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Abstract The enumeration of independent sets of regular graphs is of interest in sta-
tistical mechanics, as it corresponds to the solution of hard-particle models. In 2004,
it was conjectured by Fendley et al., that for some rectangular grids, with toric bound-
ary conditions, the alternating number of independent sets is extremely simple. More
precisely, under a coprimality condition on the sides of the rectangle, the number of
independent sets of even and odd cardinality always differ by 1. In physics terms, this
means looking at the hard-particle model on these grids at activity −1. This conjec-
ture was recently proved by Jonsson.

Here we produce other families of grid graphs, with open or cylindric boundary
conditions, for which similar properties hold without any size restriction: the number
of independent sets of even and odd cardinality always differ by 0, ±1, or, in the
cylindric case, by some power of 2.

We show that these results reflect a stronger property of the independence com-
plexes of our graphs. We determine the homotopy type of these complexes using
Forman’s discrete Morse theory. We find that these complexes are either contractible,
or homotopic to a sphere, or, in the cylindric case, to a wedge of spheres.

Finally, we use our enumerative results to determine the spectra of certain trans-
fer matrices describing the hard-particle model on our graphs at activity −1. These
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results parallel certain conjectures of Fendley et al., proved by Jonsson in the toric
case.

Keywords Hard particles · Independent sets · Independence complex · Discrete
Morse theory · Transfer matrices

1 Introduction

The hard-square model is a famous open problem in statistical mechanics. In this
model, some of the vertices of an N by N square grid are occupied by a particle, with
the restriction that two adjacent vertices are never both occupied (Figure 1). In graph
theoretic terms, an admissible configuration of particles is just an independent set
of the square grid, that is, a set of pairwise non-adjacent vertices. The key question
is to enumerate these sets by their size, that is, to determine the following partition
function at activity u:

ZN(u) =
∑

I

u|I |,

where the sum runs over all independent sets of the grid. This problem is highly
unsolved: one does not know how to express ZN(u), nor even the thermodynamic
limit of the sequence ZN(u) (that is, the limit of ZN(u)1/N2

). The most natural spe-
cialization of ZN(u), obtained for u = 1, counts independent sets of the N × N -
grid. It is also extremely mysterious: neither the sequence ZN(1), nor the limit of
ZN(1)1/N2

(the so-called hard-square constant) are known. We refer the reader to
the entry A006506 in the On-line Encyclopedia of Integer Sequences for more de-
tails [11]. Note that the thermodynamic limit of ZN(u) is known if one replaces the
square grid by a triangular one — a tour de force achieved by Baxter in 1980 [1].

In 2004, Fendley, Schoutens and van Eerten [3] published a series of remarkable
conjectures on the partition function of the hard-square model specialized at u =
−1. For instance, they observed that for an M × N -grid, taken with toric boundary
conditions, the partition function at u = −1 seemed to be equal to 1 as soon as M

and N were coprime. They also related this conjecture to a stronger one, dealing with
the eigenvalues of the associated transfer matrices. These conjectures have recently
been proved in a sophisticated way by Jonsson [8].

One of the aims of this paper is to prove that similar results hold, in greater gener-
ality, for other subgraphs of the square lattice, like the (tilted) rectangles of Figure 2
(they will be defined precisely in Section 3). For these graphs, we prove that the
partition function at u = −1 is always 0,1 or −1.

We then show that these results actually reflect a stronger property of the inde-
pendence complex of these graphs. The independent sets of any graph G, ordered
by inclusion, form a simplicial complex, denoted by �(G). See Figure 3, where this
complex is shown for a 2 × 2-grid G. Note that the empty set is an element of �(G).
The (reduced) Euler characteristic of this complex is, by definition:

χ̃G =
∑

I∈�(G)

(−1)|I |−1.
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Fig. 1 A hard particle
configuration — or an
independent set — of the
7 × 7-grid

Fig. 2 The rectangular graphs R(M,N), defined in Section 3

Fig. 3 Two graphs, and the
independence complex of the
top one. This complex has
reduced Euler characteristic 1,
and is homotopic to a
0-dimensional sphere (two
points). The patient reader can
check that for the “Swiss cross”
R̃(5,5), the reduced Euler
characteristic is −1. The
corresponding complex is
homotopic to a 3-dimensional
sphere

The quantity |I | − 1 is the dimension of the cell I . The above sum is exactly the
opposite of the partition function ZG(u) of the hard-particle model on G, evaluated
at u = −1. This number,

ZG(−1) =
∑

I∈�(G)

(−1)|I | = −χ̃G, (1)

will often be called the alternating number of independent sets. The simplicity of
the Euler characteristic for certain graphs G suggests that the complex �(G) could
have a very simple homotopy type (we refer to Munkres [10] for the topological terms
involved). We prove that this is indeed the case for various subgraphs of the square
lattice. For instance, for the rectangles of Figure 2, the independence complex is
always either contractible, or homotopy equivalent to a sphere. Our results rely on the
construction of certain Morse matchings of the complex �(G). Roughly speaking,
these matchings are parity reversing involutions on �(G) having certain additional
interesting properties.

Let us now describe the contents of this paper, and compare it to Jonsson’s results.
In Section 2, we first review the needed background of Forman’s discrete Morse the-
ory [4]. We then describe a general construction of Morse matchings for the indepen-
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dence complex of any graph. The matchings we construct are encoded by a matching
tree. In Sections 3 to 5, we apply this general machinery to determine the homotopy
type of the independence complex of several subgraphs of the square grid: the tilted
rectangles of Figures 2 and 5 (Section 3), the parallelograms of Figure 9 (Section 5),
and variations on them (Section 7.1). All these graphs have open boundary condi-
tions (as opposed to the toric boundary conditions of [3, 8]). However, in Section 4,
we identify two sides of the rectangles of Figure 2 to obtain rectangles with cylindric
boundary conditions. Again, we determine the homotopy type of the associated inde-
pendence complex. Note that Jonsson recently went one step further by studying the
same tilted rectangles with toric boundary conditions; but he was only able to deter-
mine the Euler characteristic ([7], Section 7). Our results deal with a finer invariant
of the complex (the homotopy type) and the proofs are simpler, but they also refer to
easier graphs; the toric case is at the moment beyond reach of our methods.

Finally, in Section 6 we give background about transfer matrices, and show how
the results of the previous sections can be used to derive the spectrum, or at least part
of the spectrum, of several transfer matrices naturally associated to our graphs.

We conclude the paper with a discussion on possible extensions of our work, with
the double objective of discovering new subgraphs with a simple alternating number
of independent sets, and addressing the conjectures of Fendley et al. in the cylindric
case.

2 Morse matchings for independence complexes

The key tool in the proof of our results is the construction of Morse matchings on
independence complexes. In this section we give the background and explain how we
use a matching tree as a systematic construction for Morse matchings.

2.1 Generalities

Let us first recall that the poset of independent sets of a graph G, ordered by inclusion,
is a simplicial complex, denoted �(G).

We regard any finite poset P as a directed graph, by considering the Hasse diagram
of P with edges pointing down (that is, from larger to smaller elements).

A set M of pairwise disjoint edges of this graph is called a matching of P . This
matching is perfect if it covers all elements of P . This matching is Morse (or acyclic)
if the directed graph obtained from P by reversing the direction of the edges in M is
acyclic. For instance, the matching of the complex of Figure 3 formed of the edges
(∅, {2}), ({3}, {1,3}), ({4}, {2,4}) is acyclic.

Theorem 1 ([5], Theorem 6.3) Let � be a finite simplicial complex, seen as a poset,
and M a Morse matching on �, such that the element ∅ of � is matched. For i ≥ 0,
let ni be the number of unmatched i-dimensional elements of �. Then there exists a
CW-complex having 1 + n0 0-dimensional cells and ni i-dimensional cells for i ≥ 1
that is homotopy equivalent to �.
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Again, we refer to [10] for the topological terms involved. We will only use the fol-
lowing immediate corollary.

Corollary 2 Under the assumptions of Theorem 1, if all unmatched elements in �

have the same dimension i > 0 and there are j of them, � is homotopy equivalent to
a wedge of j spheres of dimension i. In particular, if � is perfectly matched, then it
is contractible.

2.2 Matching trees

Let us now describe the general principle we use to construct Morse matchings for
a complex �(G). Let V denote the vertex set of G. The most naive way to define a
matching of � ≡ �(G) is probably the following. Take a vertex p ∈ V , and denote
by N(p) the set of its neighbors. Define

� = {I ∈ � : I ∩ N(p) = ∅}.
The set of pairs (I, I ∪ {p}), for I ∈ � and p �∈ I , forms a perfect matching of �,
and hence a matching of �. We call p the pivot of this matching. The unmatched
elements of � are those containing at least one element of N(p). There may be
many unmatched elements, but we can now choose another pivot p′ to match some
elements of �\�, and repeat this operation as long as we can. Of course, the resulting
matching will depend on the successive choices of pivots.

This rather naive idea is the leading thread in the construction of our Morse match-
ings of �. In some occasions, we will have to split the set of yet unmatched elements
into two subsets, and choose a different pivot for each of them. This explains why
our matching procedure will be encoded by a branching structure, namely a plane
rooted tree, called a matching tree of �. The nodes of this tree represent sets of yet
unmatched elements. Some nodes are reduced to the empty set, and all the others are
subsets of � of the form

�(A,B) = {I ∈ � : A ⊆ I and B ∩ I = ∅},
where A and B are two subsets of V such that

A ∩ B = ∅ and N(A) := ∪a∈AN(a) ⊆ B. (2)

We say that the vertices of A∪B are the prescribed vertices of �(A,B): any element
I of �(A,B) must contain the vertices of A and avoid those of B . In particular, it is
assumed that A itself is independent (otherwise �(A,B) would be empty). The root
of the tree is �(∅,∅) = �, the set of all independent sets of G. The sets A and B will
increase along branches, making the sets �(A,B) of unmatched elements smaller
and smaller. The leaves of the tree will have cardinality 0 or 1, and will contain the
elements that are left unmatched at the end of the procedure.

Consider a node of the tree of the form �(A,B). How can we match its elements?
If the node has cardinality 1, that is, if A ∪ B = V , then we are stuck, as there is no
non-trivial matching of a graph reduced to one vertex. If A ∪ B � V , we may match
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some of the elements of �(A,B). Pick a vertex p in V ′ := V \ (A ∪ B). Because
of (2), the neighbors of p are either in B , or in V ′. This makes p a good tentative
pivot. If we actually use p as a pivot to match elements of �(A,B), we will be left
with the following set of unmatched elements:

U = {I ∈ � : A ⊆ I, I ∩ B = ∅, I ∩ N(p) �= ∅}.
If p has no neighbor in V ′, the above set is empty, and we have perfectly matched
�(A,B). If p has exactly one neighbor in V ′, say v, then U = �(A ∪ {v},B ∪ N(v)).
However, if p has at least two neighbors in V ′, say v and v′, the set U is not of the
form �(A′,B ′). Indeed, some of the unmatched sets I contain v, some others don’t,
but then they have to contain v′. This puts us into trouble, as we want to handle only
unmatched sets of the form �(A′,B ′). We circumvent this difficulty by splitting the
original set �(A,B) into two disjoint subsets of the form �(A′,B ′), that differ by
the status of, say, the vertex v. More precisely, we write:

�(A,B) = �(A,B ∪ {v}) � �(A ∪ {v},B ∪ N(v)),

and then study separately each subset.
The above discussion justifies the following construction of the children of a node.

If this node is the empty set (no unmatched elements), we declare it a leaf. Otherwise,
the node is of the form �(A,B). If A ∪ B = V , then �(A,B) = {A} is a node
of cardinality 1, and we also declare it a leaf. We are left with nodes of the form
�(A,B), with A ∪ B � V . Choose a vertex p (the tentative pivot) in V ′ = V \ (A ∪
B), and proceed as follows:

• If p has at most one neighbor in V ′, define �(A,B,p) to be the subset of �(A,B)

formed of sets that do not intersect N(p):

�(A,B,p) = {I ∈ � : A ⊆ I and B ∩ I = I ∩ N(p) = ∅}.
Let M(A,B,p) be the perfect matching of �(A,B,p) obtained by using p as a
pivot. Give to the node �(A,B) a unique child, namely the set U = �(A,B) \
�(A,B,p) of unmatched elements. This set is empty if p has no neighbor in V ′.
In this case, we say that p is a free vertex of �(A,B). If p has exactly one neighbor
v in V ′, then U = �(A ∪ {v},B ∪ N(v)). Index the new edge by the pivot p. We
say that the 3-tuple (A,B,p) is a matching site of the tree.

• Otherwise, let us choose one neighbor v of p in V ′. The node �(A,B) has
two children, only differing by the status of v. More precisely, the left child is
�(A,B ∪ {v}) and the right child is �(A ∪ {v},B ∪ N(v)). The union of these
two sets is �(A,B). Label the two new edges by the splitting vertex v. We say that
(A,B,v) is a splitting site of the tree.

Observe that the new nodes satisfy Conditions (2), unless they are empty.
Given a sequence of choices of tentative pivots and splitting vertices, we obtain a

matching M of � by taking the union of all partial matchings M(A,B,p) performed
at the matching sites of the tree. The unmatched elements are those sitting at the
leaves of the tree.
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Fig. 4 A subgraph G of the square grid, and one of its matching trees

The above construction is rather natural, and we invite the reader to practice
with the example given in Figure 4. In this figure, every (non-empty) node is de-
scribed by the vertices of A (in black) and B (in white). At the matching site
(∅,∅,1), the elements ∅ and {1} (among others) are matched. At the matching site
({2}, {1,3,4,6},5), the elements {2} and {2,5} get matched, among others. At the
end of the matching procedure, the independent set {2,7} is the only unmatched ele-
ment of �(G).

We now aim at showing that the matchings obtained with the above procedure are
in fact Morse. The following lemma gathers some properties of this construction.

Lemma 3 Every matching tree satisfies the following properties:

(1) For every matching site (A,B,p), the matching M(A,B,p) is a Morse matching
of �(A,B,p) (still ordered by inclusion).

(2) Let (A,B,p) be a matching site with a non-empty child �(A ∪ {v},B ∪ N(v)).
Let I ∈ �(A,B,p) and J ∈ �(A ∪ {v},B ∪ N(v)). Then J � I .

(3) Let (A,B,v) be a splitting site, I ∈ �(A,B ∪ {v}) and J ∈ �(A ∪ {v},B ∪
N(v)). Then J � I .

Proof (1) Consider the Hasse diagram of the poset �(A,B,p) and its directed ver-
sion, with all edges pointing down. Now, reverse the edges of M(A,B,p). The up
edges join two elements of the form I \ {p}, I , so they correspond to adding the ver-
tex p. The down edges correspond to deleting a vertex different from p. Clearly there
cannot be a directed cycle in �(A,B,p).

(2) The set J contains v, a neighbor of the pivot p, while none of the matched sets
I of �(A,B,p) contains v.

(3) Here again, J contains v, but I doesn’t. �

The following easy lemma appears as Lemma 4.3 in Jonsson’s thesis [6].
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Lemma 4 Let V be a finite set and � = �1 ��2 a collection of subsets of V , ordered
by inclusion. Assume that if σ ∈ �1 and τ ∈ �2 then τ � σ . Then the union of two
acyclic matchings on �1 and �2 respectively is an acyclic matching on �.

We can now establish the main result of this section.

Proposition 5 For any graph G and any matching tree of G, the matching of �(G)

obtained by taking the union of all partial matchings M(A,B,p) performed at the
matching sites is Morse.

Proof We will prove by backward induction, from the leaves to the root, the following
property:

For every node τ of the matching tree, the union of the partial matchings per-
formed at the descendants of τ (including τ itself) is a Morse matching of τ .
We denote this matching UM(τ) (for Union of Matchings).

The leaves of the tree are either empty sets or singletons, endowed with the empty
matching, which is Morse. This supplies the induction base. Consider now a non-leaf
node of the tree, of the form τ = �(A,B).

Assume (A,B,p) is a matching site. By Lemma 3.1, M(A,B,p) is Morse. If the
(unique) child of τ is empty, then UM(τ) = M(A,B,p) and we are done. If this
child is τ ′ = �(A ∪ {v},B ∪ N(v)), the induction hypothesis tells us that UM(τ ′) is
Morse. By Lemma 3.2, we can apply Lemma 4 with �1 = �(A,B,p), �2 = τ ′ and
� = τ , where the partial matchings on �1 and �2 are respectively M(A,B,p) and
UM(τ ′). This shows that UM(τ) is Morse.

Assume (A,B,v) is a splitting site. By induction hypothesis we already have
Morse matchings on both children of τ , namely �1 = �(A,B ∪ {v}) and �2 =
�(A ∪ {v},B ∪ N(v)). Again, Lemma 3.3 allows us to apply Lemma 4, and this
shows that the union UM(τ) of UM(�1) and UM(�2) is Morse.

This completes the induction. The case where τ is the root of the tree gives the
proposition. �

3 Rectangles with open boundary conditions

In what follows, we consider Z2 as an infinite graph, with edges joining vertices
at distance 1 from each other. For M,N ≥ 1, let R(M,N) be the subgraph of Z2

induced by the points (x, y) satisfying

y ≤ x ≤ y + M − 1 and − y ≤ x ≤ −y + N − 1.

Examples are shown on Figure 2. Note that R(M,N) contains MN
2 � vertices. Other

rectangular shapes arise when we look at the subgraph R̃(M,N) of Z2 induced by
the points (x, y) such that

y ≤ x ≤ y + M − 1 and − y + 1 ≤ x ≤ −y + N
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Fig. 5 The graphs R̃(M,N)

(see Figure 5). More precisely, the graphs R̃(2M + 1,2N + 1) are not isomorphic to
any of the R(K,L) (the other graphs R̃(M,N) are isomorphic to an R(K,L)).

We study the independence complexes of the rectangles R(M,N) and R̃(M,N).
Recall the general connection (1) between the (reduced) Euler characteristic of these
complexes and the alternating number of independent sets. We use below the notation
ZR(M,N) rather than ZR(M,N).

Theorem 6 Let M,N ≥ 1. Let m = M/3� and n = N/3�.

• If M ≡3 1 or N ≡3 1, then �(R(M,N)) is contractible and ZR(M,N) = 0.

• Otherwise, �(R(M,N)) is homotopy equivalent to a sphere of dimension mn− 1,
and ZR(M,N) = (−1)mn.

The above holds also when replacing R(M,N) by R̃(M,N).

Remark

1. We will show in Corollary 10 that, for N ≡3 1 and M > 21+N/2�, the alternating
number ZR(M,N;C,D) of independent sets of R(M,N) having border condi-
tions C and D on the two extreme diagonals of slope 1 is actually 0 for all config-
urations C and D. This will indirectly follow from the study of tilted rectangles
with cylindric boundary conditions performed in Section 4.

2. The case N = 2, where the graph is a path of M vertices, has already been solved
in [9, Prop. 4.6].

Proof We study the graphs R(M,N) and R̃(M,N) together. We construct Morse
matchings of the independence complexes of these graphs by following the general
principles of Section 2. We need to specify our choice of tentative pivots and splitting
vertices. The objective is to minimize the combinatorial explosion of cases, that is, the
number of splitting sites. Our conventions are illustrated by an example in Figure 6.
As before, for any node �(A,B), the elements of A and B are indicated by • and ◦
respectively. Rather than labeling the vertices of the graph and the edges of the tree,
we have indicated the tentative pivots by ∗, and the splitting vertices by �. Consider
a node �(A,B).

(1) In general, the tentative pivot p = (i0, j0) is chosen in V ′ = V \ (A ∪ B) so as to
minimize the pair (i + j, i) for the lexicographic order. That is, p lies as high as
possible on the leftmost diagonal of slope −1. However, if there is at least one
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Fig. 6 The top of the tree
describing the matching of
�(R(8,6))

free vertex (that is, a vertex of V ′ = V \ (A ∪ B) having no neighbor in V ′) on
the next diagonal i + j = i0 + j0 + 1, then we choose one of them as the pivot:
the only child of �(A,B) is then the empty set.

(2) If the tentative pivot has several neighbors in V ′ = V \(A∪B), then it has exactly
two neighbors in V ′, namely its North and East neighbors. Indeed, the other two
neighbors come before p in the lexicographic order, and thus belong to A ∪ B .
Take v, the splitting vertex, to be the East neighbor of p.

We are going to prove by induction on N and M the following properties, valid
both for the graphs R(M,N) and R̃(M,N):

(A) if M ≡3 1 or N ≡3 1, then there is no unmatched element in �,
(B) otherwise, there is a unique unmatched element, of cardinality mn (and thus of

dimension mn − 1).

By Proposition 5, the matchings we obtain are Morse. Hence Theorem 6 follows from
Properties (A) and (B) using Corollary 2. Let us now prove these properties. We first
study small values of N .
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(1) If N = 1, the graph is formed of isolated points, so that any set of vertices is in-
dependent. The matching M(∅,∅,p) performed at the root of the tree is a perfect
matching. Property (A) follows.

(2) For N = 2, we leave it to the reader to check (A) and (B) for M = 1,2,3, both
for the graphs R(M,N) and R̃(M,N). We then proceed by induction on M , for
M ≥ 4.
(a) For the graph R(M,2), the root is a matching site, and its unique child is

�(A,B) with A = {(1,0)} and B = {(0,0), (1,−1)}. The graph obtained by
deleting the vertices of A∪B is (a translate of) R̃(M −3,2). This shows that
every unmatched element of �(R(M,2)) is obtained by adding the vertex
(1,0) to (a translate of) an unmatched element of �(R̃(M −3,2)). The result
then follows by induction on M .

(b) For the graph R̃(M,2), the root is a splitting site. Its right child is per-
fectly matched using the free pivot (1,1), and has the empty set as its
unique child. The left child of the root is partially matched using the pivot
(1,0). The unmatched elements are those of �(A,B), with A = {(1,1)} and
B = {(1,0), (2,0)}. The graph obtained by deleting the vertices of A ∪ B is
(a translate of) R(M − 3,2). This shows that every unmatched element of
�(R̃(M,2)) is obtained by adding the vertex (1,1) to (a translate of) an un-
matched element of �(R(M − 3,2)). The result then follows by induction
on M .

The study of the case N = 2 leads us to introduce a notation that will be useful in
our forthcoming inductions.

Notation 1 Let V be a subset of vertices of the square grid, and assume that there
exist i, j ∈ Z such that V is the disjoint union V = V1 � (V2 + (i, j)) (where V2 +
(i, j) = {v + (i, j) : v ∈ V2}). Let X1 and X2 be two collections of sets on the ground
sets V1 and V2, respectively. Then Y := {I1 � (I2 + (i, j)) : I1 ∈ X1, I2 ∈ X2} is a
collection of sets on the ground set V . We use the notation Y ∼= X1 ∗ X2 to denote
that the elements of Y are formed by the concatenation of an element of X1 with (the
translate of) an element of X2. In particular, |Y | = |X1||X2|.

For instance, if U(M,N) (resp. Ũ (M,N)) denotes the set of unmatched elements in
�(R(M,N)) (resp. �(R̃(M,N))), the above observations can be summarized by

U(M,2) ∼= U(3,2) ∗ Ũ (M − 3,2) and Ũ(M,2) ∼= Ũ (3,2) ∗ U(M − 3,2).

We now return to our induction.

(3) The case N = 3 is very similar to the case N = 2. One first checks that the result
holds for M = 1,2,3, both for the graphs R(M,N) and R̃(M,N). For M ≥ 4,
the result is proved by induction on M , after observing that

U(M,3) ∼= U(3,3) ∗ Ũ (M − 3,3) and Ũ(M,3) ∼= Ũ (3,3) ∗ U(M − 3,3).

The following three observations will be useful in the rest of the proof. Firstly, the
tentative pivot is never taken in the third diagonal of slope −1. Secondly, when it
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is taken in the second diagonal, it is a free pivot. Finally, when the matching tree
has a non-empty leaf �(A,B) (that is, when M �≡3 1), all vertices on the third
diagonal belong to B .

(4) Now, let N ≥ 4. The key observation is that the top of the matching tree coin-
cides, as far as the prescribed vertices, pivots and splitting sites are concerned,
with the matching tree obtained for N = 3. This is illustrated in Figure 6, and
holds as long as the pivots are taken in the first two diagonals. Once these piv-
ots have been exhausted, we are left with (at most) one non-empty unmatched
set �(A,B), whose prescribed vertices are those of U(M,3) (if we work with
R(M,N)), or Ũ (M,3) (if we work with R̃(M,N)). Moreover, the tree rooted
at the vertex �(A,B) is isomorphic to the matching tree of R̃(M,N − 3) (resp.
R(M,N − 3)). This leads to

U(M,N) ∼= U(M,3) ∗ Ũ (M,N − 3),

Ũ (M,N) ∼= Ũ (M,3) ∗ U(M,N − 3)

when for M ≡3 1 both U(M,3) and Ũ (M,3) are empty. Properties (A) and (B)

easily follow.
�

4 Rectangles with cylindric boundary conditions

We now study a “cylindric” version of the graphs R(M,N), obtained by wrap-
ping these graphs on a cylinder. For M,N ≥ 0 and M even, we consider the
graph Rc(M,N) obtained from R(M + 1,N) by identifying the vertices (i, i) and
(M/2 + i,−M/2 + i), for 0 ≤ i ≤ �N−1

2 �. Observe that the rectangles R̃(M,N) of
Figure 5, when wrapped in a natural way around a cylinder, yield the same family of
graphs. We denote by Zc

R(M,N) the alternating number of independent sets on the
graph Rc(M,N).

Theorem 7 Let M,N ≥ 1, with M even. Let m = �M+1
3 � and n = N/3�.

• If N ≡3 1, then �(Rc(M,N)) is contractible and Zc
R(M,N) = 0.

• Otherwise,
– If M ≡3 0, then �(Rc(M,N)) is homotopy equivalent to a wedge of 2n spheres

of dimension mn − 1, and Zc
R(M,N) = 2n.

– If M ≡3 1 or 2 then �(Rc(M,N)) is homotopy equivalent to a single sphere of
dimension mn − 1, and Zc

R(M,N) = (−1)n.

The case N = 2, where the graph is a ring of M vertices, has already been solved
in [9, Prop. 5.2].

Proof We define a matching of � ≡ �(Rc(M,N)) by adopting the same choice of
tentative pivots and splitting vertices as in the proof of Theorem 6.

We are going to prove by induction on N the following properties:
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Fig. 7 The top of the matching
tree of �(Rc(8,3))

(A) if N ≡3 1, then there is no unmatched element in �,
(B) otherwise,

(B1) If M ≡3 0, there are 2n unmatched elements, each of cardinality mn.
(B2) If M ≡3 1 or 2 there is a unique unmatched element, of cardinality mn.

The theorem then follows from Proposition 5 and Corollary 2. Properties (A) and
(B) are proved by induction on N .

(1) When N = 1, the graph is formed of isolated vertices, and the first pivot already
matches �(Rc(M,N)) perfectly.

(2) When N = 2 or N = 3, we begin the matching procedure, and then use the re-
sults obtained in the previous section for rectangles with open boundary condi-
tions. The root of the matching tree is a splitting site (Figure 7). Its right subtree
is isomorphic to the matching tree of R̃(M − 3,N). Its left subtree begins with a
matching site. Performing this partial matching leads to a new node, and the tree
starting at this node is isomorphic to the matching tree of R(M − 4,N). Theo-
rem 6 then implies that the matching tree of Rc(M,N) has two non-empty leaves
corresponding to unmatched cells of cardinality m = M/3 if M ≡3 0, and one
non-empty leaf otherwise, of cardinality m. The full matching tree can be seen
on Figure 8 (retain only the first two or three diagonals). If N = 3, we observe
that for each non-empty leaf �(A,B), all vertices on the rightmost diagonal be-
long to B . This was also true for rectangles with open boundary conditions, and
is crucial for the rest of the induction on N .

(3) For N ≥ 4, the top of the tree coincides again with the matching tree of Rc(M,3).
Once the pivots of the first two diagonals have been exhausted, the prescribed
vertices are exactly those of the first three diagonals (Figure 8). Denoting by
Uc(M,N) the set of unmatched elements of �(Rc(M,N)), it follows that:

Uc(M,N) ∼= Uc(M,3) ∗ Uc(M,N − 3).
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Fig. 8 The top of the matching trees of �(Rc(6,5)) and �(Rc(8,5)). This figure illustrates what hap-
pens for M ≡3 0 and M ≡3 2. We leave it to the reader to practice with the case M ≡3 1

Properties (A) and (B) easily follow by induction on N . �

5 Parallelograms with open boundary conditions

For K,N ≥ 1, consider now the subgraph P(K,N) of the square grid induced by the
vertices (x, y) satisfying

0 ≤ y ≤ K − 1 and − y ≤ x ≤ −y + N − 1.

An example is shown on Figure 9. We denote by ZP (K,N) the alternating number
of independent sets on the graph P(K,N).

Theorem 8 Let K,N ≥ 1. Let m = 2K/3�.

• If K ≡3 1, then
– if N ≡3 1 then �(P(K,N)) is contractible and ZP (K,N) = 0,
– otherwise, �(P(K,N)) is homotopy equivalent to a sphere of dimension mn −

1, with n = N/3�, and ZP (K,N) = (−1)n.
• If K ≡3 2, write N = 2qK + r , with 0 ≤ r ≤ 2K − 1.
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Fig. 9 The parallelogram graph
P(4,8)

– If r ≡3 1,2, then �(P(K,N)) is contractible and ZP (K,N) = 0,
– otherwise �(P(K,N)) is homotopy equivalent to a sphere of dimension mn−1

with n =  2K−1
2K

· N
3 �, and ZP (K,N) = 1.

• If K ≡3 0, write N = 2q(K + 1) + r with 0 ≤ r ≤ 2K + 1.
– If r ≡3 0 with r ≥ 1, or r ≡3 1 with r ≤ 2K , then �(P(K,N)) is contractible

and ZP (K,N) = 0,
– otherwise, �(P(K,N)) is homotopy equivalent to a sphere of dimension mn−1

where n =  2K+3
2K+2 · N

3 �, and ZP (K,N) = 1.

Remark We prove in Corollary 12 that for N ≡3 1 and K large enough, the alter-
nating number ZP (K,N;C,D) of independent sets on the parallelogram P(K,N)

having prescribed conditions C and D on the top and bottom row is 0, for all con-
figurations C and D. This is not in contradiction with the above theorem: for K

large enough, if K �≡3 1, the quotient q appearing in the theorem is simply 0, so
that the condition N ≡3 1 boils down to r ≡3 1, with r small compared to K , and
ZP (K,N) = 0.

Proof We construct a Morse matching of the graph P(K,N) by applying the general
method of Section 2. We then show that for all values of K and N , the matching thus
obtained has at most one unmatched cell, of cardinality mn. As before, Corollary 2
completes the proof.

The results in the case K ≡3 1 are reminiscent of what we obtained for rectangles
(Theorem 6). The rule for choosing tentative pivots and splitting vertices is the same
as before, and the proof follows the same principles. We do not repeat the argument.

The other two congruence classes of K are more complicated and require a dif-
ferent pivot choice. Let us begin with the case K ≡3 2. First, we partition the set of
vertices of P(K,∞) into triangular subsets T1,T2, . . . defined by:

T2�+1 = {(x, y) : 0 ≤ y < K, 2�K ≤ x + y, x − y < 2�K + 1},
T2� = {(x, y) : 0 ≤ y < K,2(� − 1)K + 1 ≤ x − y, x + y < 2�K}.

These triangles are shown in Figure 10 for K = 5.
We now describe the pivot order. The pivots are first taken in T1, then in T2 (once

all vertices of T1 are prescribed), and so on. The pivot order for T1 is very similar
to what we have done previously. That is, we follow the diagonals of slope −1 from
upper left to lower right but with the restriction that we must stay within the triangle.
For T2 the pivot order is what we get when turning T1 upside down. That is, we follow
the diagonals of slope 1 from bottom left to top right.

Denote by Up(K,N) the set of unmatched elements of �(P(K,N)). We observe
(Figure 10) that, once all pivots in T1 and T2 have been exhausted, only one node
�(A,B) of the matching tree is non-empty. The prescribed vertices of this node are
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Fig. 10 The configuration of
prescribed vertices when the
pivots of T1 and T2 have been
exhausted, for K = 5. This
configuration occurs in the
non-contractible branch of the
matching tree. The pivots,
indicated by ∗ and numbered by
pivot order, and the splitting
vertices �, are empty. Each time
a partial matching is performed,
some new prescribed vertices
appear: they are joined by thick
lines

those of A ∪ B = T1 ∪ T2. This gives, for N ≥ 2K :

Up(K,N) ∼= Up(K,2K) ∗ Up(K,N − 2K),

which is key to our induction on N . By convention, P(K,0) is the empty graph, and
its unique independent set is the empty set, so that |Up(K,0)| = 1. We also note
that the unique unmatched element of �(P(K,2K)) has cardinality m(m − 1) =
(2K + 2)(2K − 1)/9.

Upon iterating the above identity, we obtain, if N = 2qK + r ,

Up(K,N) ∼= Up(K,2qK) ∗ Up(K, r),

where the only unmatched cell of �(P(K,2qK)) has qm(m − 1) vertices. It thus
remains to describe what our matching rule produces for the graphs P(K, r), for
0 ≤ r ≤ 2K − 1. The following properties are easily observed on the example of
Figure 10.

(1) If r ≡3 1, the rightmost vertex in the top row of P(K, r), which belongs to the
triangle T1, becomes a free pivot at some stage of the matching procedure, so that
|Up(K, r)| = 0.

(2) If r ≡3 2, the rightmost vertex in the top row of P(K, r) ∩ T2 becomes a free
pivot at some stage, so that again, |Up(K, r)| = 0.

(3) Finally, if r ≡3 0, we obtain a unique unmatched cell, of cardinality mr/3. More
precisely, for 0 ≤ i < r/3, the three diagonals defined by 3i ≤ x + y ≤ 3i + 2,
taken together, contain m vertices of the unmatched cell.

Putting together our recursion and the above results for P(K, r), we find that the only
non-contractible cases are when r ≡3 0. In this case, there is only one unmatched
element in �(P(K,N)), of cardinality qm(m − 1) + mr/3. The result follows for
the case K ≡3 2.

Let us now adapt this to the final case K ≡3 0. The triangles that we used to define
the pivot rule now become trapezoids T1,T2, . . ., defined by:

T2�+1 = {(x, y): 0 ≤ y < K, 2�(K + 1) ≤ x + y, x − y < 2�(K + 1) + 2},
T2� = {(x, y): 0 ≤ y < K, 2(� − 1)(K + 1) + 2 ≤ x − y, x + y < 2�(K + 1)}.
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Fig. 11 The configuration of
prescribed vertices when the
pivots of T1 and T2 have been
exhausted, for K = 6

These trapezoids are shown in Figure 11 for K = 6. The pivots are then chosen using
the same rule as in the case K ≡3 2. Again, one observes that when the pivots of T1
and T2 have been exhausted, only one vertex �(A,B) of the matching tree is non-
empty, and its prescribed vertices are those of T1 ∪ T2. This gives, for N ≥ 2K + 2:

Up(K,N) ∼= Up(K,2K + 2) ∗ Up(K,N − 2K − 2).

Moreover, �(P(K,2K + 2)) has a unique unmatched cell, of cardinality m(m + 1).
Let us write N = 2q(K + 1) + r , with 0 ≤ r ≤ 2K + 1. Iterating the above identity
gives

Up(K,N) ∼= Up(K,2q(K + 1)) ∗ Up(K, r),

where the only unmatched cell of �(P(K,2q(K + 1))) has cardinality qm(m + 1).
It remains to describe what our matching rule produces for the graphs P(K, r),

for 0 ≤ r ≤ 2K + 1. We refer again to Figure 11.

(1) If r ≡3 1, with r ≤ 2K , the rightmost vertex in the top row of P(K, r) becomes
a free pivot at some stage of the procedure, so that |Up(K, r)| = 0.

(2) If r = 2K + 1, there is a unique unmatched cell, with cardinality m(m + 1) (it
coincides with the unmatched cell obtained for P(K,2K + 2)).

(3) If r ≡3 0 with r > 0, the rightmost vertex in the top row of P(K, r)∩T2 becomes
a free pivot at some stage of the matching procedure, so that again, |Up(K, r)| =
0.

(4) If r = 0, we have the empty graph, with the empty set as unique (and unmatched)
independent set.

(5) Finally, if r ≡3 2, we obtain a unique unmatched cell, of cardinality m(r + 1)/3.

Putting together our recursion and the above results for P(K, r), we find that the only
non-contractible cases are when r = 0, r = 2K + 1 and r ≡3 2. In these cases, there
is only one unmatched element in �(P(K,N)), of cardinality qm(m+ 1)+mr/3�.
The result follows for the case K ≡3 0. �

Remark The parallelogram P(K,N) gives rise to two distinct families of shapes with
cylindric boundary conditions:

• Gluing the two diagonal borders of P(K,N + 1) by identifying the points
(−i, i) and (−i + N, i) for 0 ≤ i ≤ K − 1 gives the “usual” cylinder Z/NZ ×
{0,1, . . . ,K − 1}. It is conjectured in [8] that for odd N the corresponding alter-
nating number of independent sets is 1, except for the case N ≡6 3,K ≡3 1 when
it is conjectured to be −2.
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• Gluing the two horizontal borders of P(K + 1,N) by identifying the points (i,0)

and (i − K,K) for 0 ≤ i ≤ N − 1 gives Rc(2K,N), the cylindric version of the
rectangle which we studied in Section 4.

6 Transfer matrices

6.1 Generalities

We develop here a general (and very classical) transfer matrix framework which we
will apply later to the enumeration of independent sets on various subgraphs of the
square lattice. See [12, Ch. 4] for generalities on transfer matrices.

Let r ≥ 1, and let S be a collection of subsets in �1, r� := {1,2, . . . , r}, with
card(S) = d . Let T be a square matrix of size d , with complex coefficients, whose
rows and columns are indexed by the elements of S . The entry of T lying in row
C and column D is denoted T(C,D). A configuration of length n is any sequence
I = (C0,C1, . . . ,Cn) of subsets of S . We say that C0 and Cn are the borders of I .
The weight of I is

w(I) =
n−1∏

i=0

T(Ci,Ci+1).

A cyclic configuration of length n is a configuration I = (C0,C1, . . . ,Cn−1,Cn) such
that C0 = Cn. Observe that for all C ∈ S , I = (C) is a cyclic configuration of length
0, so that there are exactly d such configurations.

Let t be an indeterminate. It is well-known, and easy to prove (see for instance [12,
Thm. 4.7.2]), that the length generating function of configurations with prescribed
borders C and D, weighted as above, is

GC,D(t) :=
∑

n≥0

∑

I=(C,C1,...,Cn−1,D)

tnw(I) = (1 − tT)−1(C,D). (3)

From this, one derives that the length generating function of cyclic configurations is
the trace of (1 − tT)−1:

Gc(t) :=
∑

C

GC,C(t) = tr(1 − tT)−1.

In what follows, we will be interested in deriving eigenvalues of the transfer ma-
trix T from the generating functions GC,D(t) and Gc(t). This is motivated by the
work of Fendley et al. who conjectured that the eigenvalues of various transfer ma-
trices related to the enumeration of independent sets are roots of unity [3]. One first
observation is that finding the whole spectrum (λ1, . . . , λd) of the transfer matrix is
equivalent to finding the generating function of cyclic configurations: indeed,

Gc(t) = tr(1 − tT)−1 =
∑

n≥0

tntr(Tn) =
∑

n≥0

tn(λn
1 + · · · + λn

d) =
d∑

i=1

1

1 − λit
. (4)
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Fig. 12 How the various transfer matrices act

From (3), (4), and the classical formula giving the inverse of a matrix in terms of its
determinant and its comatrix, one concludes that

• For every pair C,D, the reciprocals of the poles of GC,D(t) are eigenvalues of T,
• Conversely, the set of non-zero eigenvalues of T coincides with the set of recipro-

cals of poles of the series GC,C(t), for C running over S .

In other words: counting configurations with cyclic boundary conditions gives the
whole spectrum; at least partial information can be derived from the enumeration of
configurations with open boundary conditions.

This general framework will be specialized below to the case where the sets C

and D describe hard-particle configurations (a.k.a. independent sets) on certain layers
on the square lattice. The weights T(C,D) will be designed in such a way that the
weight of a configuration I is 0 if I is not an independent set, and (−1)|I | otherwise.
We have schematized in Figure 12 the various transfer matrices we consider. They
will be defined precisely in the text.

6.2 Two complete spectra

In this section, we combine the above generalities with the results obtained in Sect-
ion 4 for the alternating number of independent sets on the cylinders Rc(M,N). As
these cylinders can be generated from two types of transfer matrices (called RN and
LN in Figure 12), we obtain the complete spectra of these two families of transfer
matrices. All the non-zero eigenvalues are found to be roots of unity.

We begin with a transfer matrix PN that describes the independent sets of
the 2-diagonal graph R(2,N). The rows of PN are indexed by subsets C of
{1,2, . . . , N/2�}, its columns are indexed by subsets D of {1,2, . . . , �N/2�}, and

PN(C,D) =
{

i|C|+|D|, if C ∩ D = C ∩ (D + 1) = ∅,

0, otherwise.
(5)
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The notation D + 1 means {i + 1 : i ∈ D}. Observe that PN is not a square ma-
trix if N is odd.1 However, if P̄N denotes the transpose of PN , then RN := PN P̄N

is the (square) transfer matrix corresponding to the graph R(3,N): for C,D ⊆
{1, . . . , N/2�},

RN(C,D) =
∑

E⊆{1,...,�N/2�}
PN(C,E)P̄N(E,D) = i|C|+|D| ∑

E:I=(C,E,D) ind.set

(−1)|E|

is, up to the factor i|C|+|D|, the alternating number of independent sets I of R(3,N),
with top and bottom borders C and D respectively (the set E describes the elements
of I lying on the central diagonal). The coefficients of this matrix actually have a
simpler expression. Indeed, the configuration (C,E,D) is an independent set if and
only if E is in the complement of C ∪D ∪ (C −1)∪ (D −1). Hence the sum of terms
(−1)|E| is 0 unless this complement is empty. That is, for C,D ⊆ {1,2, . . . , N/2�},

RN(C,D) =
{

i|C|+|D|, if {1,2, . . . , �N/2�} = C ∪ D ∪ (C − 1) ∪ (D − 1),

0, otherwise.
(6)

From (5), one derives that the entry (C,C) in the product Rk
N = (PN P̄N)k is the al-

ternating number of independent sets on the cylinder Rc(2k,N) studied in Section 4,
with border condition C on the first diagonal. By Section 6.1, these numbers are
related to the spectrum (λ1, . . . , λd) of the transfer matrix RN . More precisely, (4)
gives:

Gc(t) = d +
∑

k≥1

Zc
R(2k,N)tk =

d∑

i=1

1

1 − λit
, (7)

where the numbers Zc
R(2k,N) are given in Theorem 7 and d = 2N/2�.

Theorem 9 Let N ≥ 1. The transfer matrix RN defined by (6) has size 2N/2�. If
N ≡3 1, then RN is nilpotent (all its eigenvalues are 0). Otherwise, RN has eigenval-
ues:

• 0 with multiplicity 2N/2� − 2n,
• 1 with multiplicity (2n + 2(−1)n)/3,
• j and j2 with multiplicity (2n − (−1)n)/3,

where j = e2iπ/3 and n = N/3�.

Proof We start from the identity

Gc(t) = d +
∑

k≥1

Zc
R(2k,N)tk = tr(1 − tRN)−1 =

d∑

i=1

1

1 − λit
.

1When N is even, the matrix PN also describes the independent sets of the parallelogram P(N/2,2),
as illustrated in Figure 12. Accordingly, its powers will be used later to count independent sets on the
parallelograms P(N/2, ·).
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This allows us to read off the eigenvalues directly from the generating function of the
numbers Zc

R(2k,N), given by Theorem 7.
When N ≡3 1, Gc(t) = d and so all the eigenvalues of RN are zero. Otherwise,

Gc(t) = d + 2n t3

1 − t3
+ (−1)n

t + t2

1 − t3
,

and the result follows by a partial fraction expansion. �

In the case N ≡3 1, the above theorem gives an unexpected strengthening of The-
orem 6. This observation was communicated to us by Alan Sokal, merci à lui !

Corollary 10 Let N ≡3 1. For M > 21+N/2�, the alternating number ZR(M,N;
C,D) of independent sets on the rectangle R(M,N) having prescribed conditions C

and D on the two extreme diagonals of slope 1 is 0, for all configurations C and D.

Proof First assume that M = 2m + 1, so that m ≥ 2N/2�. By the above theorem and
the Cayley-Hamilton theorem, the mth power of RN vanishes. Thus by (3), the series
GC,D(t) is a polynomial in t of degree at most 2N/2� − 1. But the coefficient of tm

in this series is precisely ZR(2m + 1,N;C,D).
Similarly, if M = 2m + 2 with m ≥ 2N/2�, the number ZR(M,N;C,D) is the

entry (C,D) in the matrix Rm
NPN , which vanishes. �

As observed at the end of Section 5, the cylindric shape Rc(2k,N) can also be
obtained by wrapping the parallelogram P(k+1,N) on a cylinder, identifying the top
and bottom (horizontal) layers. Consequently, the results of Theorem 7 also give the
spectrum of another transfer matrix, denoted LN , which describes how to construct
the shapes P(·,N) layer by layer (Figure 12). The rows and columns of LN are
indexed by independent sets of the segment P(1,N). Thus the size of LN is the
Fibonacci number FN+1, with F0 = F1 = 1 and FN+1 = FN + FN−1, and if C and
D are independent sets of P(1,N),

LN(C,D) =
{

i|C|+|D|, if C ∩ (D + 1) = ∅,

0, otherwise.
(8)

The generalities of Section 6.1 imply that the spectrum (μ1, . . . ,μd) of LN satisfies

FN+1 +
∑

k≥1

Zc
R(2k,N)tk =

FN+1∑

i=1

1

1 − μit
.

Comparing with (7) shows that the spectra of LN and RN coincide, apart from the
multiplicity of the null eigenvalue.

Theorem 11 Let N ≥ 1. The transfer matrix LN defined by (8) has size FN+1. If
N ≡3 1, then LN is nilpotent. Otherwise, LN has eigenvalues:

• 0 with multiplicity FN+1 − 2n,
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• 1 with multiplicity (2n + 2(−1)n)/3,
• j and j2 with multiplicity (2n − (−1)n)/3,

where j = e2iπ/3 and n = N/3�.

As for the matrix RN , the nilpotent case N ≡3 1 gives the following corollary, which
has to be compared to Theorem 8.

Corollary 12 Let N ≡3 1. Then, for K > FN+1, the alternating number ZP (K,N;
C,D) of independent sets on the parallelogram P(K,N) having prescribed condi-
tions C and D on the top and bottom row is 0, for all configurations C and D.

Proof The number ZP (K,N;C,D) is the entry (C,D) in the (K − 1)th power of
the transfer matrix LN . But this power vanishes by the Cayley-Hamilton theorem. �

6.3 Partial results on two other spectra

In this section we focus on two transfer matrices that generate the usual cylinder
C(K,N) := {0,1, . . . ,K − 1} × Z/NZ. This cylinder can be obtained by identify-
ing the diagonal borders of the parallelogram P(K,N + 1). Alternatively, it can
be obtained by wrapping the ordinary K × (N + 1) rectangle {0,1, . . . ,K − 1} ×
{0,1, . . . ,N} on a cylinder, identifying the vertices (i,0) and (i,N). Underlying the
first construction are the matrices P2K defined at the beginning of Section 6.2 (see (5)
and Figure 12). Underlying the second construction is the transfer matrix OK that
describes how to construct the ordinary rectangles of width K . This matrix has size
FK+1, the (K + 1)st Fibonacci number, and its rows and columns are indexed by
independent sets of the K point segment. If C and D are two of these independent
sets,

OK(C,D) =
{

i|C|+|D|, if C ∩ D = ∅,

0, otherwise.
(9)

The similarity with the definition (8) of the matrix LN is striking, but the spectrum
of OK is definitely more complex than that of LN . It is conjectured in [3] that all the
eigenvalues of OK are roots of unity.

Let ZC(K,N) denote the alternating number of independent sets on the cylinder
C(K,N). From the generalities of Section 6.1, we have:

∑

N≥1

ZC(K,N)tN = tr(1 − tP2K)−1 − 2K = tr(1 − tOK)−1 − FK+1.

That is, the spectra of the matrices P2K and OK coincide, apart from the multiplicity
of the null eigenvalue.

Alas, we do not know what the numbers ZC(K,N) are. However, recall from
Section 6.1 that enumerative results on configurations with open boundary conditions
provide partial information on the spectrum of the transfer matrix. Here, we exploit
the results of Section 5 on parallelograms to obtain some information on the spectrum
of P2K (and thus of OK ).
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For all C,D ⊆ {1, . . . ,K}, let ZP (K,N;C,D) be the alternating number of in-
dependent sets of the parallelogram P(K,N) having borders C and D respectively
on the leftmost and rightmost diagonal. Then (3) gives:

GC,D(t) = (1 − tP2K)−1(C,D)

= δC,D + (−i)|C|+|D| ∑

I=(C,C1,...,Cn−1,D),n≥1

(−1)|I |tn

= δC,D + (−i)|C|+|D| ∑

N≥1

ZP (K,N + 1;C,D)tN . (10)

Note that in the first formula, the weight (−i)|C|+|D|(−1)|I | results in a weight i for
each vertex of the extreme diagonals, as it should. Since the numbers ZP (K,N +
2; ∅,∅) coincide with the numbers ZP (K,N) given in Theorem 8, this allows us to
find some eigenvalues of P2K and OK . We indicate in the next section how our pivot
principle can be extended to count independent sets with prescribed borders, so as to
determine more series GC,D and thus more eigenvalues of the matrix OK .

Proposition 13 The transfer matrix OK defined by (9) satisfies the following prop-
erties.

• If K ≡3 1, then eiπ/3 and e−iπ/3 are eigenvalues of OK .
• If K ≡3 2, then all the 2K th roots of unity, except maybe −1, are eigenvalues of

OK .
• If K ≡3 0, then all the (2K + 2)th roots of unity, except maybe −1 and, if K is

odd, ±i, are eigenvalues of OK .

Proof Specializing (10) to C = D = ∅ gives

G∅,∅(t) = (1 − tP2K)−1(∅,∅) = 1 +
∑

N≥0

ZP (K,N)tN+1,

with ZP (K,0) = 1. Recall that the reciprocals of the poles of this series are eigen-
values of OK and P2K . The numbers ZP (K,N) are given in Theorem 8. If K ≡3 1,

G∅,∅ = 1 + t +
∑

n≥1

(−1)n(t3n + t3n+1) = 1

1 − t + t2
. (11)

If K ≡3 2,

G∅,∅ = 1 +
∑

q≥0

(2K−1)/3∑

p=0

t2qK+3p+1 = 1 + t

1 − t2K

1 − t2K+2

1 − t3
.

Note that (1 − t2K+2)/(1 − t3) is a polynomial, and that the only root this polynomial
shares with 1 − t2K is −1.
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Finally, if K ≡3 0,

G∅,∅ = 1 +
∑

q≥0

t2q(K+1)+1 +
∑

q≥0

t2q(K+1)+2K+2 +
∑

q≥0

2K/3−1∑

p=0

t2q(K+1)+3p+3

= 1

1 − t2K+2

(
1 + t + t3 1 − t2K

1 − t3

)
.

Note that (1 + t + t3 (1 − t2K)/(1 − t3)) is a polynomial. The roots it shares with
(1 − t2K+2) are −1, and, if K is odd, ±i. �

Note Even when K �≡3 1, we have only determined a linear number of eigenvalues
of OK , while the size of this matrix is exponential in K . See Section 7.2 for details
on the (large) portion of the spectrum of OK that remains to be explained.

7 Final comments and perspectives

7.1 Other quadrangles

A natural generalization of the rectangles and parallelograms studied in Sections 3
and 5 is the subgraph G(M,N) of the square lattice induced by the points (x, y)

satisfying

ay ≤ x ≤ ay + M − 1 and − bx ≤ y ≤ −bx + N − 1,

for given values of a and b. We have solved above the cases (a, b) = (1,1) and
(a, b) = (−1,0). In particular, we have proved that in both cases, the alternating
number of independent sets is always 0 or ±1. What about other values of a and
b? The case (a, b) = (0,0), which describes ordinary rectangles, shows that the sim-
plicity of our results cannot be extended to all pairs (a, b). Indeed, even though the
eigenvalues of the transfer matrix OK are conjectured to be roots of unity, the alter-
nating number Z(K,N) of independent sets on a K ×N rectangle does not show any
obvious pattern. For instance, for K = 4,

∑

N≥0

Z(4,N)tN = 1 + t4

(1 − t2)(1 + t3)

= 1 + t2 − t3 + 2 t4 − t5 + 3 t6 − 2 t7 + 3 t8 − 3 t9 + 4 t10

+ O(t11).

In particular, Z(4,N) ∼ (−1)NN/3 as N goes to infinity.
In contrast, recall that it is conjectured that for an ordinary rectangle with cyclic

boundary conditions, the alternating number ZC(K,N) is 1 or −2 when N is odd [8].
Still, the simplicity of the results obtained for rectangles and parallelograms ex-

tends to other quadrangles. For instance, if a = b = 2, a pivot rule similar to the one
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Fig. 13 The graph G(14,17)

obtained for a = b = 2

used in the proof of Theorem 6 (the tentative pivot lies as high as possible on the left-
most line of slope −2) produces the following results, where the alternating number
of independent sets is denoted ZG(M,N). The proof is left to the reader.

Theorem 14 Let M,N ≥ 1. Let m = M/5� and n = N/5�.

• If M ≡5 0 and N �= 3, or if M ≡5 1, or if N ≡5 1,2, then �(G(M,N)) is con-
tractible and ZG(M,N) = 0.

• Otherwise, �(G(M,N)) is homotopy equivalent to a sphere of dimension mn − 1,
and ZG(M,N) = (−1)mn.

It would be worth investigating which values of a and b produce similar results.

7.2 Transfer matrices

We have determined in Proposition 13 some of the eigenvalues of the “hard” trans-
fer matrix OK . Recall that all its eigenvalues are conjectured to be roots of unity.
We give below the value of the characteristic polynomial P(K) of the matrix O(K),
for 1 ≤ K ≤ 10, and split this polynomial into the part that is explained by Propo-
sition 13, and the (bigger and bigger) part that is left unexplained. These data have
been obtained with the help of Maple.

P(1) = 1 + t3

1 + t
· 1,

P (2) = 1 − t4

1 + t
· 1,

P (3) = 1 − t8

(1 + t)(1 + t2)
· 1,

P (4) = 1 + t3

1 + t
· (1 − t2)(1 − t4),

P (5) = 1 − t10

1 + t
· (1 + t4),

P (6) = 1 − t14

1 + t
· (1 − t4)2,

P (7) = 1 + t3

1 + t
· (1 + t4)(1 − t12)(1 − t18)

1 + t2
,
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P(8) = 1 − t16

1 + t
· (1 − t2)(1 − t4)2(1 + t8)(1 − t22),

P (9) = 1 − t20

(1 + t)(1 + t2)
· (1 + t4)(1 − t14)(1 + t10)(1 − t20)(1 − t26)

1 − t2
,

P (10) = 1 + t3

1 + t
· (1 − t4)2(1 − t18)2(1 − t24)3(1 − t30)

1 + t4
.

By Section 6.1, we know that each missing factor occurs in at least one of the se-
ries GC,C(t) counting independent sets of the parallelogram P(K, ·) with prescribed
border C on extreme diagonals. Conversely, any series GC,D(t) may provide some of
these missing factors (see (3)). Hence the following question: can our pivot approach
be recycled to compute some of these series, and do we obtain new eigenvalues in
this way?

For C,D ⊆ �1,K�, denote by ZP (K,N;C,D) the alternating number of inde-
pendent sets of P(K,N) having border conditions C and D, respectively, on the
first (last) diagonal. (This notation was already introduced in Section 6.3.) Recall in
particular the connection (10) between these numbers and the series GC,D(t).

Take K = 4 and C = {2,3}. If the configuration is C on the first diagonal, then,
in the second diagonal, only the vertex labeled 4 may belong to an independent set.
This gives

ZP (4,N; {2,3},D) = ZP (4,N − 1; ∅,D) + ZP (4,N − 1; {4},D)

= ZP (4,N − 1; ∅,D) + ZP (4,N − 4; {2,3},D). (12)

The second identity is obtained by applying the pivot rule of Section 3 to the indepen-
dent sets counted by ZP (4,N −1; {4},D) (Figure 14). The above identity is valid for
N ≥ 7. We first specialize it to D = ∅, and work out what happens for small values
of N . Upon summing over N , we obtain

GC,∅(t) = − t

1 − t4
(G∅,∅(t) − t) = − t

(1 + t)(1 − t + t2)
.

(We have used (11) for the value of G∅,∅.) We then specialize (12) to D = C = {2,3}.
After working out what happens for small values of N , we obtain

GC,C(t) = 1 − tG∅,C(t)

1 − t4
= 1 + t2 + t3

(1 + t)(1 − t4)(1 − t + t2)
,

which now explains the missing factors (1 + t)(1 − t4) in P(4).

Fig. 14 The pivot rule applied
to P(4,N), with first diagonal
{2,3} and second diagonal {4}
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For K = 5, we obtain similarly the missing factor 1 + t4 by considering the num-
bers ZP (K,N;C,D), with C = {3,4}. Indeed, after a discussion about the vertex
labeled 5 in the second diagonal and a few applications of the pivot rule, one finds

ZP (K,N; {3,4},D) = ZP (K,N − 4; ∅,D) − ZP (K,N − 4; {3,4},D),

from which we derive

GC,C(t) = 1

(1 − t5)(1 + t4)
.

This gives the missing factor (1 + t4).
It would be interesting to know how far one can go with this approach. That is, can

we determine all series GC,C in this way? This would allow us to count independent
sets on the ordinary cylinder, and thus to find all eigenvalues of the matrix OK .

Note that the largest cyclotomic factor that occurs in the polynomial P(K) seems
to be �4K−10.

Remark added to the paper (07 March, 2007): Sonja Cukic and Alexander En-
gström recently pointed out to us that the following lemma [2, Lemma 2.4] can be
used to derive some of our topological results.

Lemma 15 Let v,w be vertices in a graph G. If N(v) ⊆ N(w) then �(G) collapses
onto �(G − w).

Indeed, one can match all independent sets containing w by adding or removing the
vertex v.

For example, for the rectangles of Theorem 6, one can eliminate the vertices in
every third diagonal by a repeated application of Lemma 15. This leaves a graph
formed of several paths. One can then eliminate every third vertex in each of these
paths. The remaining graph is a disjoint union of edges, and, if M ≡3 1 or N ≡3 1,
also isolated vertices. Thus �(R(M,N)) collapses onto an octahedral sphere (an
mn-fold join of two points) or to the join of an octahedral sphere with a simplex,
respectively. Theorem 6 follows.

Acknowledgements We are grateful to Anders Björner and Richard Stanley for inviting us to the “Al-
gebraic Combinatorics” program at the Institut Mittag-Leffler in Spring 2005, during which part of this
work was done. All authors were partially supported by the European Commission’s IHRP Programme,
grant HPRN-CT-2001-00272, “Algebraic Combinatorics in Europe”.

References

1. Baxter, R.J.: Hard hexagons: exact solution. J. Phys. A 13(3), L61–L70 (1980)
2. Engström, A.: Independence complexes of claw-free graphs. ArXiv:math.CO/0512420 (2005)
3. Fendley, P., Schoutens, K., van Eerten, H.: Hard squares with negative activity. J. Phys. A 38(2),

315–322 (2005), ArXiv:cond-mat/0408497
4. Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)



450 J Algebr Comb (2008) 27: 423–450

5. Forman, R.: A user’s guide to discrete Morse theory. Sém. Lothar. Comb. 48:Art. B48c (electronic)
(2002)

6. Jonsson, J.: Simplicial complexes of graphs. PhD thesis, KTH, Stockholm, 2005, to appear in Lecture
Notes Math., Springer. http://www.math.kth.se/~jakobj/thesis.html

7. Jonsson, J.: Hard squares on grids with diagonal boundary conditions. Preprint (2006)
8. Jonsson, J.: Hard squares with negative activity and rhombus tilings of the plane. Preprint (2006)
9. Kozlov, D.N.: Complexes of directed trees. J. Comb. Theory Ser. A 88(1), 112–122 (1999)

10. Munkres, J.R.: Elements of Algebraic Topology. Addison–Wesley, Menlo Park (1984)
11. Sloane, N.J.A., Plouffe, S.: The Encyclopedia of Integer Sequences. Academic Press, San Diego

(1995). http://www.research.att.com/~njas/sequences/index.html
12. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics,

vol. 49. Cambridge University Press, Cambridge (1997)


	On the independence complex of square grids
	Abstract
	Introduction
	Morse matchings for independence complexes
	Generalities
	Matching trees

	Rectangles with open boundary conditions
	Rectangles with cylindric boundary conditions
	Parallelograms with open boundary conditions
	Transfer matrices
	Generalities
	Two complete spectra
	Partial results on two other spectra

	Final comments and perspectives
	Other quadrangles
	Transfer matrices

	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


