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Abstract Given a partition λ and a composition β, the stretched Kostka coefficient
Kλβ(n) is the map n �→ Knλ,nβ sending each positive integer n to the Kostka co-
efficient indexed by nλ and nβ. Kirillov and Reshetikhin (J. Soviet Math. 41(2),
925–955, 1988) have shown that stretched Kostka coefficients are polynomial func-
tions of n. King, Tollu, and Toumazet have conjectured that these polynomials always
have nonnegative coefficients (CRM Proc. Lecture Notes 34, 99–112, 2004), and
they have given a conjectural expression for their degrees (Séminaire Lotharingien
de Combinatoire 54A, 2006).

We prove the values conjectured by King, Tollu, and Toumazet for the degrees of
stretched Kostka coefficients. Our proof depends upon the polyhedral geometry of
Gelfand–Tsetlin polytopes and uses tilings of GT-patterns, a combinatorial structure
introduced in De Loera and McAllister, (Discret. Comput. Geom. 32(4), 459–470,
2004).
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1 Introduction

Kostka coefficients are important numbers appearing in many branches of mathe-
matics, including representation theory, the theory of symmetric functions, and al-
gebraic geometry (see, e.g., [4, 12, 14] and references therein). Given a dominant
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weight λ and a weight β of the Lie algebra glr (C), the Kostka coefficient Kλβ is the
dimension of the weight subspace with weight β of the irreducible representation Vλ

of glr (C) [5]. In the theory of symmetric functions, Kostka coefficients are defined
by the expansion of Schur functions sλ into monomials. That is, given a partition λ

of N ∈ Z≥0 with r parts, we have that

sλ =
∑

compositions
β of N

Kλβxβ, (1)

where xβ = x
β1
1 x

β2
2 · · ·xβr

r .
Since the parameters defining a Kostka coefficient are themselves vectors, they

may be “stretched” by an integer scaling factor n. This procedure defines a function
n �→ Knλ,nβ , which, following [7], we call a stretched Kostka coefficient. We denote
this function by Kλβ(n) = Knλ,nβ . Kirillov and Reshetikhin have shown that Kλβ(n)

is a polynomial function of n [11] (see also [3, Proposition 2.6]). King, Tollu, and
Toumazet have conjectured that these polynomials have only positive coefficients [7],
and they have given a conjectural expression for the degree of Kλβ(n) [8]. The main
result of this note (Theorem 1.1 below) is that the stretched Kostka coefficients indeed
have the degrees conjectured in [8].

For our purposes, it will suffice to assume that λ is a partition and β is a com-
position of the same length and size as λ. That is, we take λ = (λ1, . . . , λr ) ∈ Z

r≥0
such that λ1 ≥ · · · ≥ λr and β = (β1, . . . , βr ) ∈ Z

r≥0 such that
∑

i βi = ∑
i λi .

The Kostka coefficients Kλβ are indexed by such pairs (λ,β). We sometimes write
λ = (κ

v1
1 , . . . , κ

vm
m ) to indicate that λ has vp parts equal to κp for 1 ≤ p ≤ m. The use

of this notation always presumes that vp ≥ 1 for 1 ≤ p ≤ m.
Let |λ| = ∑

i λi denote the size of λ. Given an arbitrary sequence of nonnegative
integers β = (β1, . . . , βr ) ∈ Z

r≥0, let β̄ = (β̄1, . . . , β̄r ) be the unique partition that
may be produced by permuting the terms of β . We say that λ dominates β , denoted
β � λ, if |λ| = |β| and

∑i
k=1 λk ≥ ∑i

k=1 β̄k for 1 ≤ i < r . If, in addition,
∑i

k=1 λk >∑i
k=1 β̄k for 1 ≤ i < r , we write β � λ, and we say that λ and β form a primitive

pair.

Theorem 1.1 (Proved on p. 272) Suppose that λ = (κ
v1
1 , . . . , κ

vm
m ) ∈ Z

r≥0 is a parti-
tion and β is a composition such that β � λ. Then the degree of the stretched Kostka
coefficient Kλβ(n) is given by

degKλβ(n) =
(

r − 1
2

)
−

m∑

p=1

(
vp

2

)
(2)

(where we evaluate
( 1

2

) = 0).1

1Equation (2) was asserted in [9, Section 7.5]. However, the statement given there omits the condition
that λ and β form a primitive pair. Without this condition, the right-hand side of (2) only gives an upper
bound, as was observed in [2]. For example, take λ = (4,2,1) and β = (3,3,1). Then degKλβ(n) = 0,
but the right-hand side of (2) evaluates to 1.
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Example 1.2 Let λ = (4,2,2,0,0,0) = (41,22,03) and β = (3,1,1,1,1,1). Then
λ � β , so Theorem 1.1 applies. In this case, we have r = 6, v1 = 1, v2 = 2, and
v3 = 3, so the degree of Kλβ(n) is

(
6 − 1

2

)
−

(
1
2

)
−

(
2
2

)
−

(
3
2

)
= 6.

As stated, Theorem 1.1 gives the degree of a stretched Kostka coefficient only
when λ and β are a primitive pair. However, Berenstein and Zelevinsky have shown
that all Kostka coefficients factor into a product of Kostka coefficients indexed by
primitive pairs [1]. It follows from this factorization that Theorem 1.1 suffices to
describe the degrees of stretched Kostka coefficients in all cases.

The factorization of Kostka coefficients works as follows. It is well known that
Kλβ is invariant under permutations of the coordinates of β . For example, this fol-
lows from equation (1) and the fact that Schur functions are symmetric. Consequently,
Kλβ(n) = Kλβ̄(n). In particular, to compute the degree of stretched Kostka coeffi-
cients, we need only consider the case where β is a partition.

Suppose that λ,β ∈ Z
r are both partitions with |λ| = |β|. If λ and β do not form

a primitive pair, then we may write λ and β , respectively, as concatenations of par-
titions such that each of the partitions contained in λ forms a primitive pair with
the corresponding partition contained in β . More precisely, there exists a unique se-
quence of integers

1 = i1 < i2 < · · · < is < is+1 = r + 1

such that each pair

λ(t) = (λit , . . . , λit+1−1), β(t) = (βit , . . . , βit+1−1), 1 ≤ t ≤ s

is primitive. We then have

Kλβ =
s∏

t=1

Kλ(t)β(t) .

This observation of Berenstein and Zelevinsky [1] is the justification for the termi-
nology primitive pair. Since the set of indices i1, . . . , is+1 decomposing (λ,β) into
primitive pairs does not change when we scale λ and β by a parameter n, this decom-
position carries over to the stretched Kostka coefficients:

Kλβ(n) =
s∏

t=1

Kλ(t)β(t) (n).

Consequently, we have that

degKλβ(n) =
s∑

t=1

degKλ(t)β(t) (n),

where each term in the sum may be computed using Theorem 1.1.
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This note is organized as follows. In Section 2, we discuss the polyhedral model
of Kostka coefficients using Gelfand–Tsetlin polytopes. In this context, the degrees
of stretched Kostka coefficients are the dimensions of these polytopes. We prove that
the expression in Theorem 1.1 gives the dimension of a Gelfand–Tsetlin polytope
under certain generic circumstances. In Section 3, we show that these circumstances
obtain precisely when the corresponding Kostka coefficient is indexed by a primitive
pair, proving Theorem 1.1.

2 Dimensions of Gelfand–Tsetlin polytopes

Several combinatorial interpretations of Kostka coefficients have appeared in the lit-
erature. Most classically, Kλβ is the number of semi-standard Young tableaux with
shape λ and content β (see, e.g., [13]). Of particular interest for our study is the rep-
resentation of Kostka coefficients as the number of lattice points in particular families
of rational polytopes. Gelfand and Tsetlin provided the first such model [6], which
we describe and employ in our study below.

The theory of lattice point enumeration has proved to be a powerful tool for un-
derstanding the behavior of Kostka coefficients. For example, Billey, Guillemin, and
Rassart have used vector partition functions to show that Kλβ(n) can be expressed
as a multivariate piecewise polynomial in n and the coordinates of λ and β . They
also examined factorizations of these polynomials and gave upper bounds on their
degrees [2]. More recently, King, Tollu, and Toumazet have introduced K-hive poly-
topes [7], which they used to motivate the conjectures mentioned in the introduction.
Moreover, they deduce from their model additional information about the structure
of the polynomials Kλβ(n). Among other results, they provide an interpretation for
the roots of Kλβ(n).

Expressing Kostka coefficients using Gelfand–Tsetlin polytopes provides a natural
geometric interpretation of the polynomial Kλβ(n) and its degree. To each Kostka
coefficient Kλβ , there corresponds a Gelfand–Tsetlin polytope GTλβ ⊂ R

D such
that Kλβ = |GTλβ ∩ ZD|, where D = (

r+1
2

)
. As a consequence of the definition of

Gelfand–Tsetlin polytopes (Definition 2.1 below), scaling λ and β by a positive inte-
ger n corresponds to dilating the polytope GTλβ by n:

Kλβ(n) = |nGTλβ ∩ Z
D|.

As mentioned in the introduction, Kirillov and Reshetikhin have shown that Kλβ(n)

is in fact a polynomial function of n. As is well known from the theory of lattice point
enumeration in polyhedra, if the number of lattice points in an integer dilation nP of
a polytope P is a polynomial function of n, then the degree of that polynomial is the
dimension of P (see, e.g., [13, Theorem 4.6.25]). Our proof of Theorem 1.1 depends
on this interpretation of degKλβ(n) as the dimension of the Gelfand–Tsetlin polytope
GTλβ , which we now define.

Let Xr be the set of triangular arrays (xij )1≤i≤j≤r . Note that Xr inherits a normed
vector space structure under the obvious isomorphism Xr

∼= R
r(r+1)/2. Therefore, we

will be able to speak of cones, lattices, and polytopes in Xr . It is customary to depict
an array in Xr by arranging its entries as follows:
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x1r x2r x3r · · · xrr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x13 x23 x33

x12 x22

x11
Within the space Xr , we define the cone of Gelfand–Tsetlin patterns, or GT-patterns,
as follows. A GT-pattern is a triangular array x = (xij )1≤i≤j≤r ∈ Xr satisfying the
Gelfand–Tsetlin inequalities

xi,j+1 ≥ xij ≥ xi+1,j+1, for 1 ≤ i ≤ j ≤ r − 1. (3)

For any point x ∈ Xr , we define the highest weight hwt(x) of x to be the top row
(x1r , . . . , xrr ) of x, and we define the weight wt(x) = (β1, . . . , βr ) of x by β1 = x11

and βj = ∑j

i=1 xij − ∑j−1
i=1 xi,j−1 for 2 ≤ j ≤ r . Thus, wt and hwt are both linear

maps Xr → R
r .

For each λ ∈ R
r , let GTλ be the polytope of GT-patterns with highest weight λ:

GTλ = {x ∈ Xr : x is a GT-pattern and hwt(x) = λ}.
Note that the GT inequalities (3) force the top row of a GT-pattern to be weakly
decreasing, so GTλ = ∅ if λ is not weakly decreasing. (The converse is also true,
since if λ is weakly decreasing, then (xij )1≤i≤j≤r with xij = λi is a GT-pattern in
GTλ.) For each β ∈ R

r , let Wβ ⊂ Xr be the affine subspace of points in Xr with
weight β:

Wβ = {x ∈ Xr : wt(x) = β}.

Definition 2.1 Given λ,β ∈ R
r , the Gelfand–Tsetlin polytope GTλβ is the convex

polytope of GT-patterns with highest weight λ and weight β:

GTλβ = GTλ ∩ Wβ.

Observe that each GT-pattern x lives in a unique GT-polytope. We denote this poly-
tope by GT(x) = GThwt(x),wt(x).

We associate to each GT-pattern a certain combinatorial object, called a tiling.
Tilings of the GT-patterns in a GT-polytope have a poset structure isomorphic to the
face lattice of the GT-polytope. In particular, the tiling of a point x provides a straight-
forward way to compute the dimension of the lowest-dimensional face of GT(x) that
contains x (Theorem 2.4).

Definition 2.2 The tiling T of x is that partition of the set

I = {(i, j) ∈ Z
2 : 1 ≤ i ≤ j ≤ r}
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Fig. 1 Tilings of GT-patterns

into subsets, called tiles, that results from grouping together those entries in x that
are equal and adjacent. More precisely, T is that partition of I such that two pairs
(i, j), (i′, j ′) are in the same tile if and only if there are sequences

i = i1, i2, . . . , is = i′

j = j1, j2, . . . , js = j ′

such that, for each k ∈ {1, . . . , s − 1}, we have that

(ik+1, jk+1) ∈ {
(ik + 1, jk + 1), (ik, jk + 1), (ik − 1, jk − 1), (ik, jk − 1)

}

and xik+1jk+1 = xikjk
.

In other words, the tiles are the connected components in the graph of a Gelfand–
Tsetlin pattern. See Figure 1 for examples of GT-patterns and their tilings. The shad-
ing of some of the tiles in that figure is explained below.

Given a GT-pattern x with tiling T , we associate to T (or, equivalently, to x) a
matrix AT (or Ax) as follows. Define the free rows of x to be those that are neither
the top nor the bottom row of x. The free tiles T1, . . . , Ts of T are those tiles in T
that intersect only free rows of x—i.e., those tiles that contain neither (1,1) nor (i, r)

for 1 ≤ i ≤ r . The remaining tiles are the non-free tiles. The order in which the free
tiles are indexed will not matter for our purposes, but, for concreteness, we adopt the
convention of indexing the free tiles in the order that they are initially encountered as
the entries of x are read from left to right and bottom to top. Define the tiling matrix
AT = Ax = (ajk)1≤j≤r−2,1≤k≤s by

ajk = #{i : (i, j + 1) ∈ Tk}.
That is, ajk counts the number of entries in the j th free row of x that are contained
in the free tile Pk . While a different choice of order for the free tiles would result
in a tiling matrix with permuted columns, this will be immaterial because we will
ultimately be interested only in the rank of AT . The terminology free tile represents
the fact that the entries in the non-free tiles of x are fixed once the weight and highest
weight of x are fixed.
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Example 2.3 Two GT-patterns and their tilings are given in Figure 1. The unshaded
tiles are the free tiles. Index the free tiles in the order that they are initially encoun-
tered as the entries of x are read from left to right and bottom to top. Then the asso-
ciated tiling matrices are respectively

⎡

⎣
1 1 0 0 0
0 1 1 1 0
0 1 0 0 1

⎤

⎦ and

⎡

⎢⎢⎣

1 0 0
1 1 0
2 2 0
1 1 1

⎤

⎥⎥⎦ .

The primary motivation for introducing tilings of GT-patterns is the following
Theorem:

Theorem 2.4 [3, Theorem 1.5] Suppose that T is the tiling of a GT-pattern x. Then
the dimension of the kernel of AT is equal to the dimension of the minimal (dimen-
sional) face of the GT-polytope containing x.

Theorem 2.4 was used in [3] to study the properties of vertices of GT-polytopes,
establishing in particular that they can have arbitrarily large denominators. In the
present note, we move to the opposite end of the face lattice and apply the tiling
machinery to points in the interior of GT-polytopes. We use the notation intP to
denote the relative interior of a polytope P —that is, the interior of P with respect to
the affine space that it spans. As an immediate corollary to Theorem 2.4, we get:

Corollary 2.5 If x ∈ int(GTλβ), then dim GTλβ = dim kerAx.

If GTλ �= ∅, the tilings of GT-patterns in the relative interior of GTλ have an easy
characterization. Observe that if a block of entries xkr , xk+1,r , . . . , x�r in the top
row of a GT-pattern all have the same value κp , then the GT inequalities (3) require
that the entries xij with k ≤ i ≤ � − (r − j) all assume that same value κp . These
are the entries that lie within the triangular region whose horizontal edge consists
of the entries xkr , xk+1,r , . . . , x�r and whose diagonal edges run parallel to the di-
agonals of the GT-pattern. Let Tp be the tile of entries in this region. That is, if
λ = (κ

v1
1 , . . . , κ

vm
m ) ∈ R

r , put

Tp =
{

(i, j) ∈ I :
p−1∑

q=1

vq < i ≤
p∑

q=1

vq − (r − j)

}
, 1 ≤ p ≤ m.

Define the generic interior tiling Tλ associated with λ to be the tiling consisting of
these Tp’s together with a distinct tile for each entry not contained in one of the
Tp’s. See Figure 2 for an example of a generic interior tiling when (v1, . . . , v5) =
(3,1,2,1,4). The shaded tile at the bottom of the pattern, and each of the unshaded
free tiles, contains only a single entry.

The next theorem characterizes when a GT-pattern x has the generic interior tiling
and gives the dimension of the GT-polytope containing x. This is the main result from
which Theorem 1.1 will follow.
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Fig. 2 The tiling of a point in
the interior of GTλ

Fig. 3 Filling of a portion of
the generic interior tiling

Theorem 2.6 Let λ = (κ
v1
1 , . . . , κ

vm
m ) ∈ R

r .

(1) A GT-pattern x ∈ GTλ is in the relative interior of GTλ if and only if the tiling of
x is the generic interior tiling Tλ.

(2) If x has the generic interior tiling Tλ and m ≥ 2, then

dim GT(x) =
(

r − 1
2

)
−

m∑

p=1

(
vp

2

)
,

(where we evaluate
( 1

2

) = 0).

Proof To prove part (1), note that the GT inequalities (3) include the facet-defining
inequalities of GTλ in Xr . A point x lies in the relative interior of GTλ if and only if
x satisfies with equality only those GT-inequalities that are satisfied with equality by
every point in GTλ.

We claim that the GT-inequalities satisfied with equality by every point in GTλ

are precisely the ones implied by forcing each entry in Tp to be equal to κp for
1 ≤ p ≤ m. Since every point in GTλ must satisfy those equalities, it remains only to
exhibit a point x ∈ GTλ satisfying only those equalities. That is, we need to construct
an x ∈ GTλ with the generic interior tiling.

For 1 ≤ p ≤ m − 1, consider the upper-left-to-lower-right diagonals that abut the
tile Tp . Let Sp be the set of entries in these diagonals. Apply a total order to Sp by
reading each diagonal from left to right, and then reading the diagonals themselves
from left to right. Finally, construct x by assigning values to the entries in Sp accord-
ing to a strictly monotonically decreasing function mapping Sp into the open interval
]κp+1, κp[. For example, in the portion depicted in Figure 3, we fill the tiles with
strictly decreasing values in the order indicated by the arrows. It is easy to see that x
is a GT-pattern and that its tiling is Tλ, so part (1) is proved.
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To prove part (2), suppose that x has the generic interior tiling. Then, by
part (1), we have that x ∈ int(GT(x)). Thus, we can apply Corollary 2.5 to com-
pute dim GT(x). The hypothesis that m ≥ 2 implies that every free row of x contains
a free tile. Hence, each of the r − 2 rows of the tiling matrix Ax contains a nonzero
entry. Moreover, since every free tile of the generic interior tiling Tλ contains only a
single entry, every column of Ax contains only a single 1. Thus, Ax is in reduced row
echelon form (perhaps after a suitable permutation of its columns, which amounts to
re-indexing the free tiles). This means that

dim GT(x) = dim kerAx

= (# of columns of Ax) − (dimension of row span of Ax)

= (# of free tiles in Tλ) − (r − 2).

Thus the computation reduces to finding the number of free tiles in Tλ, which is easily
done:

(
r

2

)
−

m∑

p=1

(|Tp| − vp

) − 1 =
(

r

2

)
−

m∑

p=1

(
vp

2

)
− 1.

Hence,

dim GT(x) =
(

r

2

)
−

m∑

p=1

(
vp

2

)
− (r − 1) =

(
r − 1

2

)
−

m∑

p=1

(
vp

2

)
,

as claimed. �

3 The degree of stretched Kostka coefficients

In the previous section, we showed that if the interior points of GTλβ have the generic
interior tiling, then the dimension of GTλβ is given by the expression in Theorem 1.1.
To complete our proof of Theorem 1.1, it remains only to show that, if β � λ, then
the interior points of GTλβ have the generic interior tiling. To this end, we call upon
a well-known fact from the theory of convex polytopes.

Lemma 3.1 Given a polytope P ⊂ R
m and a linear map π : Rm → R

n, we have that
int(π(P )) ⊆ π(intP).

The converse containment is also true and easy to prove, but it is unnecessary for
our purposes. It is also worth mentioning that this is the point at which the geometry
of convex polyhedra is crucial to the argument. Lemma 3.1 does not hold for every
polyhedral set, even if it is connected and full-dimensional. For completeness, we
now give a proof of Lemma 3.1.

Proof of Lemma 3.1 Without loss of generality, we assume that dimP = m and
dimπ(P ) = n. Suppose that y /∈ π(intP). We show that y /∈ int(π(P )) by exhibit-
ing an “exit vector” ȳ such that, for every ε > 0, y + εȳ /∈ π(P ). Since we assume
that π(P ) is full-dimensional, this will prove the claim.
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Since y /∈ π(intP), we have that π−1(y) ∩ intP = ∅. The sets π−1(y) and intP
are both convex, so there is a hyperplane H separating them. Let x̄ ∈ R

m be a normal
to H pointing away from P . Then, for every x′ ∈ π−1(y) and ε > 0, we have that
x′ + εx̄ /∈ P . Let ȳ = π(x̄). Suppose that ε > 0 and that x ∈ R

m is such that π(x) =
y + εȳ. Then x − εx̄ ∈ π−1(y), so x = x − εx̄ + εx̄ /∈ P . In other words, y + εȳ /∈
π(P ), proving the claim. �

Let D(λ) ⊂ R
r be the image of GTλ under the map wt:Xr → R

r . Note that for
β ∈ D(λ), we have GTλβ = wt−1(β) ∩ GTλ. It is well known that GTλβ �= ∅ if and
only if β � λ [10]. For, if β � λ, then Kλβ > 0 (see, e.g., [5, Exercise A.11]), so
GTλβ contains an integral point. Conversely, if GTλβ �= ∅, then some integral multiple
nGTλβ = GTnλ,nβ contains an integral point. Hence, Knλ,nβ > 0, so nβ � nλ. Since
the relative order of two weights is not changed by scaling both by n, it follows that
β � λ. This establishes the following lemma:

Lemma 3.2 Suppose that λ ∈ Z
r is a partition. Then D(λ) = {β ∈ R

r : β � λ}. Con-
sequently, if β � λ, then β ∈ int(D(λ)).

Putting together the preceding results, we are now ready to prove Theorem 1.1
from page 264.

Proof of Theorem 1.1 The claim is trivial if r = 1, so suppose that r ≥ 2. From
Lemmas 3.2 and 3.1, we have that

β ∈ int(D(λ)) ⊂ wt(int(GTλ)).

Hence,

GTλβ ∩ int(GTλ) = wt−1(β) ∩ int(GTλ) �= ∅.

Choose x ∈ GTλβ ∩ int(GTλ). By part (1) of Theorem 2.6, x has the generic interior
tiling Tλ. Note that since β � λ, we must have that m ≥ 2, for otherwise the GT-
inequalities would force β1 = λ1. Hence, we may apply part (2) of Theorem 2.6 to
compute the dimension of GT(x) = GTλβ . Since the dimension of GTλβ is the degree
of Kλβ(n) [13, Theorem 4.6.25], this yields

degKλβ(n) = dim GTλβ = dim GT(x)

=
(

r − 1
2

)
−

m∑

p=1

(
vp

2

)
,

as claimed. �
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