W̃ , so in a sense the choice of orientation corresponds
to the choice of a basis for H; cf. Remark 3.6 in [14]. Of course we do not get every
basis of H in this way.

It is easy to see (and not surprising) that neither Theorem 3.1.1 nor the proposition
above hold for “orientations” which do not satisfy the condition imposed in Sect. 2.3.

Remark 3.2.2 The notion of alcove walk (for the standard orientation) is related to
the Bruhat-Tits building. Assume that q is the number of elements of the residue class
field of a local field K , and fix a split reductive algebraic group G over K which gives
rise to the root system under consideration.

Denote by ρ the retraction of the Bruhat-Tits building to the standard apartment
from an alcove “far out” in the anti-dominant chamber. More precisely, for each al-
cove in the building, its image under such retractions will depend on the alcove, but
will stabilize if the alcove is sufficiently deep in the anti-dominant chamber, and this
gives us the image of the alcove under ρ. See [3] 2.9.1.

Then to each non-stuttering gallery in the building (starting at the base alcove)
we can associate via this retraction a unique alcove walk. Let b be an alcove in the
building which is part of such a gallery. If ρ(b) is on the positive side of the wall of
type i adjacent to it, then there are q − 1 alcoves b′ adjacent to b, but different from
it, such that ρ(b′) = ρ(b), and the alcove walk will have a positive folding precisely
if one of these alcoves b′ is the successor of b in the gallery. This point of view is
explained in more detail in [8], see also [15].
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3.3 The Bernstein relations

In this section we work with the standard orientation, i.e. we put the most negative
point infinitely deep in the anti-dominant chamber. We define elements tw, θλ ∈ H
(w ∈ W , λ ∈ X∗) as follows. For w ∈ W , let p ∈ A be a non-folded alcove walk from
a to w−1a, and let tw := �(p)−1 ∈ H.

For λ ∈ X∗, denote by θλ ∈H the image under � of a non-folded alcove walk with
end point ελ.

The following proposition is Proposition 3.2 in [14]. It shows that the Bernstein
relations are satisfied for the elements θλ, tw in H̃ . See also [16], Example 6.3, where
some special cases are considered.

Proposition 3.3.1 Let τ ∈ �, λ,μ ∈ X∗, w ∈ W , and 1 ≤ i ≤ r , and denote by αi the
corresponding simple root. Let α̃ ∈ R be the positive root such that Hα0 = Hα̃,1 :=
{x ∈ X∗,R; 〈α̃, x〉 = 1} is the wall of a which is not a wall of the Weyl chamber a lies
in. Then we have

(1) θλθμ = θλ+μ

(2) tsi tw =
{

tsiw if 
(siw) > 
(w)

tsiw + (q
1
2 − q− 1

2 )tw otherwise

(3) tsi θλ = θsiλtsi + (q
1
2 − q− 1

2 )
θλ−θsi λ

1−θ−α∨
i

(4) �(c+
0 )tsα̃ = θα̃∨ , where sα̃ denotes the reflection associated with α̃.

(5) Let τ ∈ � be an element of W̃ of length 0. Recall that τ , as an automorphism
of X∗,R maps the base alcove to itself. Denote by λ ∈ X∗ the image of the origin
under τ . Then

θλ = Tτ tw0w,

where w is the longest element in the stabilizer Wλ of λ in W , and w0 is the
longest element in W .

Proof All these relations can be checked with relatively little effort in terms of alcove
walks. We give some of the details, since the proof in [14] is partly quite terse. If pλ

is a non-folded walk from a to ελa, and pμ is a non-folded walk from a to εμa, then
clearly the composition pλpμ is a non-folded walk from a to ελ+μa, and this gives
(1).

To get (3), we may assume without loss of generality that 〈αi, λ〉 ≥ 0. Let pλ =
(c

ε1
i1

· · · cε


i

, τ ) be a walk from a to ελa of minimal length. Let a1 = a, a2 = si1 a,

. . ., a
 = si1 · · · si
a be the sequence of alcoves “visited” by this path. Consider the
element c−

i pλ ∈H; the corresponding sequence of alcoves is the base alcove plus the
mirror image of the sequence a1, . . . ,a
 with respect to the reflection si . It is not an
alcove walk in general, since some of the ciν will now carry the wrong exponents; the
places where this will happen are precisely those where the wall between aν−1 and
aν has the form Hαi,k for some k ∈ Z — we call those ν relevant. Since 〈αi, λ〉 ≥ 0,
all of those walls are crossed in the positive direction, i.e. εν = 1 for all relevant
ν. We want to write c−

i pλ as a sum of walks. Let ν be the minimal relevant index.
Since c+

iν
= c−

iν
+ f +

iν
, we have c−

i pλ = p1 + q1, where p1 is obtained by replacing
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c+
iν

in c−
i pλ by c−

iν
, and q1 is obtained by replacing it by f +

iν
. Then q1 is indeed an

alcove walk, and its end point is sαi+1sαi
ελa = ελ−α∨

i a, and since there is precisely

one (positive) folding in q1, in H the element q1 is equal to (q
1
2 − q− 1

2 )θλ−α∨
i

. On
the other hand, p1 will not be an alcove walk, in general, and we have to repeat this
procedure for the next relevant index. Since ti = �(c−

i )−1, we have proved that

t−1
i θλ = c−

i pλ = (q
1
2 − q− 1

2 )θλ−α∨
i

+ · · · + (q
1
2 − q− 1

2 )θλ−〈αi ,λ〉α∨
i

+ θsiλt
−1
i ,

and since t−1
i = ti + q− 1

2 − q
1
2 , we get

tiθλ = (q
1
2 − q− 1

2 )(θλ + θλ−α∨
i

+ · · · + θλ−(〈αi ,λ〉−1)α∨
i
) + θsiλti ,

which is the identity we had to prove. �

From the definitions it is clear that tsi = �(c−
i )−1 = T̃i for i = 1, . . . , r . It is also

clear that �λ = θλ for λ dominant or anti-dominant, and part (1) of the proposition
implies that �λ = θλ holds in general. Finally, it follows from part (4) that �(c+

0 ) =
T̃0. Since the elements �λTw , λ ∈ X∗, w ∈ W form a basis of H, we have obtained a
proof of the Bernstein presentation of H.

Remark 3.3.2 The way of reasoning in [14] is different from the above. Ram’s Propo-
sition [14] 3.2 (= Prop. 3.3.1 above) shows (taking the Bernstein presentation of the
affine Hecke algebra as a piece of input), that the surjections from the alcove walk
algebra induce a (surjective) morphism H −→ H̃ .

The injectivity follows from Schwer’s results ([16], Lemma 6.1; see also [15]) or
from Theorem 3.1.1 above. Another way to approach this question is the following:
It is clear that the quotient of A by the free k-submodule generated by the elements

f +
i − (q

1
2 − q− 1

2 ), i = 0, . . . , r and p − p′ for p, p′ non-folded alcove walks with
end(p) = end(p′), admits a basis of the form θλtw , λ ∈ X∗, w ∈ W ; hence it would
be enough to show that this k-submodule actually is an ideal. (Again, it is clear from
hindsight that this is true.)

3.4 The case of unequal parameters

To keep the notation simple, we have considered only the case of equal parameters.
However, we can in a similar way as above consider a variant of the alcove walk
algebra with a parameter system. More precisely, assume that a parameter system
L: W̃ −→ Z≥0 is given; we use the notation of Lusztig [13]. Denote by H the Hecke
algebra associated with this system of parameters; see loc. cit. It is clear from the
proof that Theorem 3.1.1 holds in this case, too, when we use the elements Ti , and it

is easy to see that as before it holds with the T̃i = q− L(si )

2 Ti , as well. The alcove walk
algebra A does not change, but we change the map �:A −→ H, namely we map

c+
i �→ T̃i , c−

i �→ T̃ −1
i ,

f +
i �→ q

L(si )

2 − q− L(si )

2 , f −
i �→ q− L(si )

2 − q
L(si )

2 , tτ �→ Tτ .
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As above, � induces an isomorphism A/J ∼= H, where J ⊆ A is the two-sided ideal

generated by the elements f +
i − (q

L(si )

2 − q− L(si )

2 ), i = 0, . . . , r , and p −p′ where p,
p′ are non-folded alcove walks with the same end point.

It is slightly more difficult to prove the Bernstein relations in A/J as in Propo-
sition 3.3.1 in this more general case in terms of alcove walks. We have to prove
that

tsi θλ =

⎧⎪⎨
⎪⎩

θsiλtsi + (q
L(si )

2 − q− L(si )

2 )
θλ−θsi λ

1−θ−α∨
i

if α �∈ 2X∗,

((q
L(si )

2 − q− L(si )

2 ) + θ−α∨
i
(q

L(s̃i )

2 − q− L(s̃i )

2 ))
θλ−θsi λ

1−θ−2α∨
i

if α ∈ 2X∗.

Roughly speaking, the same proof as above applies, but obviously one has to be more
careful in order to identify the factors that come from the foldings: we need to know
which iν occur for relevant ν. The following two lemmas provide this information
and give a simple explanation for the appearance of the parameter associated to s̃

when α ∈ 2X∗.

Lemma 3.4.1 Let H ⊆ X∗,R be an affine root hyperplane, and let I ⊆ {0, . . . , r} be
the set of types of faces with support H . Then {si; i ∈ I } is a conjugacy class of
simple reflections under the affine Weyl group Wa .

Proof After applying an element of Wa to H , if necessary, we may assume that H

contains a face of the base alcove, say of type i1.
First assume that F is a face with support H , of type i2, say. Choose w ∈ Wa

such that F is a face of wa. Since F is fixed by the reflection with respect to H , it is
clear that the gallery starting at a and consisting of crossing H , crossing the faces of
the types described by w, and finally crossing H again, leads to wa. In other words,
si1wsi2 = w, which shows that si1 and si2 are conjugate.

On the other hand, assume that si1 = wsi2w
−1, i.e. si1w = wsi2 . This shows that

the image of wa under si1 (which is just the reflection with respect to H ) is adjacent
to wa by a face of type i2. Since the alcoves are adjacent, and H lies between them,
this face has to lie on H . �

The lemma shows that we can associate to each affine root hyperplane a parameter
L(H) := L(si), where i is the type of any face with support H .

Lemma 3.4.2 Now suppose that αi is a simple root.

(1) If αi �∈ 2X∗, then for all j ∈ Z, we have L(Hαi,j ) = L(si).
(1) If αi ∈ 2X∗, then for j even, L(Hαi,j ) = L(si), and for j odd, L(Hαi,j ) = L(s̃i)

(where we again use the notation of [13]).

Proof Consider the map Z −→ Z≥0 mapping j to L(Hαi,j ). Since the types of faces
are preserved by the action of Wa , and since sαi ,j (Hαi,j−1) = Hαi,j+1, the map
factors through Z/2Z. Furthermore, the conjugacy class corresponding to Hαi,0 is
clearly the conjugacy class of si , so 0 maps to L(si).
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Now if αi �∈ 2X∗, then there exists λ ∈ X∗ with 〈αi, λ〉 odd. Consider the transla-
tion of Hαi,0 by λ. We have

L(Hαi,0) = L(ελHαi,0) = L(Hαi,1).

If λ is a coroot, such that translation by λ is an element of the affine Weyl group, then
the previous lemma shows that the conjugacy classes under Wa associated with Hαi,0
and ελHαi,0 coincide. In general, ελ ∈ W̃ , and the first equality follows from the
fact that simple reflections conjugate under W̃ have the same parameter. The second
equality is clear since the pairing of αi and λ is odd.

Finally, we consider the case αi ∈ 2X∗. This means that we are in a very special
case (cf. [13], 2.4). The Coxeter system (Wa,Sa) is of type C̃r , we may assume the
root datum is simply connected, and s̃i is the affine simple reflection s0 (i.e. αi = αr

with the notation of [2]). Denoting by α̃ the highest root, we have αi + α̃ = 2β for a
root β , and the image of Hαi,−1 under the reflection sβ is Hα̃,1. Clearly, the conjugacy
class associated with Hα̃,1 is the conjugacy class of s0, so the lemma is proved. �

4 Applications to nearby cycles sheaves on affine flag manifolds

As is well known, the combinatorics of affine Hecke algebras is intimately connected
with algebraic geometric questions. The alternating trace of Frobenius on the stalks of
Iwahori-equivariant (perverse) sheaves on the affine flag manifold can be considered
as an element of the Iwahori-Hecke algebra — this is an instance of Grothendieck’s
sheaf-function dictionary. In this section we point out an application of the theory
of alcove walks to a geometric question, and state some further combinatorial ques-
tions on the affine Hecke algebra related to affine flag varieties and the reduction of
Shimura varieties.

4.1 Existence of minimal expressions

We say that �λ ∈ H has a minimal expression, if we can express it in the form

�λ = T̃
ε1
i1

· · · T̃ ε


i

T̃τ ,

where εi ∈ {±1} and where si1 · · · si
τ is a reduced expression in W̃ ; cf. the paper [11]
by Haines and Pettet, where the case of �−

λ instead of �λ is considered, and where
minimal expressions are interpreted in a sheaf-theoretic way, using Demazure reso-
lutions of Schubert varieties in the affine flag variety. As an application of Theorem
3.1.1 we get that minimal expressions always exist.

Corollary 4.1.1 Let λ be a coweight, and let ελ = si1 · · · sik τ be a reduced expres-
sion. Then

�λ = T̃ ε
i1

· · · T̃ ε
ik
T̃τ .

Proof By definition

�λ = T̃λ1 T̃
−1
λ2

,
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where λ = λ1 − λ2, λ1, λ2 dominant, and if we choose reduced expressions tλ1 =
sj1 · · · sj


τ1, tλ2 = sj ′
1
· · · sj ′


′
τ2, then it is clear that

T̃λ1 T̃
−1
λ2

= T̃j1 · · · T̃j

T̃τ1 T̃

−1
τ2

T̃ −1
j ′

′

· · · T̃ −1
j ′

1

= T̃ ε
j1

· · · T̃ ε
j


T̃ ε
τ(j ′


′ )
· · · T̃ ε

τ(j ′
1)

T̃τ .

Now Theorem 3.1.1 immediately implies the result. �

It is clear that in an analogous way we can compute variants of the �λ, where we
write λ as a difference not of dominant coweights, but of coweights lying in some
other fixed finite Weyl chamber. In particular we see that the elements �−

λ studied
in [11] (which are defined by �−

λ = T̃λ1 T̃
−1
λ2

, where λ = λ1 − λ2 with λ1, λ2 anti-
dominant) admit minimal expressions as well.

In the paper [11] by Haines and Pettet, there are several results whose proofs rely
on the existence of minimal expressions.

4.2 Applications

In [5] the Jordan-Hölder series of certain nearby cycles sheaves which arise natu-
rally in the Beilinson-Gaitsgory deformation for the affine flag manifold to the affine
Grassmannian were studied. The trace of Frobenius on the stalks of these sheaves is a
polynomial in q and q−1, and it encodes information about the singularities occurring
in certain closed subschemes of the affine flag variety.

Let us give a definition of these polynomials in terms of the Iwahori-Hecke algebra
(for the corresponding group G over a local field). For μ ∈ X∗, we denote by zμ the
Bernstein element zμ = ∑

λ∈Wμ �λ, an element of the center of H. The theorem of
Gaitsgory [4], and of Haines-Ngô [10] (in the function field case and the arithmetic
case, resp.), which was conjectured by Kottwitz, says that the trace of Frobenius on
the nearby cycles sheaf associated with μ is given by the element

R�μ = (−1)
(ε
μ)q


(εμ)
2

∑
λ≤μ

mμ(λ)zλ,

where mμ(λ) denotes the dimension of the weight space for λ of the irreducible
representation with highest weight μ of the dual group of G. See for instance [5],
2.7, for further explanations on the geometric background.

Expressed in the context of Hecke algebras, the main focus of [5] is to investigate
the expression of R�μ with respect to the Kazhdan-Lusztig basis; for our purposes
the most suitable normalization is to consider the basis

C′′
w =

∑
x

(−1)
(x)Px,wTx, w ∈ W̃ ,

where Px,w denotes the Kazhdan-Lusztig polynomial associated with x and w. We
define m(w) ∈ Z[q, q−1] by requiring

R�μ =
∑
w

m(w)C′′
w.
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Based on computational evidence, Haines and the author conjectured that the
m(w) are actually polynomials, and that degm(w) ≤ 
(εμ)−
(w). In the case where
minimal expressions as above are available, we gave a proof of this conjecture in [5],
Sect. 9; the results obtained above show that this proof is valid in general. (Two quite
different proofs of this fact are given in [6].)

There are however a number of open questions about these “multiplicity polyno-
mials” m(w). Answers to these questions would improve the understanding of the
geometry of certain closed subschemes of the affine flag variety; in some cases this
has consequences for the reduction modulo a prime p of certain Shimura varieties.

• It would be desirable to give a “closed formula” for the m(w) of combinatorial
nature. So far, except for trivial cases, such a formula is known only in the case

(w) = 0 (which is surprising, since from a geometric point of view this case
should be considered as the most complicated one.) A cohomological interpreta-
tion for general w, which however is not very manageable is given in [5], Cor. 6.2.

• In all cases we computed, if m(w) �= 0, then the constant term of m(w) is 1, and
the bound on the degree given above is sharp. Is this true in general?

• It appears that the polynomial m(w) depends only on the isomorphism type of the
Bruhat graph of the set {x ∈ W̃ ; x ≥ w, m(x) �= 0}.
Another type of problem which is not yet sufficiently understood is the dimension

of affine Deligne-Lusztig varieties, in the Iwahori case say. This can be seen as a
combinatorial problem in the Bruhat-Tits building of the underlying group, and can
also be formulated as a problem about the Iwahori-Hecke algebra. See [7].
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