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Abstract We propose several constructions of commutative or cocommutative Hopf
algebras based on various combinatorial structures and investigate the relations be-
tween them. A commutative Hopf algebra of permutations is obtained by a general
construction based on graphs, and its noncommutative dual is realized in three differ-
ent ways, in particular, as the Grossman–Larson algebra of heap-ordered trees. Ex-
tensions to endofunctions, parking functions, set compositions, set partitions, planar
binary trees, and rooted forests are discussed. Finally, we introduce one-parameter
families interpolating between different structures constructed on the same combina-
torial objects.

Keywords Hopf algebras · Quasi-symmetric functions · Parking functions · Trees ·
Graphs

1 Introduction

Many examples of Hopf algebras based on combinatorial structures are known.
Among these, certain algebras based on permutations and planar binary trees play
a prominent role and arise in seemingly unrelated contexts [4, 7, 17, 19]. As Hopf
algebras, both are noncommutative and noncocommutative and in fact self-dual.

More recently, cocommutative Hopf algebras of binary trees and permutations
have been constructed [1, 21]. In [21], binary trees arise as sums over rearrangements
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classes in an algebra of parking functions, while in [1], cocommutative Hopf algebras
are obtained as the graded coalgebras associated with coradical filtrations.

In [23], a general method for constructing commutative Hopf algebras based on
various kinds of graphs has been presented. The aim of this note is to investigate Hopf
algebras based on permutations, trees, and various other combinatorial structures and
constructed by the method developed in [23]. These commutative algebras are, by
definition, realized in terms of polynomials in an infinite set of doubly indexed inde-
terminates. The dual Hopf algebras are then realized by means of noncommutative
polynomials in variables aij . We show that the algebras based on permutations and
planar binary trees are isomorphic (in a nontrivial way) to those of [1] and study some
generalizations such as endofunctions, parking functions, set partitions, trees, forests,
and so on.

The possibility to obtain in an almost systematic way commutative and in general
noncocommutative versions of the usual combinatorial Hopf algebras leads us to the
conjecture that these standard versions should be considered as some kind of quantum
groups, i.e., can be incorporated into one-parameter families containing an envelop-
ing algebra and its dual for special values of the parameter. A few results supporting
this point of view are presented in the final section.

Throughout, K is a field of characteristic zero. We adopt the notation from [8, 23].
This paper is an expanded and updated version of the preprint [12].

2 A commutative Hopf algebra of endofunctions

Permutations can be regarded in an obvious way as labeled and oriented graphs whose
connected components are cycles. Actually, arbitrary endofunctions (functions from
[n] := {1, . . . , n} to itself) can be regarded as labeled graphs connecting i with f (i)

for all i so as to fit in the framework of [23], where a general process for building
Hopf algebras of graphs is described.

In the sequel, we identify an endofunction f of [n] with the word

wf = f (1)f (2) · · ·f (n) ∈ [n]n. (1)

Let {xi j | i, j ≥ 1} be an infinite set of commuting indeterminates, and let J be
the ideal of R = K [xi j | i, j ≥ 1] generated by the relations

xi j xi k = 0 for all i, j, k. (2)

For an endofunction f : [n] → [n], define

Mf :=
∑

i1<···<in

xi1 if (1)
· · ·xin if (n)

(3)

in R/J .
From [23, Sect. 4], it follows:
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Theorem 2.1 The Mf span a subalgebra EQSym of the commutative algebra R/J .
More precisely, there exist nonnegative integers Ch

f,g such that

Mf Mg =
∑

h

Ch
f,gMh. (4)

Examples 2.2

M1M22 = M133 + M323 + M223. (5)

M1M331 = M1442 + M4241 + M4431 + M3314. (6)

M12M21 = M1243 + M1432 + M4231 + M1324 + M3214 + M2134. (7)

M12M22 = M1244 + M1434 + M4234 + M1334 + M3234 + M2234. (8)

M12M133 = 3M12355 + 2M12445 + 2M12545 + M13345 + M14345 + M15345. (9)

The shifted concatenation of two endofunctions f : [n] → [n] and g : [m] → [m]
is the endofunction h := f • g of [n + m] such that wh := wf • wg , that is,

{
h(i) = f (i) if i ≤ n,
h(i) = n + g(i − n) if i > n.

(10)

We can now give a combinatorial interpretation of the coefficient Ch
f,g : if f :

[n] → [n] and g : [m] → [m], this coefficient is the number of permutations τ in
the shuffle product (1 . . . n) (n + 1 . . . n + m) such that

h = τ−1 ◦ (f • g) ◦ τ. (11)

For example, with f = 12 and g = 22, one finds the set (see (8))

{1244,1434,4234,1334,3234,2234}. (12)

Now, still following [23], define the coproduct by

ΔMh :=
∑

(f,g);f •g=h

Mf ⊗ Mg. (13)

This endows EQSym with a (commutative, noncocommutative) Hopf algebra struc-
ture.

Examples 2.3

ΔM626124 = M626124 ⊗ 1 + 1 ⊗ M626124. (14)

ΔM4232277 = M4232277 ⊗ 1 + M42322 ⊗ M22 + 1 ⊗ M4232277. (15)
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Define a connected endofunction as a function that cannot be obtained by nontriv-
ial shifted concatenation. For example, the connected endofunctions for n = 1, 2, 3
are

1, 11, 21, 22,

111, 112, 121, 131, 211, 212, 221, 222, 231, 232,

233, 311, 312, 313, 321, 322, 323, 331, 332, 333,

(16)

and the generating series of their numbers begins with

t + 3 t2 + 20 t3 + 197 t4 + 2511 t5 + 38924 t6 + 708105 t7 + 14769175 t8 +· · · . (17)

Then, the definition of the coproduct of the Mf implies the following:

Proposition 2.4 If (Sf ) denotes the dual basis of (Mf ), the graded dual ESym :=
EQSym∗ is free over the set

{Sf | f connected}. (18)

Indeed, (13) is equivalent to

Sf Sg = Sf •g. (19)

Now, ESym being a graded connected cocommutative Hopf algebra, from the
Cartier–Milnor–Moore theorem it follows that

ESym = U(L) (20)

where L is the Lie algebra of its primitive elements. Let us now prove the following:

Theorem 2.5 As a graded Lie algebra, the primitive Lie algebra L of ESym is free
over a set indexed by connected endofunctions.

Proof Assume it is the case. By standard arguments on generating series, one finds
that the number of generators of L in degree n is equal to the number of algebraic
generators of ESym in degree n, parametrized for example by connected endofunc-
tions. We will now show that L has at least this number of generators and that those
generators are algebraically independent, determining completely the dimensions of
the homogeneous components Ln of L whose generating series begins with

t + 3 t2 + 23 t3 + 223 t4 + 2800 t5 + 42576 t6 + 763220 t7 + 15734388 t8 +· · · . (21)

Following Reutenauer [27, p. 58], denote by π1 the Eulerian idempotent, that is,
the endomorphism of ESym defined by π1 = log∗(Id). It is obvious, thanks to the
definition of Sf , that

π1(Sf ) = Sf + · · · , (22)

where the dots stand for terms Sg such that g is not connected. Since the Sf associ-
ated with connected endofunctions are independent, the dimension of Ln is at least
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equal to the number of connected endofunctions of size n. So L is free over a set of
primitive elements parametrized by connected endofunctions. �

There are many Hopf subalgebras of EQSym which can be defined by imposing
natural restrictions to maps: being bijective (see Sect. 3), idempotent (f 2 = f ), invo-
lutive (f 2 = id), or more generally the Burnside classes (f p = f q ), and so on. We
shall start with the Hopf algebra of permutations.

3 A commutative Hopf algebra of permutations

We will use two different notations for permutations depending on whether they are
considered as bijections from [1, n] onto itself or as products of cycles. In the first
case, we will write σ = 31542 for the bijection σ where σ(i) = σi . In the second
case, the same permutation will be written σ = (1352)(4), since 31542 is composed
of two cycles: the cycle (1352) sending each element to the next one (circularly) in
the sequence and the cycle (4) composed of only one element.

3.1 The Hopf algebra of bijective endofunctions

Let us define SQSym as the subalgebra of EQSym spanned by the

Mσ =
∑

i1<···<in

xi1 iσ (1)
· · ·xin iσ(n)

(23)

where σ runs over bijective endofunctions, i.e., permutations. Note that SQSym is
also isomorphic to the image of EQSym in the quotient of R/J by the relations

xi kxj k = 0 for all i, j, k. (24)

By the usual argument, it follows that:

Proposition 3.1 The Mσ span a Hopf subalgebra SQSym of the commutative Hopf
algebra EQSym.

As already mentioned, there exist nonnegative integers C
γ
α,β such that

MαMβ =
∑

γ

C
γ
α,βMγ . (25)

The combinatorial interpretation of the coefficients Ch
f,g seen in Sect. 2 can be

reformulated in the special case of permutations. Write α and β as a union of disjoint
cycles. Split the set [n + m] into a set A of n elements and its complement B in
all possible ways. For each splitting, apply to α (resp. β) in A (resp. B) the unique
increasing morphism of alphabets from [n] to A (resp. from [m] to B) and return the
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list of permutations with the resulting cycles. If, for example, α = (1)(2) = 12 and
β = (13)(2) = 321, this yields

(1)(2)(53)(4), (1)(3)(52)(4), (1)(4)(52)(3), (1)(5)(42)(3), (2)(3)(51)(4),

(2)(4)(51)(3), (2)(5)(41)(3), (3)(4)(51)(2), (3)(5)(41)(2), (4)(5)(31)(2).
(26)

This set corresponds to the permutations and multiplicities of (31).
The third interpretation of this product comes from the dual coproduct point of

view: C
γ
α,β is the number of ways of getting (α,β) as the standardized words of

pairs (a, b) of two complementary subsets of cycles of γ . For example, with α = 12,
β = 321, and γ = 52341, one has three solutions for the pair (a, b), namely,

(
(2)(3), (4)(51)

)
,

(
(2)(4), (3)(51)

)
,

(
(3)(4), (2)(51)

)
, (27)

which is coherent with (26) and (31).

Examples 3.2

M12...nM12···p =
(

n + p

n

)
M12...(n+p). (28)

M1M21 = M132 + M213 + M321. (29)

M12M21 = M1243 + M1324 + M1432 + M2134 + M3214 + M4231. (30)

M12M321 = M12543 + M14325 + 2M15342 + M32145 + 2M42315 + 3M52341. (31)

M21M123 = M12354 + M12435 + M12543 + M13245 + M14325

+ M15342 + M21345 + M32145 + M42315 + M52341. (32)

M21M231 = M21453 + M23154 + M24513 + M25431 + M34152

+ M34521 + M35412 + M43251 + M43512 + M53421. (33)

3.2 Duality

Recall that the coproduct is given by

ΔMσ :=
∑

(α,β);α•β=σ

Mα ⊗ Mβ. (34)

As in Sect. 2, this implies:

Proposition 3.3 If (Sσ ) denotes the dual basis of (Mσ ), the graded dual SSym :=
SQSym∗ is free over the set

{Sα | α connected}. (35)
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Indeed, (34) is equivalent to

SαSβ = Sα•β. (36)

Note that SSym is both a subalgebra and a quotient of ESym, since SQSym is
both a quotient and a subalgebra of EQSym.

Now, as before, SSym being a graded connected cocommutative Hopf algebra,
from the Cartier–Milnor–Moore theorem it follows that

SSym = U(L), (37)

where L is the Lie algebra of its primitive elements.
The same argument as in Sect. 2 proves the following:

Theorem 3.4 The graded Lie algebra L of primitive elements of SSym is free over
a set indexed by connected permutations.

Corollary 3.5 SSym is isomorphic to HO , the Grossman–Larson Hopf algebra of
heap-ordered trees [9], and to the cocommutative Hopf algebra of permutations of
Patras–Reutenauer [25].

According to [1], SQSym (= SSym∗) is therefore also isomorphic to the quotient
of Free quasi-symmetric functions [7] (or Malvenuto–Reutenauer algebra of permu-
tations [19]) by its coradical filtration.

3.3 Cyclic tensors and SQSym

For a vector space V , let Γ nV be the subspace of V ⊗n spanned by cyclic tensors,
i.e., sums of the form

n−1∑

k=0

(v1 ⊗ · · · ⊗ vn)γ
k (38)

where γ is the cycle (1 2 . . . n), the right action of permutations on tensors being as
usual

(v1 ⊗ · · · ⊗ vn)σ = vσ(1) ⊗ · · · ⊗ vσ(n). (39)

Clearly, Γ nV is stable under the action of GL(V ), and its character is the symmet-
ric function “cyclic character” [15, 30]:

l(0)
n = 1

n

∑

d|n
φ(d)p

n/d
d (40)

where φ is Euler’s function.
Let L

(0)
n be the subspace of CSn spanned by cyclic permutations. This is a sub-

module of CSn for the conjugation action ρτ (σ ) = τστ−1 with Frobenius charac-
teristic l

(0)
n . Then one can define the analytic functor Γ (see [13, 18]):

Γ (V ) =
∑

n≥0

V ⊗n ⊗CSn
L(0)

n . (41)
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Let Γ (V ) = ⊕
n≥1 Γ n(V ). Its symmetric algebra H(V ) = S(Γ (V )) can be en-

dowed with a Hopf algebra structure by declaring the elements of Γ (V ) primitive.
As an analytic functor, V 	→ H(V ) corresponds to the sequence of Sn-modules

Mn = CSn endowed with the conjugation action, that is,

H(V ) =
⊕

n≥0

V ⊗n ⊗CSn
Mn, (42)

so that basis elements of Hn(V ) can be identified with symbols
[ w

σ

]
with w ∈ V ⊗n

and σ ∈ Sn subject to the equivalences
[

wτ−1

τστ−1

]
≡

[
w

σ

]
. (43)

Let A := {an | n ≥ 1} be an infinite linearly ordered alphabet, and let V = CA. We
identify a tensor product of letters ai1 ⊗ · · · ⊗ ain with the corresponding word w =
ai1 . . . ain and denote by (w) ∈ Γ nV the circular class of w. A basis of Hn(V ) is then
given by the commutative products

m = (w1) · · · (wp) ∈ S(Γ V ) (44)

of circular words with |w1| + · · · + |wp| = n and |wi | ≥ 1 for all i.
With such a basis element, we can associate a permutation by the following stan-

dardization process. Fix a total order on circular words, for example, the lexico-
graphic order on minimal representatives. Write m as a nondecreasing product

m = (w1) · · · (wp) with (w1) ≤ (w2) ≤ · · · ≤ (wp), (45)

where the wi are minimal representatives of the circular classes, and compute the
ordinary standardization σ ′ of the word w = w1 · · ·wp . Then σ is the permutation
obtained by parenthesing the word σ ′ like m and interpreting the factors as cycles.
For example, if

m = (cba)(aba)(ac)(ba) = (aab)(ab)(ac)(acb),

w = aababacacb,

σ ′ = 1 2 6 3 7 4 9 5 10 8,

σ = (126)(37)(49)(5 10 8),

σ = (2,6,7,9,10,1,3,5,4,8).

(46)

We set σ = cstd(m) and call it the circular standardization of m.
Let Hσ (V ) be the subspace of Hn(V ) spanned by those m such that cstd(m) = σ ,

and let πσ : H(V ) → Hσ (V ) be the projector associated with the direct sum decom-
position

H(V ) =
⊕

n≥0

⊕

σ∈Sn

Hσ (V ). (47)

Computing the convolution of such projectors then yields the following:
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Theorem 3.6 The πσ span a subalgebra of the convolution algebra Endgr H(V ),
isomorphic to SQSym via πσ 	→ Mσ .

Proof First, note that πα ∗πβ is a sum of πγ : indeed, regarding cstd(m) as an element
of H(V ),

cstd
(
πα ∗ πβ(m)

) = πα ∗ πβ

(
cstd(m)

)
, (48)

since the circular standardization of a subword of m is equal to the circular standard-
ization of the same subword of cstd(m). So

πα ∗ πβ =
∑

σ

Dσ
α,βπσ . (49)

Now, by the definition of πα and by the third interpretation of the product of the Mσ ,
one concludes that Dσ

α,β is equal to the Cσ
α,β of (25). �

3.4 Interpretation of H(V )

The Hopf algebra H(V ) can be interpreted as an algebra of functions as follows.
Assume that V has finite dimension d , and let a1, . . . , ad be a basis of V .

To the generator (ai1 · · ·ain) of H(V ), we associate the function of d square ma-
trices of arbitrary size N

f(i1,...,in)(A1, . . . ,Ad) = tr(Ai1 · · ·Ain). (50)

These functions are clearly invariant under simultaneous conjugation Ai 	→ MAiM
−1

and it is easy to prove that they generate the ring of invariants of GL(N,C) in the
symmetric algebra

MN(C)⊕d  MN(C) ⊗ V. (51)

Indeed, let us set U = C
N and identify MN(C) with U ⊗ U∗. Then, using the nota-

tion of [18] for symmetric functions, the character of GL(U) in Sn(U ⊗ U∗ ⊗ V ) is
hn(XX∨N), where X = ∑

xi , X∨ = ∑
x−1
i .

By the Cauchy formula,

hn(XX∨N) =
∑

λ�n

sλ(NX)sλ(X
∨), (52)

and the dimension of the invariant subspace is

dim Sn(U ⊗ U∗ ⊗ V )GL(U) = 〈hn(XX∨N),1〉GL(U)

=
∑

λ�n

〈sλ(NX), sλ(X)〉 (by (52))

=
∑

λ,μ�n

sλ ∗ sμ(N)〈sλ, sμ〉

=
∑

λ�n

(sλ ∗ sλ)(N) (53)
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where f (N) means f (1,1, . . . ,1), N times. The characteristic of the conjugation
action of Sn on CSn is precisely

∑
λ�n(sλ ∗ sλ), so this is the dimension of Hn(V ).

We have therefore established:

Theorem 3.7 Let F
(d)
N be the algebra of GL(N,C)-invariant polynomial functions

on MN(C)⊕d  MN(C) ⊗ V endowed with the comultiplication

Δf
(
A′

1, . . . ,A
′
d;A′′

1, . . . ,A
′′
d

) := f
(
A′

1 ⊕ A′′
1, . . . ,A

′
d ⊕ A′′

d

)
, (54)

where in the r.h.s., f is interpreted as an element of F
(d)
2N via the obvious embedding.

Then the map (ai1 · · ·aik ) 	→ f(i1,...,ik) is an epimorphism of bialgebras H(V ) →
F

(d)
N . In the limit N → ∞, this map is an isomorphism.

3.5 Subalgebras of SQSym

3.5.1 Symmetric functions in noncommuting variables (dual)

For a permutation σ ∈ Sn, let supp(σ ) be the partition π of the set [n] whose blocks
are the supports of the cycles of σ . Define the standardized partition of a partition
of a finite subset of the nonnegative integers as the unique set partition on the first
nonnegative integers preserving the relative order between the elements, so that the
standardized partition of {{3,6}, {7}, {2,8}} is {{2,3}, {4}, {1,5}}. The sums

Uπ :=
∑

supp(σ )=π

Mσ (55)

span a Hopf subalgebra ΠQSym of SQSym, which is isomorphic to the graded dual
of the Hopf algebra of symmetric functions in noncommuting variables (such as in
[3, 29], not to be confused with Sym), which we denote here by WSym(A), for Word
symmetric functions. Indeed, from the product rule of the Mσ given in (25) one easily
finds

Uπ ′Uπ ′′ :=
∑

Cπ
π ′,π ′′Uπ (56)

where Cπ
π ′,π ′′ is the number of ways of splitting the parts of π into two subpartitions

whose standardized partitions are π ′ and π ′′. For example,

U{{1,2,4},{3}}U{{1}} = U{{1,2,4},{3},{5}} + 2U{{1,2,5},{3},{4}}
+ U{{1,3,5},{4},{2}} + U{{2,3,5},{4},{1}}. (57)

The dual WSym(A) of ΠQSym is the subspace of K 〈A〉 spanned by the orbits
of S(A) on A∗. These orbits are naturally labeled by set partitions of [n], the orbit
corresponding to a partition π being constituted of the words

w = a1 . . . an (58)

such that ai = aj iff i and j are in the same block of π . The sum of these words will
be denoted by Mπ .
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For example,

M{{1,3,6},{2},{4,5}} :=
∑

a �=b;b �=c;a �=c

abacca. (59)

It is known that the natural coproduct of WSym (given as usual by the ordered
sum of alphabets) is cocommutative [3] and that WSym is free over connected set
partitions. The same argument as in Theorem 2.5 shows that ΠQSym∗ is free over
the same graded set, hence that ΠQSym is indeed isomorphic to WSym∗.

3.5.2 Quasi-symmetric functions

One can also embed QSym into ΠQSym: take as total ordering on finite sets of in-
tegers {i1 < · · · < ir} the lexicographic order on the words (i1, . . . , ir ). Then, any
set partition π of [n] has a canonical representative B as a nondecreasing sequence
of blocks (B1 ≤ B2 ≤ · · · ≤ Br). Let I = K(π) be the composition (|B1|, . . . , |Br |)
of n. The sums

UI :=
∑

K(π)=I

Uπ =
∑

K(σ)=I

Mσ , (60)

where K(σ) denotes the ordered cycle type of σ , span a Hopf subalgebra of ΠQSym
and SQSym, which is isomorphic to QSym. Indeed, from the product rule of the Mσ

given in (25) one easily finds

UI ′UI ′′ :=
∑

I

CI
I ′,I ′′UI (61)

where CI
I ′,I ′′ is the coefficient of I in I ′ I ′′. For example,

U(1,3,1)U(1,2) = 2U(1,1,2,3,1) + 2U(1,1,3,1,2) + 2U(1,1,3,2,1)

+ U(1,2,1,3,1) + 2U(1,3,1,1,2) + U(1,3,1,2,1). (62)

3.5.3 Symmetric functions

Furthermore, if we denote by Λ(I) the partition associated with a composition I by
sorting I and by Λ(π) the partition λ whose parts are the sizes of the blocks of π ,
the sums

uλ :=
∑

Λ(I)=λ

UI =
∑

Λ(π)=λ

Uπ =
∑

Z(σ)=λ

Mσ (63)

where Z(σ) denotes the cycle type of σ , span a Hopf subalgebra of QSym, ΠQSym,
and SQSym, which is isomorphic to Sym (ordinary symmetric functions). As an
example of the product, one has

u(3,3,2,1)u(3,1,1) = 9u(3,3,3,2,1,1,1). (64)

Indeed, from (61) it follows that an explicit Hopf embedding of Sym into SQSym is
given by

j : p∗
λ → uλ (65)
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where p∗
λ = pλ

zλ
is the adjoint basis of products of power sums. The images of the

usual generators of Sym under this embedding have simple expressions in terms of
the infinite matrix X = (xij )i,j≤1:

j (pn) = tr
(
Xn

)
, (66)

which implies that j (en) is the sum of the diagonal minors of order n of X:

j (en) =
∑

i1<···<in

∑

σ∈Sn

ε(σ )xi1iσ (1)
. . . xiniσ(n)

, (67)

and j (hn) is the sum of the same minors of the permanent:

j (hn) =
∑

i1<···<in

∑

σ∈Sn

xi1iσ (1)
. . . xiniσ(n)

. (68)

More generally, the sum of the diagonal immanants of type λ gives

j (sλ) =
∑

i1<···<in

∑

σ∈Sn

χλ(σ )xi1iσ (1)
. . . xiniσ(n)

. (69)

3.5.4 Involutions

Finally, one can check that the Mσ with σ involutive span a Hopf subalgebra of
SQSym. Since the number of involutions of Sn is equal to the number of standard
Young tableaux of size n, this algebra can be regarded as a commutative version of
the Poirier–Reutenauer algebra [26] denoted by FSym and realized in [7]. Note that
this version is also isomorphic to the image of SQSym in the quotient of R/J by the
relations

xij xjk = 0 for all i �= k. (70)

This construction generalizes to the algebras built on permutations of arbitrary given
order.

3.6 Quotients of WSym

Since we have built a subalgebra of ΠQSym isomorphic to QSym, we can define the
embedding

i : QSym ↪→ ΠQSym = WSym∗, (71)

so that, dually, there is a Hopf epimorphism i∗ : WSym � Sym.
The dual basis V I of the UI defined in (60) can be identified with equivalence

classes of Sσ under the relation

Sσ  Sσ ′
if and only if K(σ) = K(σ ′). (72)

The Sσ with σ a full cycle are primitive, so that we can take for Vn any sequence of
primitive generators of Sym.
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It turns out that there is another natural epimorphism from WSym to Sym. Using
the canonical ordering of set partitions introduced in Sect. 3.5, that is, the lexico-
graphic ordering on the nondecreasing representatives of the blocks, we can as above
associate a composition K(π) with π and define the equivalence relation

π ∼ π ′ if and only if K(π) = K(π ′). (73)

Then, the ideal I of WSym generated by the differences

Mπ − Mπ ′ , π ∼ π ′, (74)

is a Hopf ideal, and the quotient

WSym/I (75)

is isomorphic to Sym. The images VI of the Mπ under the canonical projection are
analogs of the monomial symmetric functions in Sym. Indeed, the commutative im-
age vλ of Mπ is proportional to a monomial function:

vλ =
(∏

i

mi(λ)!
)

mλ, (76)

where mi(λ) is the number of occurrences of i in λ. It is worth noticing that, if we
define coefficients cλ by

vn
1 =

∑

λ�n

cλvλ, (77)

then the multivariate polynomials

Bn(x1, . . . , xn) =
∑

λ�n

cλxλ, (78)

where xλ := xλ1 · · ·xλn , are the exponential Bell polynomials defined by

∑

n≥0

tn

n!Bn(x1, . . . , xn) = e
∑

n≥1
xn
n! tn . (79)

3.7 The stalactic monoid

The constructions of Sect. 3.6 can be interpreted in terms of a kind of Robinson–
Schensted correspondence and of a plactic-like monoid. The stalactic congruence is
the congruence ≡ on A∗ generated by the relations

a w a ≡ a a w (80)

for all a ∈ A and w ∈ A∗.
Each stalactic class has a unique representative, its canonical representative, of

the form

a
m1
1 a

m2
2 . . . amr

r (81)
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with ai �= aj for i �= j .
We can represent such a canonical word by a tableau-like planar diagram, e.g.,

c3ad3b2 ←→
c a d b

c d b

c d

. (82)

Now, there is the obvious algorithm which consists in scanning a word from left to
right and arranging its identical letters in columns, creating a new column to the right
when one scans a letter for the first time. Let us call P(w) the resulting canonical
word, or, equivalently, its planar representation. We can compute P(w) along with a
Q-symbol recording the intermediate shapes of the P -symbol. For example, to insert
w = cabccdbdd , we have the steps

∅,∅ c−→ c , 1
a−→ c a , 1 2

b−→ c a b , 1 2 3

c−→ c a b
c

, 1 2 3
4

c−→ c a b
c
c

,
1 2 3
4
5

d−→ c a b d
c
c

,
1 2 3 6
4
5

b−→ c a b d
c b
c

,
1 2 3 6
4 7
5

d−→ c a b d
c b d
c

,
1 2 3 6
4 7 8
5

d−→ c a b d
c b d
c d

,
1 2 3 6
4 7 8
5 9

Clearly, the Q-symbol can be interpreted as a set partition of [n], whose blocks
are columns. In our example,

Q(cabccdbdd) = {{1,4,5}, {2}, {3,7}, {6,8,9}}. (83)

We now see that the natural basis Mπ of WSym can be characterized as

Mπ =
∑

Q(w)=π

w. (84)

This is completely similar to the definition of the bases RI of Sym via the hypoplactic
congruence, of St of FSym via the plactic congruence, and of PT of PBT via the
Sylvester congruence [7, 11, 14].

A similar (but different) construction, due to M. Rey, based on the patience sorting
algorithm, leads to a self-dual Hopf algebra structure based on set partitions [28].

Note that the defining relation of the stalactic monoid can be presented in a plactic-
like way as

a uba ≡ a uab (85)

for all a, b ∈ A and u ∈ A∗.

3.8 Other Hopf algebras derived from the stalactic congruence

It is always interesting to investigate the behavior of certain special classes of words
under analogs of the Robinson–Schensted correspondence. This section presents a
few examples leading to interesting combinatorial sequences.
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3.8.1 Parking functions

Recall that a word on A = {1, . . .} is a parking function if its nondecreasing reordering
u1 . . . uk satisfies ui ≤ i. The number of stalactic classes of parking functions of size
n can be combinatorially determined as follows.

Since the congruence does not change the evaluation of a word and since if a word
is a parking function, then so are its permutations, one can restrict to a rearrangement
class containing a unique nondecreasing parking function. Those are known to be
counted by Catalan numbers. Now, the rearrangement class of a nondecreasing park-
ing function p has exactly l! congruence classes if l is the number of different letters
of p.

The counting of nondecreasing parking functions p by their number of different
letters obviously is the same as the counting of Dyck paths by their number of peaks
given by the Narayana triangle (sequence A001263 in [31]). To get the number of
stalactic classes of parking functions, one has to multiply the ith column by i!. This is
the definition of the unsigned Lah numbers (sequence A089231 in [31]), which count
with the additional parameter “number of lists,” the number of sets of lists (sequence
A000262 in [31]). Equivalently, these are set partitions of [n] with an ordering inside
each block but no order among the blocks. The first numbers of stalactic classes of
parking functions are:

1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, . . . , (86)

whereas the first rows of the Narayana and unsigned Lah triangles are given in Fig. 1.
The number of stalactic classes of parking functions of size n occurs as the sum

of the nth row of the unsigned Lah triangle. One can also derive this last result from
a character calculation. The Frobenius characteristic of the representation of Sn on
PFn is

ch(PFn) = 1

n + 1
hn

(
(n + 1)X

) = 1

n + 1

∑

μ�n

mμ(n + 1)hμ(X). (87)

In this expression, each hμ(X) is the characteristic of the permutation representa-
tion on a rearrangement class of words, with μ1 occurrences of some letter i1, μ2

of some other letter i2, and so on. Hence, the number of stalactic classes in each
such rearrangement class is l(μ)!, and the total number of stalactic classes of parking
functions is

αn = 1

n + 1

∑

μ�n

mμ(n + 1)l(μ)!. (88)

Fig. 1 The Narayana and
unsigned Lah triangles
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Since g(z) = ∑
n≥0 zn ch(PFn) solves the functional equation [24]

g(z) =
∑

n≥0

znhn(X)g(z)n, (89)

we see that the exponential generating function is

A(z) =
∑

n≥0

αn

zn

n! =
∫ ∞

0
e−xgx(z)dx, (90)

where gx(z) is the specialization of g, where hn = x for all n ≥ 1. In this case,

gx(z) = 1 + x
zgx(z)

1 − zgx(z)
, (91)

and (90) yields

A(z) = exp

(
z

1 − z

)
. (92)

Hence, αn is the number of ‘sets of lists,’ giving back sequence A000262 of [31]. It
would be interesting to find a natural bijection between stalactic classes of parking
functions and sets of lists compatible with the algebraic structures.

Now, recall that the Hopf algebra of parking functions PQSym∗ is spanned by the
polynomials

Ga(A) :=
∑

Park(w)=a

w. (93)

As usual, it is easy to show that the equivalence defined by

Ga′(A) ≡ Ga′′(A) (94)

iff a′ and a′′ are stalactically congruent is such that the quotient PQSym∗/ ≡ is a
Hopf algebra.

3.8.2 Endofunctions

The same methods allow one to see that the number βn of stalactic classes of endo-
functions on n letters is given by

βn =
n∑

k=0

(
n − 1
k − 1

)(
n

k

)
k!. (95)

It is sequence A052852 of [31] whose first terms are

1,4,21,136,1045,9276,93289,1047376,12975561,175721140, . . . (96)

and whose exponential generating series is

z

1 − z
exp

(
z

1 − z

)
. (97)
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Fig. 2 The Tw and Endt
triangles

As before, the enumeration of the classes can be refined by introducing the additional
parameter given by the number of different letters of their representatives, so that one
gets a new triangle, the Endt triangle. Moreover, this triangle is obtained from the
triangle referenced as sequence A103371 of [31] counting the integer compositions
of 2n in n parts with a given number of ones, by multiplying column i by i!. Let us
call this one the Tw triangle. The first rows of both triangles are shown in Fig. 2.

From the algebraic point of view, the Frobenius characteristic of [n]n is

ch([n]n) = hn(nX) =
∑

μ�n

mμ(n)hμ(X), (98)

so that βn = ∑
μ�n mμ(n)l(μ)!, and the same method directly gives the exponential

generating series of βn.
As above, the quotient of ESym by Sf ′ ≡ Sf ′′

iff f ′ and f ′′ are stalactically
congruent is a Hopf algebra.

3.8.3 Initial words

Recall that initial words are words on the alphabet of integers so that, if n appears in
w, then n − 1 also appears. The previous method allows one to see that the number
γn of stalactic classes of initial words on n letters is

γn =
n∑

k=0

(
n − 1
k − 1

)
k!. (99)

It is sequence A001339 of [31] whose first terms are

1,3,11,49,261,1631,11743,95901,876809,8877691,98641011, . . . (100)

and whose exponential generating series is

ez

(1 − z)2
. (101)

As before, the classes counted by these numbers can be counted with the additional
parameter given by the number of different letters of their representatives, so that
one gets a new triangle, the Arr triangle. Once more, this triangle is obtained by
multiplying column i by i! in a simpler triangle, here the Pascal triangle. Here are the
first rows of both triangles given in Fig. 3.

Again, the stalactic quotient of WQSym [10, 20] is a Hopf algebra.
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Fig. 3 The Pascal and Arr
triangles

3.8.4 Generic case

Let A be an alphabet, and let V = CA. The generic symmetric function

fn =
∑

μ�n

l(μ)!mμ(X) (102)

is the character of GL(V ) in the image of V ⊗n in the quotient of T (V ) ∼ K 〈A〉 by
the stalactic congruence. It is Schur-positive and can be explicitly expanded on the
Schur basis. Indeed, one has

fn =
n∑

k=0

cks(n−k,k). (103)

The coefficients ck are given by sequence A000255 of [31] whose first terms are

1,1,3,11,53,309,2119,16687,148329,1468457,16019531, . . . . (104)

To see this, write again

l(μ)! =
∫ ∞

0
t l(μ)e−t dt. (105)

Then

f =
∑

n≥0

fn =
∫ ∞

0
e−t

∑

μ

tl(μ)mμ dt (106)

and

∑

μ

tl(μ)mμ =
∏

i≥1

(
1 + txi

1 − xi

)
=

∏

i≥1

1 − (1 − t)xi

1 − xi

=
(∑

k≥0

(t − 1)kek(X)

)(∑

l≥0

hl(X)

)
. (107)

Since
∫ ∞

0
e−t (t − 1)k dt = dk, (108)

the number of derangements in Sn, we finally have

f =
∑

n≥0

n∑

k=0

dkek(X)hn−k(X). (109)
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Expanding

ekhn−k = s(n−k,1k) + sn−k+1,1k−1 , (110)

we get (103). Alternatively, we can express ck as

ck =
∫ ∞

0
e−t t (t − 1)k dt, (111)

since the term of degree n in (107) is

t

n∑

k=0

(t − 1)ks(n−k,1k). (112)

The exponential generating series of these numbers is given by

e−z

(1 − z)2
. (113)

4 Structure of SSym

4.1 A realization of SSym

In the previous section, we have built a commutative algebra of permutations SQSym
from explicit polynomials on a set of auxiliary variables xij . One may ask whether
its noncommutative dual admits a similar realization in terms of noncommuting vari-
ables aij .

We shall find such a realization, in a somewhat indirect way, by first building from
scratch a Hopf algebra of permutations �Sym ⊂ K 〈ai j | i, j ≥ 1 〉, whose opera-
tions can be described in terms of the cycle structure of permutations. Its coproduct
turns out to be cocommutative, and the isomorphism with SSym follows as above
from the Cartier–Milnor–Moore theorem.

Let {ai j , i, j ≥ 1} be an infinite set of noncommuting indeterminates. We use the
biword notation

ai j ≡
[

i

j

]
,

[
i1
j1

]
. . .

[
in
jn

]
≡

[
i1 . . . in
j1 . . . jn

]
. (114)

Let σ ∈ Sn, and let (c1, . . . , ck) be a decomposition of σ into disjoint cycles.
With any cycle c = (i1 . . . ir ), one associates its cycle words w = ik . . . ir i1 . . . ik−1
for any k, i.e., the words such that c = (w). For example, the cycle words associated
with the cycle (1362) are 1362,2136,3621,6213. For a word w, let C(w) be the
cycle of which Std(w)−1 is a cycle word. For example, C(6213) = (3241).

Let B = [ x
a

]
be a biword. Let alph(x) be the letters appearing in x. For any i in

alph(x), let
[

u

a′
]

=
[

ii . . . i

aj1 . . . ajr

]
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be the sub-biword of B obtained by erasing the biletters
[

k
l

]
such that k �= i. Then de-

fine τi = Std(a′)−1 and wi = jτ(1) . . . jτ(r). Finally, let Cd(B) be the permutation σ

whose cycles are the (wi). Such biwords will be said to have σ as cycle decomposi-
tion.

For example, let

B =
[

112121
421151

]
.

Then τ1 = 3421, w1 = 4621 and τ2 = 12, w2 = 35, so that Cd(B) = (4621)(35) =
415632.

We now define

φσ :=
∑

Cd(B)=σ

B. (115)

Note that any biword appears in the expansion of exactly one φσ with coefficient 1.

Examples 4.1

φ12 =
∑

x �=y

[
x y

a b

]
. (116)

φ41352 =
∑

x �=y;Std(abde)−1=1342,2134,3421, or 4213

[
x x y x x

a b c d e

]
. (117)

Theorem 4.2 The φσ span a subalgebra �Sym of K 〈aij | i, j ≥ 1 〉. More precisely,

φαφβ =
∑

gσ
α,βφσ (118)

where gσ
α,β ∈ {0,1}. Moreover, �Sym is free over the set

{φα | α connected}. (119)

Proof Let σ ′ and σ ′′ be two permutations, and let w be a biword appearing in φσ ′φσ ′′ .
The multiplicity of w is 1. To get the first part of the theorem, we only need to prove
that all words w′ appearing in the same φσ as w also appear in this product. Given
a letter x appearing in the first row of w at some positions, the subwords a of the
elements of φσ taken from the second row at those positions have the same image by
C as the corresponding element of w.

Thus, we only have to prove that all words w having the same image by C satisfy
that all their prefixes (and suffixes) of a given length have also the same image by C. It
is sufficient to prove the result on permutations. Now, given two permutations σ and
τ , σ−1 and τ−1 are cycle words of the same cycle iff, for some k, τ = γ k

n σ , where γn

is the cyclic permutation (12 . . . n). If u = σ1 . . . σr and v = τ1 . . . τr are the prefixes
of length r of σ and τ , then it is obvious that α = Std(u)−1 and β = Std(v)−1 are
cycles words of the same cycle, since there exists an integer l such that β−1 = γ l

r α
−1.

The same argument works also for the suffixes, and so the property holds.
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Moreover, any biword can be uniquely written as a concatenation of a maximal
number of biwords such that no letter appears in the first row of two different biwords
and that the letters of the second row of a biword are all smaller than the letters of
the second row of the next one. This proves that the φα where α is connected are
free. The usual generating series argument then proves that those elements generate
�Sym. �

To give the precise expression of the product φαφβ , we first need to define two
operations on cycles.

The first operation is just the circular shuffle on disjoint cycles: if c′
1 and c′′

1 are
two disjoint cycles, their cyclic shuffle c′

1 c′′
1 is the set of cycles c1 such that their

cycle words are obtained by applying the usual shuffle on the cycle words of c′
1 and

c′′
1 . This definition makes sense because a shuffle of cycle words associated with two

words on disjoint alphabets splits as a union of cyclic classes.
For example, the cyclic shuffle (132) (45) gives the set of cycles

{
(13245), (13425), (13452), (14325), (14352), (14532),

(13254), (13524), (13542), (15324), (15342), (15432)
}
. (120)

These cycles correspond to the following list of permutations which are those appear-
ing in (127), except for the first one which will be found later:

{ 34251, 35421, 31452, 45231, 41532, 41253,

35214, 34512, 31524, 54213, 51423, 51234}. (121)

Let us now define an operation on two sets C1 and C2 of cycles on mutually
disjoint alphabets. We call matching an unordered list of all those cycles, some of the
cycles being paired, always one of C1 with one of C2. The cycles remaining alone are
considered to be associated with the empty cycle. We associate to such a matching
the set of sets of cycles obtained by the cyclic product of any pair of cycles. The
union of those sets of cycles is denoted by C1�C2.

For example, the matchings corresponding to C1 = {(1), (2)} and C2 = {(3), (4)}
are:

{
(1)

}{
(2)

}{
(3)

}{
(4)

}
,

{
(1)

}{
(2), (3)

}{
(4)

}
,

{
(1)

}{
(2), (4)

}{
(3)

}
,

{
(1), (3)

}{
(2)

}{
(4)

}
,

{
(1), (3)

}{
(2), (4)

}
,

{
(1), (4)

}{
(2)

}{
(3)

}
,

{
(1), (4)

}{
(2), (3)

}
,

(122)

and the corresponding products C1�C2 are:
{
(1), (2), (3), (4)

}
,

{
(1), (23), (4)

}
,

{
(1), (24), (3)

}
,

{
(13), (2), (4)

}
,

{
(13), (24)

}
,

{
(14), (2), (3)

}
,

{
(14), (23)

}
.

(123)

Note that this calculation is identical with the Wick formula in quantum field the-
ory (see [5] for an explanation of this coincidence).

We are now in a position to describe the product φσ φτ :
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Proposition 4.3 Let C1 be the cycle decomposition of σ, and C2 be the cycle decom-
position of τ shifted by the size of σ . Then the permutations indexing the elements
appearing in the product φσ φτ are the permutations whose cycle decompositions
belong to C1�C2.

Proof Recall that the product φσ φτ is a sum of biwords with multiplicity one, since
any biword appears in exactly one φσ . So we only have to prove that the biwords
appearing in φσ φτ are the same as those biwords whose cycle decompositions are
contained in C1�C2. First, by the definition of the cyclic shuffle and of the opera-
tion �, if a biword has its cycle decomposition in C1�C2, its prefix of size n has
cycle decomposition C1 whereas its suffix of size p has cycle decomposition C2,
where n (resp. p) is the size of σ (resp. τ ).

Conversely, let w1 (resp. w2) be a biword with cycle decomposition C1 (resp. C2),
and let us consider w = w1 · w2. For all letters in the first row of w, either it only
appears in w1, or only in w2, or in both w1 and w2. In the first two cases, we obtain
the corresponding cycle of C1 (or C2, shifted). In the remaining case, the cycle de-
composition of the word of the second row corresponding to this letter belongs to the
cyclic shuffle of the corresponding cycles of C1 and C2 (hence matching those two
cycles). Indeed, by the definition of the cyclic shuffle, if Std−1(w1) is a cycle word of
c1 and Std−1(w2) is a cycle word of c2, then Std−1(w) is a cycle word of an element
of c1 c2. �

For example, with σ = τ = 12, one finds that C1 = {(1), (2)} and C2 = {(3), (4)}.
It is then easy to check that one goes from (123) to (125) by computing the corre-
sponding permutations.

Examples 4.4

φ12φ21 = φ1243 + φ1342 + φ1423 + φ3241 + φ4213. (124)

φ12φ12 = φ1234 + φ1324 + φ1432 + φ3214 + φ3412 + φ4231 + φ4321. (125)

φ1φ4312 = φ15423 + φ25413 + φ35421 + φ45123 + φ51423. (126)

φ312φ21 = φ31254 + φ31452 + φ31524 + φ34251 + φ34512 + φ35214 + φ35421

+ φ41253 + φ41532 + φ45231 + φ51234 + φ51423 + φ54213. (127)

Let us recall a general recipe to obtain the coproduct of a combinatorial Hopf al-
gebra from a realization in terms of words on an ordered alphabet X. Assume that
X is the ordered sum of two mutually commuting alphabets X′ and X′′. Then de-
fine the coproduct as Δ(F) = F(X′+̇X′′), identifying F ′ ⊗ F ′′ with F ′(X′)F ′′(X′′)
[7, 22].

There are many different ways to define a coproduct on �Sym compatible with
the realization, since there are many ways to order an alphabet of biletters: order the
letters of the first alphabet, order the letters of the second alphabet, or order lexico-
graphically with respect to one alphabet and then to the second.



J Algebr Comb (2008) 28: 65–95 87

In the sequel, we only consider the coproduct obtained by ordering the biletters
with respect to the first alphabet so that φσ is primitive if σ consists of only one
cycle. More precisely, thanks to the definition of the elements φσ , it is easy to see
that it corresponds to the unshuffling of the cycles of a permutation:

Δφσ :=
∑

(α,β)

φα ⊗ φβ (128)

where the sum is taken over all pairs of permutations (α,β) such that the cycle de-
composition of α is obtained by renumbering the elements of a subset of cycles of σ

(preserving the relative order of values), and β by doing the same on the complemen-
tary subset of cycles. For example, if σ = (1592)(36)(4)(78), the subset (1592)(4)

gives α = (1452)(3) and β = (12)(34).

Examples 4.5

Δφ12 = φ12 ⊗ 1 + 2φ1 ⊗ φ1 + 1 ⊗ φ12. (129)

Δφ312 = φ312 ⊗ 1 + 1 ⊗ φ312. (130)

Δφ4231 = φ4231 ⊗ 1 + 2φ321 ⊗ φ1 + φ21 ⊗ φ12 + φ12 ⊗ φ21 + 2φ1 ⊗ φ321 + 1 ⊗ φ4231.

(131)

The following theorem is a direct consequence of the definition of the coproduct
on the realization.

Theorem 4.6 Δ is an algebra morphism, so that �Sym is a graded bialgebra (for
the grading degφσ = n if σ ∈ Sn). Moreover, Δ is cocommutative.

The same reasoning as in Sect. 3 shows that:

Theorem 4.7 SSym and �Sym are isomorphic as Hopf algebras.

To describe such an isomorphism in the pair of bases (φσ ), (Sτ ), let us first recall
that a connected permutation is a permutation σ such that σ([1, k]) �= [1, k] for any
k ∈ [1, n−1]. Any permutation σ has a unique maximal factorization σ = σ1 •· · ·•σr

into connected permutations. We then define

S′
σ := φσ1 . . . φσr . (132)

Then

S′
σ = φσ1•···•σr +

∑

μ

φμ (133)

where the second sum ranges over permutations μ with strictly less than r cycles in
their cycle decomposition. So the S′ form a basis of �Sym. Moreover, they are a
multiplicative basis with product given by shifted concatenation of permutations, so
that they multiply as the S do. Moreover, the coproduct of S′

σ is the same as for φσ ,
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so the same as for Sσ . So both bases S and S′ have the same product and the same
coproduct. This proves the following:

Proposition 4.8 The linear map Sσ 	→ S′
σ realizes the Hopf isomorphism between

SSym and �Sym.

There is another natural isomorphism: define

S′′
σ :=

∑

x,a

[
x

a

]
(134)

where the sum ranges over all words x, a such that xi = xj if (but not only if) i and j

belong to the same cycle of σ and such that the standardized word of the subword of
a consisting of the indices of cycle cl is equal to the inverse of the standardized word
of a cycle word of cl .

The basis elements S′
σ and S′′

σ satisfy the same product and coproduct rules be-
cause, if (c1) . . . (cp) is the cycle decomposition of σ , then

S′′
σ =

∑

(c)∈(c1)�(c2)�···�(cp)

φ(c). (135)

For example,

S′′
2431 = S′′

(124)(3) = φ(124)(3) + φ(1423) + φ(1234) + φ(1324)

= φ2431 + φ4312 + φ2341 + φ3421. (136)

4.2 Quotients of �Sym

Let I be the ideal of �Sym generated by the differences

φσ − φτ (137)

where σ and τ have the same cycle type.
The definitions of its product and coproduct directly imply that I is a Hopf ideal.

Since the cycle types are parametrized by integer partitions, the quotient �Sym/I

has a basis Yλ corresponding to the class of φσ , where σ has λ as cycle type.
From (124–127) one finds:

Examples 4.9

Y11Y2 = Y211 + 4Y31, Y 2
11 = Y1111 + 2Y22 + 4Y211. (138)

Y1Y4 = Y41 + 4Y5, Y3Y2 = Y32 + 12Y5. (139)

Theorem 4.10 �Sym/I is isomorphic to Sym, the Hopf algebra of ordinary sym-
metric functions.
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If one writes λ = (λ1, . . . , λp) = (1m1, . . . , kmk ), an explicit isomorphism is given
by

Yλ 	→
∏k

i=1 mi !∏p

j=1(λj − 1)!mλ. (140)

Proof This follows from the description of φσ φτ given in Proposition 4.3. �

5 Parking functions and trees

5.1 A commutative algebra of parking functions

It is also possible to build a commutative version of the Hopf algebra of parking
functions introduced in [21]: let PFn be the set of parking functions of length n. For
a ∈ PFn, set, as before,

Ma :=
∑

i1<···<in

xi1 ia(1)
· · · xin ia(n)

. (141)

Then, using once more the same arguments as in Sect. 2, we conclude that the
Ma form a linear basis of a Z-subalgebra PQSym of EQSym, which is also a sub-
coalgebra if one defines the coproduct in the usual way.

Examples 5.1

M1M11 = M122 + M121 + M113. (142)

M1M221 = M1332 + M3231 + M2231 + M2214. (143)

M12M21 = M1243 + M1432 + M4231 + M1324 + M3214 + M2134. (144)

ΔM525124 = M525124 ⊗ 1 + 1 ⊗ M525124. (145)

ΔM4131166 = M4131166 ⊗ 1 + M41311 ⊗ M11 + 1 ⊗ M4131166. (146)

The main interest of the noncommutative and noncocommutative Hopf algebra of
parking functions defined in [21] is that it leads to two algebras of trees. The authors
obtain a cocommutative Hopf algebra of planar binary trees by summing over the
distinct permutations of parking functions and an algebra of planar trees by summing
over hypoplactic classes.

We shall now investigate whether similar constructions can be found for the com-
mutative version PQSym.
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5.2 From labeled to unlabeled parking graphs

A first construction, which applies to all Hopf algebras of labeled graphs is to build
a subalgebra by summing over labelings. Notice that this subalgebra is the same as
the subalgebra obtained by summing endofunction graphs over their labelings. Those
graphs are also known as endofunctions (hence considered there as unlabeled graphs)
in [2].

The dimension of this subalgebra in degree n is equal to the number of unlabeled
parking graphs

1,1,3,7,19,47,130,343,951,2615,7318,20491,57903,163898, . . . . (147)

This is sequence A001372 in [31]. For example, here are the 7 unlabeled parking
graphs of size 3 (to be compared with the 16 parking functions):

The product of two such unlabeled graphs is the concatenation of graphs and the
coproduct of an unlabeled graph is the unshuffle of its connected subgraphs. So this
algebra is isomorphic to the polynomial algebra on generators indexed by connected
parking graphs.

5.3 Binary trees and nondecreasing parking functions

One can easily check that, in PQSym, summing over parking functions having the
same reordering does not lead to a subalgebra. However, if we denote by I the sub-
space of PQSym spanned by the Ma where a is not nondecreasing, I is an ideal and
a coideal, and CQSym := PQSym/I is therefore a commutative Hopf algebra with
basis given by the classes Mπ := Ma labeled by nondecreasing parking functions.

Note that CQSym is also isomorphic to the image of PQSym in the quotient of
R/J by the relations

xij xkl = 0 for all i < k and j > l. (148)

The dual basis of Mπ is

Sπ :=
∑

a

Sa, (149)

where the sum is taken over all permutations of π .
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The dual CQSym∗ is free over the set Sπ , where π runs over connected nonde-
creasing parking functions. So if one denotes by CQSym the Catalan algebra defined
in [21], the usual Cartier–Milnor–Moore argument then shows that

CQSym ∼ CQSym∗, CQSym ∼ CQSym∗. (150)

5.4 From nondecreasing parking functions to rooted forests

Nondecreasing parking functions correspond to parking graphs of a particular type,
namely, rooted forests with a particular labeling (it corresponds to nondecreasing
maps), the root being given by the loops in each connected component.

Taking sums over such admissible labelings of a given rooted forest, we get that
the elements

MF :=
∑

supp(π)=F

Mπ (151)

span a commutative Hopf algebra of rooted forests, which can be regarded as a com-
mutative and cocommutative version of the Connes–Kreimer algebra [6].

6 Quantum versions

6.1 Quantum quasi-symmetric functions

When several Hopf algebra structures can be defined on the same class of combi-
natorial objects, it is tempting to try to interpolate between them. This can be done,
for example, with compositions: the algebra of quantum quasi-symmetric functions
QSymq [7, 32] interpolates between quasi-symmetric functions and noncommutative
symmetric functions.

However, the natural structure on QSymq is not exactly that of a Hopf algebra but
rather of a twisted Hopf algebra [16].

Recall that the coproduct of QSym(X) is obtained by replacing X by the ordered
sum X′ +̇X′′ of two isomorphic and mutually commuting alphabets. On the other
hand, QSymq can be realized by means of an alphabet of q-commuting letters

xjxi = qxixj for j > i. (152)

Hence, if we define the coproduct on QSymq by

Δqf (X) = f
(
X′ +̇X′′), (153)

with X′ and X′′ q-commuting with each other, it will be an algebra morphism

QSymq → QSymq

(
X′ +̇X′′)  QSymq ⊗χ QSymq (154)

for the twisted product of tensors

(a ⊗ b) · (a′ ⊗ b′) = χ(b, a′)(aa′ ⊗ bb′) (155)
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where

χ(b, a′) = qdeg(b) ·deg(a′) (156)

for homogeneous elements b and a′.
It is easily checked that Δq is actually given by the same formula as the usual

coproduct of QSym, that is,

ΔqMI =
∑

H ·K=I

MH ⊗ MK. (157)

The dual twisted Hopf algebra, denoted by Symq , is isomorphic to Sym as an
algebra. If we denote by SI the dual basis of MI , SISJ = SI ·J , and Symq is freely
generated by the S(n) = Sn, whose coproduct is

ΔqSn =
∑

i+j=n

qij Si ⊗ Sj . (158)

As above, Δq is an algebra morphism

Symq → Symq ⊗χ Symq (159)

where χ is again defined by (156).

6.2 Quantum free quasi-symmetric functions

The previous constructions can be lifted to FQSym. Recall from [7] that φ(Fσ ) =
ql(σ )Fc(σ ) is an algebra homomorphism FQSym → QSymq , which is in fact induced
by the specialization φ(ai) = xi of the underlying free variables ai to q-commuting
variables xi .

The coproduct of FQSym is also defined by

ΔF(A) = F
(
A′ +̇A′′), (160)

where A′ and A′′ are two mutually commuting copies of A [7]. If, instead, one
sets a′′a′ = qa′a′′, one obtains again a twisted Hopf algebra structure FQSymq on
FQSym, for which φ is a homomorphism. With these definitions at hand, one can see
that the arguments given in [32] to establish the results recalled in Sect. 6.1 prove in
fact the following more general result:

Theorem 6.1 Let A′ and A′′ be q-commuting copies of the ordered alphabet A, i.e.,
a′′a′ = qa′a′′ for a′ ∈ A′ and a′′ ∈ A′′. Then, the coproduct

Δqf = f
(
A′ +̇A′′) (161)

defines a twisted Hopf algebra structure. It is explicitly given in the basis Fσ by

ΔqFσ =
∑

α·β=σ

q inv(α,β)FStd(α) ⊗ FStd(β) (162)
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where inv(α,β) is the number of inversions of σ with one element in α and the other
in β .

More precisely, Δq is an algebra morphism with values in the twisted tensor prod-
uct of graded algebras FQSym⊗χ FQSym, where (a ⊗b)(a′ ⊗b′) = χ(b, a′)(aa′ ⊗
bb′) and χ(b, a′) = qdeg(b).deg(a′) for homogeneous elements b, a′.

The map φ : FQSymq → QSymq defined by

φ(Fσ ) = ql(σ )Fc(σ ) (163)

is a morphism of twisted Hopf algebras.

Examples 6.2

ΔqF2431 = F2431 ⊗1+q3F132 ⊗F1 +q3F12 ⊗F21 +qF1 ⊗F321 +1⊗F2431. (164)

ΔqF3421 = F3421 ⊗1+q3F231 ⊗F1 +q4F12 ⊗F21 +q2F1 ⊗F321 +1⊗F3421. (165)

ΔqF21 = F21 ⊗ 1 + qF1 ⊗ F1 + 1 ⊗ F21. (166)

(ΔqF21)(ΔqF1) = (F213 + F231 + F321) ⊗ 1 + (F21 + q2(F12 + F21)) ⊗ F1

+ F1 ⊗ (q2F21 + q(F12 + F21)) + 1 ⊗ (F213 + F231 + F321).

(167)

ΔqF213 = F213 ⊗ 1 + F21 ⊗ F1 + qF1 ⊗ F12 + 1 ⊗ F213. (168)

ΔqF231 = F231 ⊗ 1 + q2F12 ⊗ F1 + qF1 ⊗ F21 + 1 ⊗ F231. (169)

ΔqF321 = F321 ⊗ 1 + q2F21 ⊗ F1 + q2F1 ⊗ F21 + 1 ⊗ F321. (170)

Finally, one can also define a one-parameter family of ordinary Hopf algebra struc-
tures on FQSym by restricting formula (162) for Δq to connected permutations σ and
requiring that Δq be an algebra homomorphism. Then, for q = 0, Δq becomes co-
commutative, and it is easily shown that the resulting Hopf algebra is isomorphic to
SSym.

However, from [7] it follows that, for generic q , the Hopf algebras defined in this
way are all isomorphic to FQSym. This suggests to interpret FQSym as a kind of
quantum group: it would be the generic element of a quantum deformation of the en-
veloping algebra SSym = U(L). Similar considerations apply to various examples,
in particular, to the Loday–Ronco algebra PBT, whose commutative version obtained
in [21] can be quantized in the same way as QSym by means of q-commuting vari-
ables [22].

There is another way to obtain QSym from FQSym: it is known [7] that QSym
is isomorphic to the image of FQSym(A) in the hypoplactic algebra K [A∗/ ≡H ].
One may then ask whether there exists a q-analogue of the hypoplactic congruence
leading directly to QSymq .
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Recall that the hypoplactic congruence can be presented as the bi-Sylvester con-
gruence:

bvca ≡ bvac with a < b ≤ c,

cavb ≡ acvb with a ≤ b < c,
(171)

and v ∈ A∗.
A natural q-analogue compatible with the above q-commutation is

bvca ≡qH q bvac with a < b ≤ c,

cavb≡qH q acvb with a ≤ b < c,
(172)

and v ∈ A∗. Then we have the following:

Theorem 6.3 The image of FQSym(A) under the natural projection K 〈A〉 →
K 〈A〉/ ≡qH is isomorphic to QSymq as an algebra, and also as a twisted Hopf alge-
bra for the coproduct A → A′+̇A′′, A′ and A′′ being q-commuting alphabets.

Moreover, it is known that if one only considers the Sylvester congruence

cavb≡S acvb, (173)

the quotient FQSym(A) under the natural projection K 〈A〉 → K 〈A〉/ ≡S is isomor-
phic to the Hopf algebra of planar binary trees of Loday and Ronco [11, 17]. The
previous construction provides natural twisted q-analogs of this Hopf algebra. In-
deed, let the q-Sylvester congruence ≡qS be

cavb≡qS q acvb with a ≤ b < c. (174)

Then, since this congruence is compatible with the q-commutation, we have the fol-
lowing:

Theorem 6.4 The image of FQSym(A) under the natural projection K 〈A〉 →
K 〈A〉/ ≡qS is a twisted Hopf algebra with basis indexed by planar binary trees.
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