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Abstract Given a Coxeter system (W,S) equipped with an involutive automor-
phism θ , the set of twisted identities is

ι(θ) = {θ(w−1)w | w ∈ W }.
We point out how ι(θ) shows up in several contexts and prove that if there is no
s ∈ S such that sθ(s) is of odd order greater than 1, then the Bruhat order on ι(θ)

is a graded poset with rank function ρ given by halving the Coxeter length. Under
the same condition, it is shown that the order complexes of the open intervals either
are PL spheres or Z-acyclic. In the general case, contractibility is shown for certain
classes of intervals. Furthermore, we demonstrate that sometimes these posets are not
graded.

For the Poincaré series of ι(θ), i.e. its generating function with respect to ρ, a fac-
torisation phenomenon is discussed.
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1 Introduction

Let (W,S) be a Coxeter system with an involutive automorphism θ . A twisted identity
is an element of the form θ(w−1)w for w ∈ W . In other words, the set ι(θ) of twisted
identities is the orbit of the identity element under the twisted conjugation action
of W on itself. Our terminology appeared in [9] and stems from the fact that when
θ = id, the only twisted identity is the identity element e.
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As will be demonstrated in Section 3, the study of ι(θ) is motivated by its appear-
ance in a variety of situations. For example, certain orbit decompositions of symmet-
ric varieties have a close relationship with the subposet Br(ι(θ)) of the Bruhat order
on W which is induced by ι(θ) [13, 14]. Also, the Bruhat order on W itself appears
as a special case of Br(ι(θ)); see Example 3.2.

This article is chiefly devoted to Br(ι(θ)). The questions that we strive to answer
emerge from a context which we now briefly describe.

A twisted involution in W is an element which is sent to its inverse by θ . Denote
by I(θ) the set of twisted involutions. Clearly,

ι(θ) ⊆ I(θ) ⊆ W.

Let Br(X) denote the subposet of the Bruhat order on W induced by X ⊆ W . It
is a fact that Br(W) is graded with rank function given by the Coxeter length �.
Furthermore, a fundamental result due to Björner and Wachs [3] asserts that (the
order complex of) every (open) interval in Br(W) is a PL sphere. Recent results on
Br(I(θ)) produce a similar picture. It is graded with rank function ρ = (� + �θ )/2,
where �θ is the twisted absolute length [9]. Moreover, every interval in Br(I(θ)) is a
PL sphere [10].

In the spirit of the above description, we pose the following problems:

1. For which (W,S) and θ is Br(ι(θ)) a graded poset?
2. Describe the topology of the intervals of Br(ι(θ)).

We do not know the complete solution to either of the problems. Our main results on
Br(ι(θ)) are these partial answers:

• In Theorem 4.6 it is shown that if sθ(s) never is of odd order for s ∈ S unless
s is a fixed point of θ , then Br(ι(θ)) is graded with rank function ρ. For
example, this is always the case if W is of odd rank and its Coxeter graph is
a tree. By way of contrast, there exist (W,S) and θ such that Br(ι(θ)) is not
graded; see Example 4.7.

• Under the same conditions on sθ(s) as above, every interval in Br(ι(θ)) is
either Z-acyclic (i.e. has trivial reduced integral homology) or a PL sphere.
The latter case occurs precisely when the interval coincides with an interval
in Br(I(θ)). This is Theorem 4.12. Dropping these conditions, the homotopy
type of an interval can be computed in certain special cases (Theorems 4.8
and 4.9).

In addition to the above results, we also investigate what we call the Poincaré
series of ι(θ). This is the rank generating function of Br(ι(θ)) whenever it is graded.
Specifically, we provide a simple necessary condition for an intriguing factorisation
phenomenon to occur and demonstrate that this condition also is sufficient in the
context of finite Coxeter groups. The general case is left open.

The structure of the remainder of the paper is as follows. In the next section we
gather preliminaries on poset topology and Coxeter groups, including some new ma-
terial on twisted involutions, that we need in the sequel. In Section 3 we then give
an account of various natural contexts where ι(θ) and Br(ι(θ)) appear. After that,
we turn to the study of Br(ι(θ)) in Section 4. Section 5 is concerned with Poincaré
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series considerations. Finally, we mention several open problems and give further
comments in Section 6.

2 Preliminaries

2.1 Posets and combinatorial topology

Say that a poset is locally finite if every interval is finite. A locally finite poset
equipped with a minimum element is graded if in any given interval all maximal
chains have the same cardinality.

With any finite poset P , we associate the order complex �(P ). It is the (abstract)
simplicial complex whose simplices are the chains in P . Whenever we make topo-
logical statements about P , we have the corresponding properties of �(P ) in mind.
We make no notational distinction between an abstract simplicial complex and its
geometric realisation.

Given a regular CW complex �, we define the face poset P(�) to be the set of
cells in � ordered by inclusion. By convention, we include the empty cell as the
minimum element in P(�).

A simplicial complex is a PL (piecewise linear) ball if it has a common subdivision
with a simplex. Similarly, it is a PL sphere if it has a common subdivision with the
boundary of a simplex. In particular, a PL sphere is of course homeomorphic to a
sphere (and similarly for balls).

We now review elements of Forman’s discrete Morse theory [7]. Its formulation in
terms of matchings, to which we adhere, is due to Chari [4]. For unexplained termi-
nology from combinatorial topology as well as further background, we refer to [1].

Let � be a finite regular CW complex. A matching on the face poset P(�) is an
involution M : Q → Q, for some Q ⊆ P(�) such that for all q ∈ Q, either M(q) ≺ q

or M(q) � q , where ≺ is the covering relation in P(�). In other words, M is noth-
ing but a graph-theoretic matching of the Hasse diagram of P(�). The unmatched
elements, i.e. the members of P(�) \ Q, are called the critical cells.

The matching M is acyclic if whenever we have a sequence in Q of the form

q0 ≺ M(q0) � q1 ≺ M(q1) � · · · ≺ M(qt−1) � qt

with q1 �= q0, it holds that qt �= q0. A nice way to interpret this condition is as follows.
If, in the Hasse diagram of �(P ), we direct the matching edges upwards and the
others downwards, then this directed graph is acyclic if and only if M is an acyclic
matching.

Without loss of generality, we will always assume that the empty cell is not critical,
i.e. that Q includes the minimum element1.

Our acyclic matching M determines a way to collapse � onto a (possibly non-
regular) critical complex �M consisting of the critical cells together with the vertex
which was matched with the empty cell. In the process, incidences among the cells
may change. In some situations, however, this is not a problem.

1Otherwise, we may just extend M to include it. There is always a matching partner for the empty cell
available, because no acyclic matching can match all 0-dimensional cells with 1-dimensional ones.
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Theorem 2.1 (Forman [7]) If M is an acyclic matching on P(�) which is complete
(i.e. has no critical cells), then � is collapsible, in particular contractible.

Theorem 2.1 has the following consequence, which happens to be well-suited for
some of our applications.

Corollary 2.2 Suppose M is an acyclic matching on P(�) with set of critical cells C.
If C is an order filter (i.e. c ∈ C, b ≥ c ⇒ b ∈ C), then � is homotopy equivalent to
the complex �M obtained from � by collapsing the complex of non-critical cells to
a point.

Proof A standard result in topology asserts that for a CW complex A with con-
tractible subcomplex A0, the quotient map A → A/A0 is a homotopy equivalence.
Since C is an order filter, �\C is a subcomplex of �. This subcomplex is contractible
by Theorem 2.1. �

2.2 Coxeter groups

The reader is assumed to be familiar with the basics of Coxeter group theory. Here,
bits and pieces are reviewed in order to agree on notation. We refer to the textbooks
[2] and [11] for further details.

Henceforth, let (W,S) be a Coxeter system with |S| < ∞. The Coxeter length
function is � : W → N. If w = s1 · · · sk ∈ W and �(w) = k, the word s1 · · · sk is called
a reduced expression for w. Here, and in what follows, symbols of the form si are
always elements in S. We make no notational distinction between a word in the free
monoid over S and the element in W which it represents; we rely on the context to
clarify our intentions.

Given Coxeter generators s, s′ ∈ S, we let m(s, s′) denote the (possibly infinite)
order of ss′. This information is gathered in the Coxeter graph with vertex set S and
an edge labelled m(s, s′) connecting s and s′ if and only if they do not commute (i.e.
if and only if m(s, s′) ≥ 3). As is customary, omitted edge labels are understood to
equal 3.

The set of reflections in W is T = {w−1sw | s ∈ S}. The absolute length �′(w) is
the minimal k such that w = t1 · · · tk for some ti ∈ T .

Given w ∈ W , we define its (right) descent set by

DR(w) = {s ∈ S | �(ws) < �(w)}.
For J ⊆ S, let WJ be the standard parabolic subgroup of W generated by J . If WJ

is finite, it has a longest element which is denoted by wJ . In WJ , it is characterised
by the fact that DR(wJ ) = J . Following tradition, we write w0 = wS .

We now define the Bruhat order. Among several equivalent definitions, the one
which follows is probably best suited for our purposes. A disadvantage is that it is
not obvious that what it defines is indeed a partial order.

Definition 2.3 The Bruhat order on W is the partial order defined by u ≤ v if and
only if for every reduced expression s1 · · · sk for v there exist 1 ≤ i1 < i2 < · · · <

im ≤ k such that u = si1 · · · sim .



J Algebr Comb (2008) 28: 313–332 317

2.3 Twisted involutions in Coxeter groups

By an automorphism of (W,S) we mean a group automorphism of W which pre-
serves S. Such an automorphism is determined by the corresponding automorphism
of the Coxeter graph.

Let θ be an involutive automorphism of (W,S). Recall from the introduction that
the set of twisted involutions in W is

I(θ) = {w ∈ W | θ(w) = w−1}.
Observe that I(id) is the set of ordinary involutions.

The combinatorics of I(θ) can be described in terms of “reduced expressions” in
a way which is remarkably similar to that of W itself. We now proceed to review the
parts of this theory that we will use in the sequel. Most of this appeared in [10], but
some results are new.

Define a set of symbols S = {s | s ∈ S}. There is an action of the free monoid S∗
on the set W defined by

ws =
{

ws if θ(s)ws = w,

θ(s)ws otherwise,

and ws1 · · · sk = (· · · ((ws1)s2) · · · )sk . Abusing notation, we will write s1 · · · sk for
es1 · · · sk , where e ∈ W is the identity. The relevance of all this is the following:

Proposition 2.4 (Proposition 3.5 in [10]) The orbit of e under the S∗-action is I(θ),
i.e. the twisted involutions are the elements of the form s1 · · · sk .

For w ∈ I(θ), the rank ρ(w) is the smallest k such that w = s1 · · · sk for some
si ∈ S. Then, the expression s1 · · · sk is called a reduced S-expression for w.

It follows from [9, Theorem 4.8] that Br(I(θ)), the Bruhat order on twisted invo-
lutions, is graded with rank function ρ. More precisely, it was shown that the rank
function is (� + �θ )/2, where �θ is the twisted absolute length, but it follows from
the proof that this function coincides with ρ. The twisted absolute length was defined
differently in [9], but here is a description which is more convenient for our purposes:

Proposition 2.5 Suppose s1 · · · sk is a reduced S-expression for w ∈ I(θ). Then,
�θ (w) is the number of indices i ∈ [k] = {1, . . . , k} that satisfy s1 · · · si−1si =
s1 · · · si−1si .

Proof Let λ(w) be the asserted number (a priori, it depends on the choice of re-
duced S-expression). One can check that �(θ(s)ws) = �(w) ⇔ θ(s)ws = w for
all w ∈ I(θ) and s ∈ S (see [10, Lemma 3.4]). Furthermore, by [10, Lemma 3.8],
ρ(ws) > ρ(w) ⇔ �(ws) > �(w). The construction of the S∗-action therefore implies

�(w) = 2ρ(w) − λ(w).

Thus, λ + � = 2ρ = �θ + �. �
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As the terminology suggests, �id = �′; see [9].
Either by a simple induction argument based on Proposition 2.5 or as an immediate

consequence of [9, Definition 4.5], we conclude that the twisted identities are the
twisted involutions of vanishing twisted absolute length:

ι(θ) = {w ∈ I(θ) | �θ (w) = 0} = {w ∈ I(θ) | �(w) = 2ρ(w)}.
A useful consequence is that ws ∈ ι(θ) whenever w ∈ ι(θ) and s ∈ DR(w).

Twisted involutions have reduced S-expressions of a convenient form, as shown
by the next lemma which is due to Springer [17].

Lemma 2.6 (Proposition 3.3(a) in [17]) Any u ∈ I(θ) with �θ (u) = k has a reduced
S-expression of the form s1 · · · st with the property that for some 0 ≤ i ≤ t , s1 · · · si

is a reduced S-expression for the longest element wJ in a θ -invariant standard par-
abolic subgroup WJ , J ⊆ S, with �θ (wJ ) = k.

The following fundamental lemma will be put to use repeatedly throughout the
paper. It is completely analogous to the corresponding property in W (due to Deodhar
[5, Theorem 1.1]) and explains why Br(I(θ)) and Br(W) are so similarly behaved.
The first two parts are [10, Lemma 3.9]. Together, they imply the third.

Lemma 2.7 (Lifting property) Let s ∈ S and u,w ∈ I(θ) with u ≤ w. Suppose
s ∈ DR(w). Then,

(i) us ≤ w.
(ii) s ∈ DR(u) ⇒ us ≤ ws.

(iii) s �∈ DR(u) ⇒ u ≤ ws.

Next, we show that Br(I(θ)), like Br(W), can be described in terms of subwords.
The result extends Richardson and Springer’s [13, Corollary 8.10]2 from finite to
general Coxeter groups (and adjusts it to our definition of the S∗-action which differs
somewhat from the one given in [13]).

Theorem 2.8 (Subword property for I(θ)) Let u,v ∈ I(θ) be given. Then, u ≤ v in
the Bruhat order if and only if for every reduced S-expression s1 · · · sk for v there
exist 1 ≤ i1 < i2 < · · · < im ≤ k such that u = si1

· · · sim
.

Proof We begin with the “only if” direction, so suppose u ≤ v and choose a reduced
S-expression s1 · · · sk for v. If sk �∈ DR(u), then the lifting property shows that u ≤
vsk = s1 · · · sk−1. By induction on the rank of v, we are done. Otherwise, if sk ∈
DR(u), we have usk ≤ vsk . It follows, again by induction, that usk = si1

· · · sim
for

some 1 ≤ i1 < i2 < · · · < im ≤ k − 1. Acting by sk yields the desired result.
Now consider the “if” part of the assertion. Assume s1 · · · sk is a reduced

S-expression for v and let u = si1
· · · sim

for some 1 ≤ i1 < i2 < · · · < im ≤ k.

2More precisely, [13, Corollary 8.10] applies to a partial order on I(θ) which later was shown to coincide
with Br(I(θ)) in [14].
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Given t ∈ [k], let vt = s1 · · · st and ut = si1
· · · sil

, where il ≤ t < il+1 (with i0 = 1,
im+1 = k + 1). Assuming by induction that ut−1 ≤ vt−1, we either have ut = ut−1 ≤
vt−1 < vt−1st = vt or (by the lifting property) ut = ut−1st ≤ vt−1st = vt . Thus, u =
uk ≤ vk = v. �

3 Manifestations of ι(θ)

Henceforth, let (W,S) be a finitely generated Coxeter system with an involutive au-
tomorphism θ . Recall that θ is determined by an automorphism of the Coxeter graph.

It should be clear by now that the goal of this paper is to study certain properties
of ι(θ). In this section, we motivate this task by indicating some situations in which
ι(θ) naturally shows up.

Example 3.1 Consider a connected reductive linear algebraic group G (over C, say).
Let B be a Borel subgroup and T ⊆ B a maximal torus. Given an involutive automor-
phism � : G → G which preserves T and B , let K be the fixed point subgroup. By
means of left translations, B acts on the symmetric variety G/K . This gives rise to a
finite number of orbits that may be ordered by containment of their Zariski closures.
Richardson and Springer [13, 14] studied this poset V by defining an order preserv-
ing map ϕ : V → Br(I(θ)). Here, the underlying Coxeter group W is the Weyl group
N/T (where N is the normaliser of T in G) and θ is induced by �.

In general, ϕ is neither injective nor surjective. However, ι(θ) is always contained
in the image. Moreover, ϕ produces an isomorphism V ∼= Br(ι(θ)) in certain inter-
esting cases. For instance, with G = SL2n, we may define � so that K ∼= Sp2n as
in [13, Example 10.4]. The corresponding poset V , governing the orbit decomposi-
tion of SL2n/Sp2n, is then isomorphic to Br(ι(θ)), where W is the symmetric group
S2n and θ is given by conjugation with the longest element in W (i.e. the reverse
permutation i �→ 2n + 1 − i). Figure 1 displays this poset for n = 3.

Example 3.2 (cf. Example 10.1 in [13] and Example 3.2 in [10]) Suppose θ is the
involution θ : W × W → W × W given by (v,w) �→ (w,v), where W is any Cox-
eter group. Observe that ι(θ) = {(w,w−1) | w ∈ W }. Hence, we have a bijection
W ↔ ι(θ) in this case. Furthermore, it is clear from Definition 2.3 that this bijection
gives a poset isomorphism Br(ι(θ)) ∼= Br(W). Therefore, (Bruhat orders on) twisted
identities generalise (Bruhat orders on) Coxeter groups.

Example 3.3 Let Fix(θ) denote the fixed point subgroup of θ . It is known [8, 12,
19] that Fix(θ) itself is a Coxeter group with the following canonical set of Coxeter
generators:

{wJ | J = {s, θ(s)}, m(s, θ(s)) < ∞, s ∈ S}.
Observe that θ(w−1)w = θ(v−1)v ⇔ vw−1 ∈ Fix(θ) ⇔ v ∈ Fix(θ)w. In other

words, there is a bijection between ι(θ) and the set of cosets Fix(θ)\W . Thus, ι(θ)

can be thought of as a quotient of Coxeter groups.
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Fig. 1 A picture of the poset Br(ι(θ)) when W is the symmetric group S6 ∼= A5 and θ is the unique
non-trivial automorphism (which sends the transposition si = (i, i + 1) to s6−i ). The vertex labels in the
figure are index sequences of reduced S-expressions for the corresponding twisted identities. For example,
2312 indicates the twisted identity s2s3s1s2.

Example 3.4 If W is finite, it contains a unique longest element w0. Then, θ(x) =
w0xw0 defines an involutive automorphism of (W,S). In this situation, u ∈ ι(θ) ⇔
u = w0w

−1w0w for some w ∈ W . This means that u ∈ ι(θ) if and only if w0u and
w0 are conjugate. Now, (left or right) multiplication by w0 is an antiautomorphism
of Br(W). The poset Br(ι(θ)) is therefore isomorphic to the dual of the subposet of
Br(W) induced by the conjugacy class of the longest element.

In the special case when W is the symmetric group S2n, the conjugacy class of
w0 consists of all fixed point free involutions of [2n]. Equivalently, if we think of a
permutation in terms of its disjoint cycle decomposition, the conjugacy class of w0
corresponds to the set of complete matchings on 2n elements. Thus, Br(ι(θ)) in this
case gives (the dual of) a Bruhat order on matchings.

We mention in this context that the literature already contains a “Bruhat order” on
matchings defined by Deodhar and Srinivasan [6]. Their poset is, however, strictly
weaker than the dual of Br(ι(θ)), although both posets are graded with the same rank
function; see Remark 5.3.

4 The Bruhat order on twisted identities

We now turn to the core of the paper, namely the study of Br(ι(θ)). To begin with,
we observe that it sometimes coincides with the more familiar Br(I(θ)).
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Proposition 4.1 If there exists no s ∈ S such that θ(s) and s are conjugate, then
ι(θ) = I(θ).

Proof Notice that θ(s)ws = w if and only if w−1θ(s)w = s. Thus, if s and θ(s) are
not conjugate, we have ws = θ(s)ws for all w. Now, the assertion is a consequence
of Proposition 2.5 and the remarks that follow it. �

The hypothesis of Proposition 4.1 means that for all s ∈ S, every path from s to
θ(s) in the Coxeter graph of W contains an edge with an even label; see [2, Ex-
ercise 1.16]. For example, Proposition 4.1 applies when W = F4 with θ being the
unique non-trivial automorphism.

We will find that ι(θ) is particularly well-behaved if θ never flips an edge with an
odd label in the Coxeter graph of W .

Definition 4.2 Say that θ has the no odd flip (NOF) property if m(s, θ(s)) is even or
infinite for all s �= θ(s) ∈ S.

For example, if W is finite and irreducible, θ has the NOF property unless W is of
type A2n or I2(2n + 1), n ∈ N, and θ is the unique non-trivial automorphism.

We now proceed to prove a series of lemmata that put restrictions on the behaviour
of elements of twisted absolute length 1 when θ has the NOF property. Informally
put, these restrictions ensure that intervals in Br(ι(θ)) never can be “sparse enough”
not to inherit the gradedness from Br(I(θ)).

Lemma 4.3 Suppose W is irreducible and finite. If �θ (w0) = 1, then W is either the
rank one group A1 or the dihedral group I2(m) for some odd integer m.

Proof If θ = id, the twisted absolute length coincides with the absolute length.
Hence, w0 is a reflection. It follows, for example by the classification of finite Coxeter
groups, that W = A1 or W = I2(m), m odd.

Now, assume θ �= id. Obviously, �θ (w) and �(w) always have the same parity.
In particular, �(w0) is odd. By inspection of Coxeter graphs, the only groups with
�(w0) odd that admit a nontrivial θ are I2(m), m odd, and Am, m ≡ 1,2 (mod 4).
These groups have θ(w) = w0ww0 as unique nontrivial automorphism; see [2, Ex-
ercise 4.10]. Therefore, w �→ w0w is a bijection which sends Br(I(θ)) to the dual
of Br(I(id)). In particular, the top element w0 has the same rank in Br(I(θ)) as in
Br(I(id)). This implies �′(w0) = �θ (w0) = 1, i.e. that w0 is again a reflection. Hence,
W is the dihedral group I2(m) for some odd m. �

Lemma 4.4 Let W be finite and assume θ has the NOF property. If �θ (w0) = 1, then
w0 has a reduced S-expression beginning with s for some θ -fixed s ∈ S.

Proof The twisted absolute length clearly is additive over direct products of θ -
invariant Coxeter systems. Thus, W decomposes as W = WJ × WS\J where
�θ (wJ ) = 1, �θ (wS\J ) = 0, WJ is irreducible and J ⊆ S is invariant under θ . Choose
a reduced S-expression s1 · · · sk for wS\J .
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Lemma 4.3 shows that either WJ
∼= A1 or WJ

∼= I2(m), m odd. In the for-
mer case, wJ = s for some θ -fixed s ∈ S. This implies that w0 has the reduced
S-expression ss1 · · · sk . In the latter situation, wJ has the reduced S-expression
ss′ss′ · · · ((m + 1)/2 letters), where J = {s, s′}. The hypothesis on m(s, θ(s)) means
that s and s′ are θ -fixed. Hence, ss′ss′ · · · s1 · · · sk is a reduced expression for w0 of
the desired form. �

Lemma 4.5 Suppose θ has the NOF property. Then, given v ∈ I(θ) with �θ (v) = 1,
v covers at most one twisted identity in Br(I(θ)).

Proof By Lemma 2.6, �θ (v) = 1 implies v = wJ s1 · · · sk with �(v) = �(wJ )+ 2k for
some θ -invariant J ⊆ S satisfying �θ (wJ ) = 1. Invoking Lemma 4.4, we may assume
J = {s}. In other words, v has a reduced S-expression of the form ss1 · · · sk , where s

is fixed by θ .
Each reduced k-letter subword of ss1 · · · sk except at most one begins with s,

hence represents an element of non-vanishing twisted absolute length. The excep-
tion is s1 · · · sk (if this expression is reduced) which, by Theorem 2.8, is the only
candidate for a twisted identity covered by v. �

Next, we state our main result on gradedness. As a notable special case, Br(ι(θ))

is graded whenever the Coxeter graph of W is a tree containing a θ -fixed node. The
nature of the rank function should not be surprising. Indeed, if v = s1 · · · sk with
ρ(v) = k, then e < s1 < s1s2 < · · · < s1 · · · sk is an unrefinable chain in Br(ι(θ)).
Hence, the rank function necessarily is ρ whenever Br(ι(θ)) is graded.

Theorem 4.6 If θ has the NOF property, then Br(ι(θ)) is graded with rank func-
tion ρ.

Proof Since we know that Br(I(θ)) is graded with rank function ρ, it is enough to
show that every interval [u,v] ⊆ Br(ι(θ)) contains a chain of length ρ(v) − ρ(u).

In order to get a contradiction, assume the theorem is false. Choose a minimal
interval [u,v] ⊆ Br(ι(θ)) which does not contain a chain of length ρ(v) − ρ(u) and
such that ρ(v) is minimal among all such intervals.

Pick s ∈ DR(v). We must have vs �≥ u; otherwise [u,v] would not be minimal.
By the lifting property, us < u,vs. Minimality of ρ(v) shows that [us, vs] contains
some a ∈ ι(θ) which covers us in Br(I(θ)). Using the lifting property once again, we
conclude that as covers u in Br(I(θ)). Minimality of [u,v] implies as �∈ ι(θ). Thus,
as = as and �θ (as) = �θ (a) + 1 = 1. Now, as covers two distinct twisted identities,
namely a and u. This contradicts Lemma 4.5, and the proof is complete. �

Unfortunately, Theorem 4.6 does not give the full picture. For example, one readily
checks that with W being any dihedral group and θ the non-trivial automorphism,
Br(ι(θ)) is graded, although this is not predicted by Theorem 4.6. At this point one
may very well suspect that Br(ι(θ)) is always graded. This is not true, as shown by
the next example.
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Example 4.7 Suppose W ∼= Ã2, the affine Weyl group corresponding to A2. Its Cox-
eter generating set is S = {s1, s2, s3}, and m(s1, s2) = m(s1, s3) = m(s2, s3) = 3. De-
fine the involution θ by θ(s1) = s1, θ(s2) = s3 and θ(s3) = s2.

Consider the twisted identities u = s3 = s2s3 and v = s2s1s3 = s2s1s3s2s1s3. As
an interval in Br(I(θ)), the open interval (u, v) contains two elements, namely s2s3 =
s3s2s3 and s1s3 = s2s1s3, neither being a twisted identity. Thus, e < u < v and e <

s2 < s2s1 < v are unrefinable chains in Br(ι(θ)). Hence, it is not graded.

Our attention is now turned to the topology of intervals in Br(ι(θ)). The first results
are valid without any restriction on W or θ .

Theorem 4.8 Consider an interval [u,v] ⊆ Br(ι(θ)). If us = us for some s ∈ DR(v),
then (u, v) is collapsible.

Proof Let I = (u, v). Our strategy is to invoke Theorem 2.1 after defining a complete
acyclic matching M on the face poset P = P(�(I)).

Suppose c is a chain in I , and define xc = min{x ∈ c ∪ {v} | s ∈ DR(x)}. Now, let
M : P → P be given by

M(c) =
{

c ∪ {xcs} if xcs �∈ c,

c \ {xcs} otherwise.

Observe that xcs �= u because us = us �∈ ι(θ). The lifting property ensures that xcs∪c

is a chain in I . Since s �∈ DR(xcs), we have xc = xM(c) and therefore M(M(c)) = c.
Hence, M is a complete matching.

To prove acyclicity of M , suppose we have four chains c ≺ M(c) � c′ ≺ M(c′),
where ≺ is the covering relation in P and c �= c′. By construction, M(c) = c ∪ {xcs}
and c′ = M(c) \ {x} for some x ∈ M(c). In fact, x = xc = xM(c); otherwise we would
have xc′ = xc, implying M(c′) = c′ \ {xcs} ≺ c′. We therefore conclude that c′ =
{xcs} ∪ c \ {xc}. In particular, c′ has strictly fewer elements with s as a descent than
c does. This shows the impossibility of a sequence

c1 ≺ M(c1) � c2 ≺ M(c2) � · · · ≺ M(ct−1) � ct = c1

with c1 �= c2. In other words, M is acyclic. �

The strategy employed in the preceding proof is not quite applicable if us =
θ(s)us, s �∈ DR(u), because chains that contain us would not have a well-defined
matching partner. Leaving these chains unmatched, however, allows us to conclude a
result which is useful in recursive arguments.

Theorem 4.9 Consider an interval [u,v] ⊆ Br(ι(θ)). If us = θ(s)us for some s ∈
DR(v) \ DR(u), then (u, v) is homotopy equivalent to the suspension of (us, v).

Proof Just as in the proof of Theorem 4.8, we define a matching on P = P(�(I)),
where I = (u, v). This time, there will be critical cells. Define

Z = {c ∈ �(I) | c � us}.
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Now, arguing exactly as in the proof of Theorem 4.8 we have a complete acyclic
matching M : P \ Z → P \ Z.

The set of critical cells is the order filter Z which consists of the cells in the
open star of us. Corollary 2.2 therefore implies that �(I) is homotopy equivalent
to the star of us with the entire link of us collapsed to a single point. The complex
obtained in this way is homotopic to the suspension of the link of us, and this link is
�((us, v)). �

Using Theorem 4.9, we can always compute the homotopy type of an interval in
terms of that of another interval. The problem is that if DR(v) ⊆ DR(u), we are only
able to express (u, v) in terms of larger intervals. This makes it difficult to set up
an inductive argument since we may not reach a reasonable base case. To rectify the
situation, we pay the price of restricting W and θ .

Let us call an interval [u,v] ⊆ Br(ι(θ)) full if {w ∈ I(θ) \ ι(θ) | u ≤ w ≤ v} = ∅.

Lemma 4.10 Suppose θ has the NOF property. If an interval [u,v] ⊆ Br(ι(θ)) is full
and s �∈ DR(v)∪DR(u), then either us = us or [u,vs] is full (implying, in particular,
vs ∈ ι(θ)).

Proof Assume, in order to deduce a contradiction, that us = θ(s)us and [u,vs] is
not full. Choose w ∈ [u,v] minimal with the property that ws = ws; it exists since
every element in [u,vs] \ [u,v] is of the form ws, w ∈ [u,v]. We have �θ (ws) = 1
and u < w < vs.

Since u < w < ws and intervals in Br(I(θ)) are PL spheres, ws must cover some
element w′ ∈ I(θ) with u < w′ �= w. By the lifting property, u ≤ w′s < w. Since
[u,v] is full, w′s ∈ ι(θ). Minimality of w now implies w′ ∈ ι(θ). Hence, ws covers
more than one twisted identity, contradicting Lemma 4.5. �

Lemma 4.11 Suppose θ satisfies the NOF property. Let u < v for u,v ∈ ι(θ) and
suppose vs = vs for some s ∈ S. If us = θ(s)us > u, then us < v.

Proof We employ induction on r = ρ(v) − ρ(u). The assertion is vacuously true
if r = 1, because in this case the hypotheses imply that vs covers both us and v,
contradicting Lemma 4.5.

Now suppose r > 1. Since Br(ι(θ)) is graded, we can choose w ∈ ι(θ) such that w

covers u and w < v. If us = w, we are done. Otherwise, the lifting property implies
that ws covers us. As in the r = 1 case above, ws = ws is impossible, so ws =
θ(s)ws. By the induction assumption, ws < v. Hence, us < v. �

Theorem 4.12 Assume θ has the NOF property. Consider an interval [u,v] ⊆
Br(ι(θ)). If it is full, then (u, v) is a PL sphere of dimension ρ(v) − ρ(u) − 2. Other-
wise, (u, v) is Z-acyclic.

Proof If [u,v] is full, the assertion follows immediately from the corresponding re-
sult on Br(I(θ)), namely [10, Corollary 4.6].
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Suppose [u,v] is not full, and let I = (u, v). Proceeding by induction on ρ(v),
we choose s ∈ DR(v). There are two cases depending on whether or not s also is a
descent of u.

Case I, s �∈ DR(u).
If us = us, Theorem 4.8 shows that I is collapsible, in particular contractible and

Z-acyclic. By Lemma 4.10, this is always the case if [u,vs] is full. Therefore, we
may assume that [u,vs] is not full and us = θ(s)us. By the induction assumption,
(u, vs) is Z-acyclic.

Let P = P(�(I)). Given a chain c ∈ P , define xc = max{x ∈ c ∪ {u} | xs =
θ(s)xs > x}; this set is nonempty since it contains u. Let Z = {c ∈ P | vs ∈ c} =
{c ∈ P | xc = vs} and define M : P \ Z → P \ Z by

M(c) =
{

c ∪ {xcs} if xcs �∈ c,

c \ {xcs} if xcs ∈ c.

Lemma 4.11 together with the lifting property proves that c ∪ {xcs} ∈ P . Observ-
ing that xc = xM(c), we conclude that M is a matching on P with set of critical
cells Z. An argument completely analogous to the acyclicity part of the proof of The-
orem 4.8 shows that M is an acyclic matching. Exactly as in the proof of Theorem 4.9,
this implies that I is homotopy equivalent to the suspension of the Z-acyclic com-
plex (u, vs). Since a complex and its suspension have isomorphic reduced homology
groups up to an index shift, I is Z-acyclic.

Case II, s ∈ DR(u).
By Lemma 4.10, [us, vs] is not full, and therefore (us, vs) is Z-acyclic. Combin-

ing Case I with Theorem 4.9, we have the following homotopy equivalences:


I � (us, v) � 
(us, vs),

where 
 denotes suspension. Hence, the suspension of I is Z-acyclic. Therefore, I is
Z-acyclic, too. �

5 The Poincaré series of ι(θ)

From a combinatorial point of view, the Poincaré series of W is simply the length
generating function:

Poin(W ; t) =
∑
w∈W

t�(w).

Analogously, we may define the Poincaré series of ι(θ) to be

Poin(ι(θ); t) =
∑

w∈ι(θ)

tρ(w).

In particular, Poin(ι(θ); t) is the rank generating function for Br(ι(θ)) whenever it is
graded.
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Since ι(θ) is, in some sense, a quotient of Coxeter groups (cf. Example 3.3),
one may naively hope that its Poincaré series is a quotient of the series of the cor-
responding groups; let us say that Poin(ι(θ); t) factors through θ if Poin(W ; t) =
Poin(ι(θ); t)Poin(Fix(θ); t).

With W = A2 and θ given by conjugation with the longest element, for exam-
ple, one obtains Poin(ι(θ); t) = 1 + 2t , whereas Poin(W ; t)/Poin(Fix(θ); t) = 1 +
t + t2. Thus, in this case, Poin(ι(θ); t) does not factor through θ . Intriguingly, though,
factorisation does occur in several situations, as we shall see below.

First, we give a necessary condition for the Poincaré series of ι(θ) to factor
through θ . The condition is that θ (seen as a Coxeter graph automorphism) is not
allowed to flip edges unless they are labelled ∞.

Proposition 5.1 If Poin(W ; t) = Poin(ι(θ); t)Poin(Fix(θ); t), then m(s, θ(s)) ∈
{1,2,∞} for all s ∈ S.

Proof Suppose equality holds, and consider the coefficient of the linear term on both
sides. On the left hand side, this coefficient is |S|. The elements of length 1 in Fix(θ)

(i.e. the Coxeter generators) are the longest elements in the finite parabolic subgroups
of the form 〈s, θ(s)〉. In ι(θ), the elements of rank 1 are the twisted identities of the
form s, s ∈ S. Now, s is a twisted identity if and only if θ(s) �= s. Moreover, for
s �= s′, s = s′ if and only if θ(s) = s′ and m(s, θ(s)) = 2. As a consequence, the
linear coefficient of the right hand side is

|{{s, θ(s)} | m(s, θ(s)) < ∞}| + |S| − |{s | s = θ(s)}| − |{{s, θ(s)} | m(s, θ(s)) = 2}|.
This is equal to |S| if and only if m(s, θ(s)) ∈ {1,2,∞} for all s ∈ S. �

It turns out that in the finite setting, Proposition 5.1 actually gives a characterisa-
tion of the (W, θ) for which the factorisation phenomenon occurs. (The label ∞, of
course, cannot occur in this case).

Theorem 5.2 Suppose W is finite. Then, Poin(ι(θ); t) factors through θ if and only if
m(s, θ(s)) ∈ {1,2} for all s ∈ S, i.e. if and only if s commutes with θ(s) for all s ∈ S.

Proof Suppose J ⊆ S is minimal such that θ(J ) = J and m(s, s′) = 2 whenever
s ∈ J , s′ �∈ J . Then, either WJ is irreducible or WJ is isomorphic to the direct prod-
uct of two isomorphic irreducible Coxeter groups that are interchanged by θ as in
Example 3.2. To prove the theorem it therefore suffices to check that it holds in the
setting of Example 3.2 and for the finite irreducible groups that satisfy the hypotheses.

To begin with, return to the setup in Example 3.2. Observe that Fix(θ) ∼= W .
Furthermore, the rank of (w,w−1) ∈ ι(θ) is �(w), so that Poin(ι(θ); t) =
Poin(W ; t). Since Poin(W × W ; t) = Poin(W ; t)2, we have Poin(W × W ; t) =
Poin(ι(θ); t)Poin(Fix(θ); t).

It remains to consider the finite irreducible groups. If θ = id, the assertion is trivial.
If not, the groups that satisfy the criteria are A2n−1 ∼= S2n, Dn and E6.

Type A. Consider the symmetric group case W = S2n with θ given by conjugation
with the longest element w0 (the reverse permutation). Let us verify that Poin(ι(θ); t)
factors through θ .
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It is known [18, Supplementary problem 1.24] that the fixed point free involutions
F(2n) in S2n have the following generating function:

I (n; t) =
∑

π∈F(2n)

t inv(π) = tn
n−1∏
i=0

(1 + t2 + t4 + · · · + t4i ),

where inv(π) denotes the number of inversions in π , which is the same as the Coxeter
length of π . Since ι(θ) = w0F(2n) (Example 3.4), �(w0w) = 2n2 − n − �(w) for all
w ∈ S2n and ρ(w) = �(w)/2 for all w ∈ ι(θ), we obtain

Poin(ι(θ); t) = (t1/2)2n2−nI (n; t−1/2) = tn(n−1)

n−1∏
i=0

(1 + t−1 + t−2 + · · · + t−2i )

=
n−1∏
i=0

(1 + t + t2 + · · · + t2i ).

It is well-known, and straightforward to check, that Fix(θ) ∼= Bn, the hyperoctahedral
group of rank n. Now,

Poin(S2n; t) =
2n−1∏
i=0

(1 + t + t2 + · · · + t i )

and

Poin(Bn; t) =
n∏

i=1

(1 + t + t2 + · · · + t2i−1).

Thus, Poin(W ; t) = Poin(ι(θ); t)Poin(Fix(θ); t) in this situation.
Type D. Let W = Dn with the Coxeter generators being labelled as described in

the Coxeter graph below.

Define θ by θ(s1) = s2, θ(s2) = s1 and θ(si) = si for all i > 2.
It is not hard to realise that ι(θ) consists precisely of the elements of the form

s2s3 · · · sk for k ∈ [n] (if k = 1, we interpret this as the identity element e). In par-
ticular, Poin(ι(θ); t) = 1 + t + t2 + · · · + tn−1. Noting that Fix(θ) ∼= Bn−1 (whose
Poincaré series was presented in the type A case above) and

Poin(Dn; t) = (1 + t + t2 + · · · + tn−1)Poin(Bn−1; t),
we again conclude that Poin(ι(θ); t) factors through θ .

Type E. When θ is the unique non-trivial automorphism of the Coxeter graph
of E6, the Hasse diagram of Br(ι(θ)) is displayed in Figure 2. Inspecting it, one
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Fig. 2 The poset Br(ι(θ)) when W = E6 and θ is the non-trivial automorphism.

obtains the rank generating function and verifies that Poin(E6; t) factors through θ .
Here, Fix(θ) ∼= F4. �

Remark 5.3 Return to the type A case W = S2n with θ given by conjugation
with w0. Then, Poin(ι(θ); t) coincides with the rank generating function for Deodhar
and Srinivasan’s “Bruhat order” on F(2n) [6, Theorem 1.3(i)] which was mentioned
in Example 3.4. In fact, although formulated differently in [6], the definition of their
rank function wt : F(2n) → N is readily seen to yield

wt(σ ) = inv(σ ) − n

2
= n(n − 1) − inv(w0σ)/2 = n(n − 1) − ρ(w0σ),

so that ∑
σ∈F(2n)

twt(σ ) = tn(n−1)Poin(ι(θ);1/t) = Poin(ι(θ); t),

where the last equality is valid since Poin(ι(θ); t) is a symmetric polynomial in this
case.
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6 Further comments and open questions

6.1 Gradedness

We have already commented on the fact that, although Theorem 4.6 does not predict
it in all cases, Br(ι(θ)) is graded whenever W is dihedral. In fact, the only instances
of non-graded Br(ι(θ)) that we know of follow from Example 4.7 and simple vari-
ations thereof3. Ultimately, of course, we would like a complete characterisation of
the (W,S) and θ for which Br(ι(θ)) is graded. A step in this direction would be to
resolve the following two problems.

Conjecture 6.1 When W = A2m
∼= S2m+1, Br(ι(θ)) is always graded.

Aided by Stembridge’s Maple packages coxeter and posets [20, 21], we have
verified Conjecture 6.1 for m ≤ 4. The conjecture would follow from an affirmative
answer to

Question 6.2 Is Br(ι(θ)) graded whenever the Coxeter graph of W is a tree?

6.2 Interval topology

Consider the setup of Theorem 4.12. By a result of Whitehead [22], a collapsible PL
manifold is a PL ball (see e.g. [15, Corollary 3.28]). By induction on the rank, we
may assume that the proper subintervals of (u, v) are PL spheres or balls, hence that
(u, v) is a PL manifold. Thus, if we were somehow able to replace “Z-acyclic” by
“collapsible” in the conclusion of Theorem 4.12, we would have a proof of the next
conjecture.

Conjecture 6.3 Suppose θ has the NOF property. Consider an interval [u,v] ⊆
Br(ι(θ)). If it is full, then (u, v) is a PL sphere of dimension ρ(v) − ρ(u) − 2. Oth-
erwise, (u, v) is a PL ball of the same dimension.

The conditions on (W,S) and θ which guarantee that Br(ι(θ)) is graded in The-
orem 4.6 are exactly those for which Theorem 4.12 asserts that the intervals are PL
spheres or Z-acyclic (namely, θ should satisfy the NOF property). This immediately
leads to the next question.

Question 6.4 Does there exist a graded interval in some Br(ι(θ)) which is neither a
PL sphere nor Z-acyclic?

If Conjecture 6.3 is valid, one would of course like to replace “Z-acyclic” by “ball”
in Question 6.4.

Like any non-graded interval, the one in Example 4.7 is neither a PL ball nor
sphere. Note, however, that it is homotopy equivalent to a 0-dimensional sphere.

3For example, the argument is not affected if m(s1, s2) = m(s1, s3) is increased. Similarly, m(s2, s3) can
be increased to any odd number ≥ 3 with simple adjustments.
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Question 6.5 Are there intervals in some Br(ι(θ)) that are neither homotopy equiv-
alent to spheres nor contractible?

The Möbius function of an interval coincides with the reduced Euler characteristic
of its order complex. Thus, a negative answer to Question 6.5 would imply a negative
answer to the following:

Question 6.6 Is there some Br(ι(θ)) whose Möbius function takes values outside
{−1,0,1}?

When W = A2m, m ≤ 4, we have used [20, 21] to verify that the range of the
Möbius function of Br(ι(θ)) is {−1,0,1}.
6.3 Directedness

Whenever W is finite, Br(I(θ)) and Br(W) contain a unique top element w0. This
element is, however, usually not a twisted identity. Indeed Br(ι(θ)) does not always
possess a unique maximal element.

Proposition 6.7 If W is irreducible and finite, then Br(ι(θ)) has more than one max-
imal element if and only if W is of type A2m or I2(2m + 1), for some positive integer
m, and θ is the unique non-trivial automorphism.

Proof If θ = id, e is the only twisted identity. Consulting the classification of finite
irreducible Coxeter groups, we find that the groups that admit a nontrivial θ are An,
Dn, E6, F4 and I2(n). Furthermore, this θ is unique in all cases (except D4, but the
various choices are then equivalent). The dihedral groups I2(n) are easy to handle.
Types D and E are covered by Theorem 5.2 whereas the type F assertion follows
from Proposition 4.1. It remains to understand type An. Here, one may study the
Bruhat order on the conjugacy class of w0 as described in Example 3.4. It is straight-
forward to check that the minimal elements in this class are the possible products of
�n/2� mutually commuting Coxeter generators. If n is odd, there is only one such
product; otherwise there are n/2 + 1 of them. �

The property of having a unique maximal element has a counterpart in infinite
groups. A poset is directed if every pair of elements has a common upper bound.

Question 6.8 For which W , θ is Br(ι(θ)) a directed poset?

We proceed to mention some reasonably straightforward partial answers to Ques-
tion 6.8.

It is known that Br(W) always is directed. A proof using the lifting property of
Br(W) is given in [2]. Employing instead the lifting property of Br(I(θ)), it follows
in exactly the same way that Br(I(θ)) is directed, too. Thus, in addition to the cases
provided by Proposition 6.7, we may immediately conclude that Br(ι(θ)) is directed
whenever the hypothesis of Proposition 4.1 is satisfied.

Here is another situation in which directedness is relatively effortless to establish:
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Proposition 6.9 Assume W is infinite. Suppose there is a partition S = S1 � S2 � S3
with θ(S1) = S2 and S3 = {s ∈ S | θ(s) = s} such that the elements of Si commute
pairwise for i = 1,2,3. Then, Br(ι(θ)) is directed.

Proof Recall that a Coxeter element is a product of the Coxeter generators (in any
order). Speyer [16] has shown that �(ck) = |S|k for all k ∈ N and an arbitrary Cox-
eter element c whenever W is infinite. Therefore, given v,w ∈ W , a large enough
power of any Coxeter element is an upper bound for v and w in Br(W). Observe that
c = wS1wS3wS2 is a Coxeter element in W . Moreover, c2k = θ(c−k)ck ∈ ι(θ). Thus,
Br(ι(θ)) is directed. �

6.4 The Poincaré series

Proposition 5.1 and Theorem 5.2 immediately lead to the next question.

Question 6.10 Does Poin(ι(θ); t) factor through θ if and only if m(s, θ(s)) ∈
{1,2,∞} for all s ∈ S?

In Section 5, in order to answer the finite case version of Question 6.10 affirma-
tively, we resorted to a case by case computation which did not shed much light on
the situation. A combinatorial proof, type independent if possible, would be much
preferred. Specifically, what we are looking for is this:

Problem 6.11 Given that Poin(ι(θ); t) factors through θ , construct a bijection φ :
ι(θ) × Fix(θ) → W such that �(φ((w,f ))) = ρ(w) + �θ (f ), where �θ denotes the
length of f in terms of the canonical Coxeter generators of Fix(θ) (cf. Example 3.3).

Recalling from Example 3.3 that we may identify ι(θ) with the set of cosets
Fix(θ)\W , there is of course a natural bijection ι(θ) × Fix(θ) → W defined by send-
ing (Fix(θ)w,f ) to f w, but in general it does not have the desired properties.
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