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Abstract A factorisation of a complete graph Kn is a partition of its edges with
each part corresponding to a spanning subgraph (not necessarily connected), called
a factor. A factorisation is called homogeneous if there are subgroups M < G ≤ Sn

such that M is vertex-transitive and fixes each factor setwise, and G permutes the
factors transitively. We classify the homogeneous factorisations of Kn for which there
are such subgroups G,M with M transitive on the edges of a factor as well as the
vertices. We give infinitely many new examples.

Keywords Graph factorisation · Edge-transitive graph · Homogeneous factorisation

1 Introduction

Let Kn := (V ,E) be a complete graph on n vertices, with vertex set V and edge
set E := {{x, y} | x �= y and x, y ∈ V }. A factorisation of Kn is a partition E :=
{E1, . . . ,Ek} of E with at least two parts such that each Ei is the edge set of a span-
ning subgraph �i = (V ,Ei), called a factor (that is to say, the set of vertices incident
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with some edge of Ei is the whole vertex set V ). A factorisation (Kn, E ) is said to be
(G,M)-homogeneous if M < G ≤ Sn, M is transitive on V and fixes each factor set-
wise, while G leaves E invariant and permutes the factors transitively. Since elements
of G induce isomorphisms between the factors, all factors are isomorphic, and indeed
‘isomorphic factorisations’ of complete graphs have been well studied, see for exam-
ple [3, 4, 13, 14]. Homogeneous factorisations of complete graphs were introduced in
[21] (and for graphs in general in [12]). Each vertex-transitive, self-complementary
graph � together with its complement forms a homogeneous factorisation in which
the index k is equal to 2 and E consists of the edge set of � and the edge set of its
complement: we may take M = Aut(�) and G = 〈M,σ 〉 where σ is any permutation
that interchanges � and its complement. Thus all the papers [1, 17, 20, 26, 27, 30,
34] give examples of homogeneous factorisations of complete graphs of index 2.

We give a classification of all (G,M)-homogeneous factorisations of Kn such
that the group M acts edge-transitively on some (and hence all) factors. We call
such homogeneous factorisations edge-transitive, and similarly, if each factor is M-
arc-transitive, then the factorisation is called an arc-transitive homogeneous factori-
sation. In Section 3 we show that, for each (G,M)-homogeneous, edge-transitive
factorisation of Kn, the group G is a 2-homogeneous subgroup of Sn and hence
is known, see Subsection 2.4. Our classification involves a case-by-case consider-
ation of the families of 2-homogeneous groups, and as the classification of finite
2-homogeneous groups relies on the finite simple group classification, so also does
our classification.

Another link with previous work is to the partial classification by Thomas Sib-
ley [29] of decompositions of complete graphs into isomorphic subgraphs (not nec-
essarily spanning subgraphs) preserved by a group acting 2-transitively on the ver-
tex set. His classification is complete in the cases where the automorphism group
contains either a simple group or P�L(2,8) acting 2-transitively on vertices, but is
incomplete in the remaining case where the automorphism group is a subgroup of
some affine group AGL(d,p). The results of this paper provide a classification of
those decompositions considered by Sibley that admit 2-transitive affine groups and
are homogeneous factorisations.

Our theorem below involves the following notation: the Ree factorisation
ERee(28,3) defined in Definition 3.3, the M-edge-partition E (M) defined in Defi-
nition 3.2, the cyclotomic factorisations and twisted cycloctomic factorisations de-
fined in Definitions 4.1 and 4.16 respectively, admissible pairs (G0,M0) defined via
Condition 4.12, the graphs G(q2, k) from Definition 5.4, and the Hamming graph
H(9,2) = (Z9

2,E) where {x, y} ∈ E if and only if x, y differ in exactly one coordi-
nate.

Theorem 1.1 Let (Kn, E ) be a (G,M)-homogeneous, edge-transitive factorisation
of Kn = (V ,E) of index k with factors �i (1 ≤ i ≤ k). Then G,M may be chosen so
that G is 2-transitive on V , each factor is M-arc-transitive, and one of the following
holds.

(1) (G,M,n, k) = (Ree(3),PSL(2,8),28,3), and E = ERee(28,3).
(2) G = T � G0 is an affine 2-transitive permutation group on V = V (a, q) (where

n = qa), M = T � M0, E = E (M), and precisely one of the following holds.
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(a) a = 1, E = Cyc(q, k), and each �i
∼= GPaley(q,

q−1
k

).
(b) a = 1, and (G0,M0) is admissible.
(c) a = 2, and q, k,M0,�i are as in Tables 2 or 3.
(d) a = 4, q = 3, M0 = 21+4, k = 5 and each �i

∼= H(9,2).

Remark 1.2 (a) For Part 2(b), we give in Condition 4.12 an explicit list of parameter
conditions that determine whether a pair of subgroups of A�L(1, q) is admissible.
While there are some examples in Part 2(b) for which E (M) = Cyc(q, k), the infi-
nite family of admissible pairs defined explicitly in Proposition 4.18 corresponds to
infinitely many new factorisations, the twisted cyclotomic factorisations of Defini-
tion 4.16, because the factors of these factorisations, the twisted generalised Paley
graphs, are not isomorphic to generalised Paley graphs (unless (q, k) = (9,2), see
Proposition 4.18). That is to say, the twisted cyclotomic factorisations are not equiv-
alent to the cyclotomic factorisations of Part 2(a). (We say that two factorisations
(Kn, E ) and (Kn, E ′) are equivalent if there is a permutation g ∈ Sn such that Eg ∈ E ′
for each E ∈ E .)

(b) In some of the examples in Theorem 1.1 the factors are not connected. This is
true in particular for a sub-family of the cycloctomic factorisations, see Lemma 4.3.

(c) More details about the examples in Part 2(c) are given in Remark 5.7. More-
over, Lemma 5.6 determines precisely which of these factorisations are equivalent
to a factorisation in Part 2(a) or 2(b). Even though the �i are sometimes generalised
Paley graphs or twisted generalised Paley graphs, in most cases the factorisation is
new.

(d) The exceptional almost simple example in Part 1 is associated with Ree(3), the
only almost simple 2-transitive group whose socle is not 2-transitive.

(e) The exceptional example in Part 2(d) is associated with the exceptional affine
2-transitive group G with G0 ≤ 21+4.S5, and M0 = 21+4; it is explored in detail in
[23] and [24].

After presenting some preliminary results in Section 2, we give the proof of The-
orem 1.1 in the following three sections.

2 Preliminaries

2.1 Graphs

All graphs considered in this paper are finite, undirected and without loops or mul-
tiple edges. Thus a graph � = (V �,E�) consists of a vertex set V � and a set E�

of unordered pairs of vertices, called edges. If {α,β} ∈ E�, then α and β are said to
be adjacent and the ordered pairs (α,β) and (β,α) are called arcs. The set of arcs
of � is denoted A�. An automorphism of � is a permutation of V � that leaves E�

invariant. The set of all automorphisms forms a subgroup Aut(�) of Sym(V �) (the
symmetric group on V �), and is called the automorphism group of �, and for a sub-
group G ≤ Aut(�), � is G-vertex-transitive, G-edge-transitive or G-arc-transitive if
G acts transitively on the vertices, edges or arcs of � respectively. An arc-transitive
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graph is also edge-transitive but the converse is not true in general. Arc-transitivity is
characterised in the following lemma (see [2]). For v ∈ V �, �(v) denotes the set of
vertices adjacent to v.

Lemma 2.1 A connected graph � is G-arc-transitive if and only if G is transitive on
V � and for any v ∈ V �, Gv is transitive on �(v).

2.2 Cayley graphs

We will often encounter a special kind of vertex-transitive graph called a Cayley
graph, defined as follows.

Definition 2.2 For a group G and a nonempty subset S of G such that 1G /∈ S and
S = S−1 = {s−1 | s ∈ S}, the Cayley graph � = Cay(G,S) of G relative to S is
defined as the graph with vertex set V � = G and edge set E� such that

{x, y} ∈ E� ⇐⇒ yx−1 ∈ S.

A Cayley graph Cay(G,S) is connected if and only if 〈S〉 = G (see [7, p. 241]).

A permutation group G on V is semiregular if the only element fixing a point in
V is the identity element of G. A group G is regular on V if it is both semiregular
and transitive, and such groups characterise Cayley graphs as follows.

Lemma 2.3 [2, Lemma 16.3]. A graph � is isomorphic to a Cayley graph for some
group if and only if some subgroup of Aut(�) is regular on vertices.

2.3 Permutation groups

A partition of a set V is a family B of non-empty subsets of V such that ∪B∈BB = V

and B ∩ B ′ = ∅ for distinct B,B ′ ∈ B. Let G be a group acting on a finite set V . A
nonempty subset B ⊆ V is called a block for G if for every g ∈ G, either B ∩Bg = ∅
or B = Bg . A block B is said to be trivial if |B| = 1 or B = V . Otherwise, B is
nontrivial. A partition B of V is called G-invariant if Bg ∈ B for any B ∈ B and
g ∈ G. It is easy to see that the parts of a G-invariant partition B are blocks for
G, and that G permutes the elements of B blockwise inducing a natural, possibly
unfaithful, action on B. The group G is primitive on V if G is transitive and the only
blocks for G are the trivial ones. If G is transitive but not primitive on V , then G

is said to be imprimitive. The lemma below shows that partitions invariant under a
transitive permutation group often arise as sets of orbits of normal subgroups. For a
group G acting on a set V , and a point v ∈ V , we denote the G-orbit containing v by
vG = {vg|g ∈ G}.

Lemma 2.4 Let G ≤ Sym(V ), let M be a normal subgroup of G and let B be the set
of M-orbits in V . Then (vM)g = (vg)M for each vM ∈ B and g ∈ G. Moreover B is
a G-invariant partition of V , and if G is transitive on V then G acts transitively on
B, and all M-orbits in V have the same length.
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Proof Let vM ∈ B and g ∈ G. Then u ∈ (vM)g if and only if u = vmg for some m ∈
M . Now vmg = (vg)g

−1mg , and g−1mg runs through all the elements of M as m runs
through M . Thus (vM)g = (vg)M ∈ B, and hence B is a G-invariant partition of V .
Now assume that G is transitive on V . Then for vM,uM ∈ B, there exists g ∈ G such
that vg = u and hence such that (vM)g = (vg)M = uM and |vM | = |(vM)g| = |uM |.
This establishes the remaining assertions. �

Groups G,H acting on sets V,U respectively, are said to be permutationally iso-
morphic if there exist a group isomorphism θ : G −→ H and a bijection ξ : V −→ U

such that (ξ(v))θ(g) = ξ(vg) for all g ∈ G and v ∈ V .

2.4 Finite 2-homogeneous groups

Let G ≤ Sym(V ) with V finite. Then G is 2-homogeneous if it is transitive on the set
of 2-element subsets of V , and G is 2-transitive if it is transitive on the set of ordered
pairs of distinct elements of V . Such groups are known to be almost simple or affine,
defined as follows.

The group G is almost simple if it has a unique minimal normal subgroup
Soc(G) which is a nonabelian simple group. Equivalently, G is almost simple if
T ≤ G ≤ Aut(T ) for some nonabelian simple group T (since an almost simple group
G can be embedded as a subgroup of Aut(Soc(G)) containing the group of inner
automorphisms).

The group G is affine if it has an elementary abelian regular normal subgroup T ∼=
Z

R
p , for some prime p. In this case we may identify V with an R-dimensional vector

space over a field of order p such that G becomes a group of affine transformations,
namely G = T �G0 ≤ AGL(R,p) with T the group of translations (tx : v −→ v+x,
for all x, v ∈ V ) and G0 ≤ GL(R,p), the stabiliser of the zero-vector 0 ∈ V . The
finite 2-homogeneous but not 2-transitive groups were characterised by Kantor [18]
(or see [16, pp. 368–369]) as 1-dimensional affine groups, while the finite affine 2-
transitive groups were classified by Hering and are listed in [19] and [22, Appendix],
and the finite almost simple 2-transitive groups are described in [9, Section 7.7].
These classifications rely on the finite simple group classification, and we state the
parts of the classification that we will use in this paper below.

Theorem 2.5 Let G be a finite 2-homogeneous permutation group on a set V with
|V | = n. Then G has a unique minimal normal subgroup T and one of the following
holds:
(1) T is nonabelian simple and either T is 2-transitive, or T = PSL(2,8), n = 28

and G = P�L(2,8) is 2-transitive.
(2) T = Z

R
p for some prime p and integer R ≥ 1, and G = T � G0 is affine, with

G0 ≤ �L(a, q) where qa = pR . Moreover, either G0 has 2-orbits X and −X in
V \ {0}, or G is 2-transitive and G0 is one of the following (note that the symbol
“◦” denotes a central product):
(a) a = 1 and G0 ≤ �L(1, q),
(b) a ≥ 2 and �L(a, q) ≥ G0 � SL(a, q),
(c) a = 2l ≥ 4 and Zq−1 ◦ �Sp(a, q) ≥ G0 � Sp(a, q),
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(d) a = 6, q even and Zq−1 × Aut(G2(q)) ≥ G0 � G2(q)′,
(e) a = 4, q = 2 and G0 ∼= A6 or A7,
(f) a = 6, q = 3 and G0 = SL(2,13),
(g) a = 2, q = p = 5,7,11 or 23 and G0 � SL(2,3), or a = 2, q = 9,11,19,29

or 59 and G0 � SL(2,5),
(h) a = 4, q = 3 and G0 has a normal extraspecial subgroup E of order 25, and

G0/E is isomorphic to a subgroup of S5.

Remark 2.6 In Theorem 2.5(2), G preserves on V the structure of an a-dimensional
vector space over the finite field Fq . Thus G0 ≤ �L(a, q) and V = F

a
q = V (a, q)

where qa = pR with a ≥ 1. Also in cases (a)-(h), G0 is transitive on the set of nonzero
vectors in V , denoted as V ∗.

2.5 Orbitals

Now let G ≤ Sym(V ) be transitive on V . Then G acts faithfully on the set V × V

via the action (v1, v2)
g = (v

g

1 , v
g

2 ) where v1, v2 ∈ V and g ∈ G. The orbits of G on
V × V are known as the orbitals of G in V (or simply the G-orbitals). In particular
{(v, v) | v ∈ V } is a G-orbital, called the trivial orbital, and all others are called non-
trivial. Furthermore for each G-orbital O = (u, v)G, the G-orbital O∗ = (v,u)G is
called the paired orbital of O; if O = O∗ then O is said to be self-paired.

Lemma 2.7 Let G ≤ Sym(V ) with a transitive normal subgroup M . Then G leaves
invariant the set of nontrivial M-orbitals, and the set of self-paired, non-trivial M-
orbitals.

Proof Let O = (u, v)M be a nontrivial M-orbital and g ∈ G. Since G acts faith-
fully on V × V , it follows from Lemma 2.4 that Og = ((u, v)g)M = (ug, vg)M ,
which is also a nontrivial M-orbital. Moreover, if O∗ = O then (Og)∗ = (vg, ug)M =
((v,u)M)g = ((u, v)M)g = Og . �

For a transitive subgroup G ≤ Sym(V ), to each non-trivial G-orbital O we as-
sociate a graph �(O) = (V ,E(O)) where E(O) = {{x, y} | (x, y) ∈ O ∪ O∗}. Then
�(O) = �(O∗), �(O) has arc set O ∪ O∗, is G-edge-transitive for any O, and is G-
arc-transitive if and only if O = O∗. Moreover the converse holds (see for example
[28, Theorem 2.1 (b)] or [32, 7.53 on p. 59]).

Lemma 2.8 For a transitive subgroup G ≤ Sym(V ) and graph � = (V ,E) with
E �= ∅,

(1) � is G-arc-transitive if and only if E = E(O) for some non-trivial self-paired
G-orbital O, and

(2) � is G-edge-transitive, but not G-arc-transitive, if and only if E = E(O) for
some non-trivial G-orbital O such that O �= O∗.

For G, O as above, and for a point v ∈ V , the set O(v) := {u | (v,u) ∈ O} is a Gv-
orbit in V \ {v}, and each such Gv-orbit arises as O(v) for some non-trivial G-orbital
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O (see [9, Section 3.2]). Moreover, O(v) ∪ O∗(v) is the set �(v) of vertices adjacent
to v in the graph � = �(O).

2.6 Affine Cayley graphs

Most of our effort is directed towards considering affine subgroups G ≤ Sym(V )

with regular minimal normal subgroup T = Z
R
p , and consequently (see Lemma 2.3)

the graphs �(O) are Cayley graphs for T . We interpret V as a finite vector space over
some extension field Fq of Fp and T as the translation group T = {tx |x ∈ V } (written
additively) of V , where tx : v −→ v + x. Thus G = T � G0 with G0 ≤ �L(a, q), the
stabiliser of the zero vector 0. If G ≤ Aut(�) with � = (V ,E), then � = Cay(T ,S)

for some G0-invariant S ⊂ T with S = −S. We bring together the orbital description
of edge-transitive Cayley graphs and their definition as Cayley graphs.

Lemma 2.9 Let G = T � G0 be an affine transitive permutation group on the vector
space V = V (a, q) where T = Z

R
p , G0 ≤ �L(a, q) and qa = pR . Let � = Cay(V ,S)

be a Cayley graph on V (with S = −S) and suppose that G ≤ Aut(�). Then the
following hold.

(1) � is G-arc-transitive if and only if S = O(0) for a non-trivial self-paired G-
orbital O.

(2) � is G-edge-transitive but not G-arc-transitive if and only if S = O(0) ∪ O∗(0),
for a non-trivial G-orbital O with O �= O∗. Moreover O∗(0) = − O(0), and in
this case q is odd.

Proof The ‘connecting set’ S of the Cayley graph � = Cay(V ,S) is precisely the set
of vertices adjacent to the zero-vector 0. Part 1 then follows from Lemma 2.1 and
the remarks following. For part 2, recall from Lemma 2.8(2) that � = Cay(V ,S) is
G-edge-transitive but not G-arc-transitive if and only if E� = E(O) for some non-
trivial G-orbital O with O �= O∗, that is to say, if and only if S = O(0) ∪ O∗(0).
Let s ∈ O(0) and consider the action of the translation t−s ∈ T . Now (0, s)t−s =
(−s,0) ∈ O and so (0,−s) ∈ O∗. Thus O∗(0) = (−s)G0 = −(sG0) = − O(0). Since
in this case O(0) �= O∗(0) it follows that q is odd. �

3 Reduction to the affine case

Throughout the rest of the paper we assume that (Kn, E ) is a (G,M)-homogeneous
edge-transitive factorisation. We write Kn = (V ,E), and E = {E1, . . . ,Ek} with cor-
responding factors �i = (V ,Ei), for 1 ≤ i ≤ k.

Lemma 3.1 The group G is 2-homogeneous on V .

Proof Let {x, y} and {u,v} be two-element subsets of V . Since G is transitive on
E , some element of G maps {x, y} to a pair {x′, y′} lying in the same part of E as
{u,v}, say Ei . Then since �i is M-edge-transitive, some element of M maps {x′, y′}
to {u,v}. Thus G is 2-homogeneous. �
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If (Kn, E ) is (G,M)-homogeneous arc-transitive then M has exactly k non-
trivial orbitals, each self-paired, and they may be labeled so that Ei = E(Oi ) and
�i = �(Oi ) for i = 1, . . . , k. It is convenient to have a standard notation for the cor-
responding edge-partition.

Definition 3.2 Suppose that a transitive subgroup M ≤ Sym(V ) has k non-trivial
orbitals O1, . . . , Ok and each is self-paired. The M-edge-partition is the partition
E (M) := {E(Oi ) | 1 ≤ i ≤ k}.

Before continuing with the general discussion we make some comments about
almost simple 2-transitive groups G. The simple normal subgroup T of G is 2-
transitive except when G = Ree(3) is the smallest Ree group acting on 28 points
and T = G′ ∼= PSL(2,8) (see [6] or [9, p. 245–253]). This exceptional group gives
rise to a homogeneous arc-transitive factorisation of index 3.

Definition 3.3 Let G = Ree(3) acting 2-transitively on a set V of size 28 and let M =
G′ ∼= PSL(2,8). There are exactly three non-trivial M-orbitals O1, O2, O3, each self-
paired, and these are permuted transitively by G. Let �i := �(Oi ) = (V ,E(Oi ))

for i = 1,2,3 (as defined before Lemma 2.8), and let ERee(28,3) = E (M). Then
(K28, ERee(28,3)) is a (G,M)-homogeneous arc-transitive factorisation.

We note that each of the factors �(Oi ) is M-arc-transitive of valency 9. Moreover,
using MAGMA [8] it is simple to check that �(Oi ) has automorphism group M and is
not a Cayley graph. We prove below that this is the only homogeneous edge-transitive
factorisation of a complete graph with the group G almost simple, and hence also the
only example for which the factors are not Cayley graphs. We also prove the first
assertion of Theorem 1.1.

Proposition 3.4 Replacing (G,M) if necessary by slightly larger groups, we may as-
sume that G is 2-transitive on V , M � G, and each �i is M-arc-transitive. Moreover,
either G,M,n, E are as in Definition 3.3, or

(1) G = T � G0 and M = T � M0 are affine with T = Z
R
p , M0 � G0 ≤ �L(a, q),

φ ∈ M0 (where φ : v −→ −v, for all v ∈ V ), n = qa , and V = V (a, q), an
a-dimensional vector space over Fq ;

(2) E = E (M) as defined in Definition 3.2.

Proof Since M fixes each of the Ei setwise, M is contained in the kernel of the
G-action on E . Replacing M if necessary by this kernel we may assume from now
on that M � G. Since k ≥ 2, M is not transitive on the arcs of Kn, and so M is
not 2-transitive. By Lemma 3.1 the group G is 2-homogeneous on V , and hence by
Theorem 2.5, either G is affine or G is almost simple and 2-transitive. In either case G

has a unique minimal normal subgroup T , and so we must have T ≤ M . In particular
T is not 2-transitive.

In the almost simple case, as discussed above, the simple normal subgroup T of G

is 2-transitive, except when G = Ree(3) on 28 points and T = G′ ∼= PSL(2,8). Thus
in this case G,M,n are as in Definition 3.3. Also as the group PSL(2,8) has three
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non-trivial orbitals, each self-paired, and permuted transitively by G, it follows from
Lemma 2.8 that k = 3, E is as in Definition 3.3, and each �i is M-arc-transitive. Thus
the result is proved in this case.

We assume from now on that G is affine, so G = T � G0 with T = Z
R
p , G0 ≤

�L(a, q), where n = qa = pR , and V is identified with an a-dimensional vector
space V (a, q) over Fq . Since T ≤ M � G, we have M = T � M0 and M0 � G0.
As discussed in Subsection 2.2, each �i = Cay(T ,Si) for some M0-invariant sub-
set Si ⊂ T with Si = −Si . By assumption �i is M-edge-transitive and so, by Lem-
nma 2.9, there is a non-trivial M-orbital Oi such that Si = Oi (0) if �i is M-arc-
transitive, or Si = Oi (0) ∪ O∗

i (0) with Oi �= O∗
i if �i is not M-arc-transitive. In the

latter case O∗
i (0) = −Oi (0), and in either case Ei = E(Oi ) and �i = �(Oi ). Now the

transformation φ ∈ GL(a, q) fixes 0 and interchanges Oi (0) and −Oi (0) = O∗
i (0).

Hence φ fixes E(Oi ) for each i and also φ centralises G. Thus the group 〈G,φ〉 is
2-transitive on V and leaves E invariant, and its subgroup 〈M,φ〉 is normal and fixes
each Ei setwise. Replacing G,M by these groups we may therefore assume that
φ ∈ M0. This implies that M0 is transitive on Si for each i and hence, by Lemma 2.1,
each �i is M-arc-transitive and G is 2-transitive. Also each of the Oi (1 ≤ i ≤ k) is
self-paired and these are all of the non-trivial M-orbitals, so E = E (M). �

In the light of Proposition 3.4, we assume from now on that G is an affine 2-
transitive permutation group on V that contains the map φ : v −→ −v (for v ∈ V ).
Our broad strategy is to consider each of the possibilities for G, as given in Theo-
rem 2.5(2), examine each of its normal subgroups M that is not 2-homogeneous and
contains φ, and determine the structure of the M-arc-transitive factors. Thus in the
remainder of the paper we assume that V = V (a, q) where |V | = qa = pR with p

prime, and G,M satisfy the following condition.

Condition 3.5 G = T � G0, M = T � M0 with T = Z
R
p , M0 � G0 ≤ �L(a, q)

and φ ∈ M0.

Also M has k non-trivial orbitals O1, . . . , Ok , each self-paired, and such that
Ei = E(Oi ), and �i = �(Oi ) = Cay(V ,Si) with Si = Oi (0), for i = 1, . . . , k. Note
that we identify the vertex set V with T , and without loss of generality we will as-
sume that 1 ∈ S1. Thus (Kn, E ) = (KpR , E (M)), where E (M) = {E(O1), . . .E(Ok)}
as in Definition 3.2, and this is a (G,M)-homogeneous factorisation if and only if
G acts transitively on {O1, . . . , Ok} (with the action described in Lemma 2.7), or
equivalently G0 acts transitively on {S1, . . . , Sk}.

4 The one-dimensional affine case

This is case (a) of Theorem 2.5(2). The group G is as in Condition 3.5 with a = 1.
In this case we identify V with the finite field Fq of order q = pR . We introduce
generators for �L(1, q) as follows. Choose ω to be a primitive element of Fq and
denote by ω̂ the corresponding scalar multiplication x −→ xω (for x ∈ V ). Also let
α denote the Frobenius automorphism of Fq , that is, α : x −→ xp . Then ω̂ generates
the multiplicative group GL(1, q), �L(1,pR) = 〈ω̂, α〉 and A�L(1, q) = T � 〈ω̂, α〉.
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Although it is necessary to distinguish elements of GL(1, q) from elements of V ,
it is helpful to have similar notation for certain subsets of V . For i ≥ 1 and i | (q −1),
we shall use 〈ωi〉 to denote the subset {1,ωi,ω2i , . . . ,ω((q−1)/i)−i} of V . Also, for
1,−1 ∈ Fq , we will use ̂1 and ̂−1 to denote the corresponding scalar multiplications
in GL(1, q).

4.1 Generalised Paley graphs and cyclotomic factorisations

First we give a family of examples generalising the homogeneous factorisation con-
sisting of the edge sets of a Paley graph and its complement.

Definition 4.1 (Generalised Paley graph and cyclotomic partition) Let k be a di-
visor of q − 1 such that k ≥ 2 and either q or q−1

k
is even. Then the graph

GPaley(q,
q−1

k
) = Cay(V , 〈ωk〉) is called a generalised Paley graph on V . The corre-

sponding cyclotomic partition of Kq is the partition Cyc(q, k) = {E1, . . . ,Ek} where
Ei = {{u,v} | v − u ∈ ωi−1〈ωk〉} for 1 ≤ i ≤ k.

Note that the conditions on k imply that 〈ωk〉 = −〈ωk〉 and so the graph
GPaley(q,

q−1
k

) is well defined as an undirected Cayley graph. If k = 2 then

GPaley(q,
q−1

2 ) is the Paley graph which is arc-transitive and self-complementary,
with automorphism group T � 〈ω̂2, α〉 (see for example [27]). In Proposition 4.2 we
prove that (Kq,Cyc(q, k)) is a homogeneous factorisation, called a cyclotomic fac-
torisation. These factorisations are closely related to cyclotomic association schemes,
see for example [5, Section 2.10A].

Proposition 4.2 Let k be a divisor of q − 1 such that k ≥ 2 and either q or q−1
k

is
even. Let G = T � 〈ω̂〉 and M = T � 〈ω̂k〉.
(1) Then GPaley(q,

q−1
k

) is an undirected, M-arc-transitive graph of valency q−1
k

.
(2) The pair (Kq,Cyc(q, k)) is a (G,M)-homogeneous arc-transitive factorisation

of index k, and each factor is isomorphic to GPaley(q,
q−1

k
).

Proof Part 1. The ‘connecting set’ 〈ωk〉 is an orbit for M0 = 〈ω̂k〉 of size q−1
k

, and
hence is equal to O(0) for a non-trivial M-orbital O. As discussed above O(0) =
− O(0) and so, by Lemma 2.9, GPaley(q,

q−1
k

) is M-arc-transitive of valency q−1
k

.
Part 2. The group M is transitive on V and the sets Si := ωi−1〈ωk〉, where

1 ≤ i ≤ k, are the M0-orbits in V \ {0}. Since 〈ωk〉 = −〈ωk〉, it follows that, for each
i, Si = −Si and hence Si = Oi (0) for some self-paired non-trivial M-orbital Oi .
Then by Lemmas 2.8 and 2.9, Ei = E(Oi ), and �(Oi ) = (V ,Ei) is M-arc-transitive
for each i. Moreover Cyc(q, k) is a partition of EKq , so (Kq,Cyc(q, k)) is a factori-
sation. Finally, since ω̂ ∈ G0 maps Si to Si+1 for i = 1, . . . , k − 1, and Sk to S1, it
follows from Lemma 2.4, and the fact that M � G, that G permutes the non-trivial
M-orbitals transitively. Hence Cyc(q, k) is G-invariant, (Kq,Cyc(q, k)) is (G,M)-
homogeneous, and G induces isomorphisms between the k factors �(Oi ) so all are
M-arc-transitive and isomorphic to �(O1) = GPaley(q,

q−1
k

). �
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Finally in this subsection we characterise the examples arising from any affine
2-transitive group G (not only the one-dimensional groups) in the case where M0 is
contained in the scalar subgroup of �L(a, q).

Lemma 4.3 Let (Kqa , E ) be an (G,M)-homogeneous arc transitive factorisation
with G,M as in Condition 3.5, and suppose that φ ∈ M0 ≤ Z(GL(a, q)). Then E =
Cyc(qa, k) and we may replace G by a 2-transitive one-dimensional affine group so
that Theorem 1.1(2)(a) holds.

Proof Now M0 ≤ Z(GL(a, q)) ≤ GL(1, qa). Temporarily identify V with Fqa , let
ω be a primitive element of Fqa , and use the notation introduced above. Then
M0 = 〈ω̂k〉 < 〈ω̂〉 = GL(1, qa), where k divides qa − 1 and since φ ∈ M0, either q or
qa−1

k
is even. Moreover the M0 orbits in V \ {0} are the sets Si = −Si = ωi−1〈ωk〉,

for i = 1, . . . , k. Hence E is the cyclotomic partition Cyc(qa, k). If H = T � 〈ω̂〉
then M � H ≤ A�L(1, qa), and as in the proof of Proposition 4.2, (Kqa , E ) is an
(H,M)-homogeneous arc-transitive factorisation. Replacing G by H we have that
Theorem 1.1(2)(a) holds. �

4.2 Standard parameters for one-dimensional affine groups

Foulser [10] gives a standard generating set for each subgroup of �L(1, q) = 〈ω̂, α〉
that facilitates the checking of various important properties of the subgroups.

Lemma 4.4 [10, Lemma 4.1] Let H ≤ �L(1,pR) = 〈ω̂, α〉. Then there exist unique
integers d , e and s such that H = 〈ω̂d , ω̂eαs〉, and the following all hold:

(1) d > 0 and d | (pR − 1);
(2) s > 0 and s | R;
(3) 0 ≤ e < d and e(pR − 1)/(ps − 1) ≡ 0 (mod d).

Definition 4.5 (Standard Form) If H = 〈ω̂d , ω̂eαs〉 ≤ �L(1,pR) and the integers
d, e and s satisfy conditions (1)-(3) of Lemma 4.4, then the representation H =
〈ω̂d , ω̂eαs〉 is said to be in standard form with standard parameters (d, e, s).

Remark 4.6 In subsequent results (for example, see Lemmas 4.7-4.10), we will al-
ways work with subgroups of �L(1,pR) given in standard form. To emphasise this
we give an example: if p = 3 then H = 〈ω̂3, α〉 is not expressed in standard form
since condition (1) of Lemma 4.4 fails. The standard form for this subgroup is
H = 〈ω̂, α〉 and by Lemma 4.4, we know that this expression in standard form is
unique.

First we give necessary and sufficient conditions on the standard parameters of
a subgroup for it to be transitive on V ∗ := V \ {0}. This criteria may be found in
[11, Section 3]. We provide a proof as we need the details later for determining the
possibilities for M0.
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Lemma 4.7 (Transitivity) Suppose G0 = 〈ω̂d , ω̂eαs〉 ≤ �L(1,pR) is in standard
form. Then G0 is transitive on V ∗ if and only if either d = 1 (so e = 0 ), or both
of the following hold:
1. e > 0, d divides e((pds − 1)/(ps − 1)), and
2. if 1 < d ′ < d , then d does not divide e((pd ′s − 1)/(ps − 1)).

Proof The set of orbits of H := 〈ω̂d〉 in V ∗ is 
 := {〈ωd〉,ω〈ωd〉, . . . ,ωd−1〈ωd〉},
and τ := ω̂eαs induces a permutation of 
. Moreover, G0 is transitive on V ∗ if and
only if 〈τ 〉 is transitive on 
. (To determine the image of ωi〈ωd〉 under τ , we simply
need to find the “coset” of 〈ωd〉 containing (ωi)τ .)

If e = 0 then τ = αs , and since (ω̂d)α
s = ω̂dps ∈ 〈ω̂d〉, it follows that τ acts triv-

ially on 
. Thus in this case G0 is transitive on V ∗ if and only if d = 1. From now
on suppose that e �= 0. Then we have:

〈τ 〉 is transitive on 
 ⇐⇒ (1) τd fixes 〈ωd〉, and

(2) if 1 ≤ d ′ < d , then τd ′
does not fix 〈ωd〉

⇐⇒ (1) ωeps((pds−1)/(ps−1)) ∈ 〈ωd〉, and

(2) if 1 ≤ d ′ < d , then ωeps((pd′s−1)/(ps−1)) /∈ 〈ωd〉
⇐⇒ (1) d divides eps((pds − 1)/(ps − 1)), and

(2) if 1 ≤ d ′ < d , then d does not divide eps

(

pd′s−1
ps−1

)

.

Since d | (pR − 1) by Definition 4.5, it follows that gcd(p, d) = 1. So

〈τ 〉 is transitive on 
 ⇐⇒ (1) d divides e((pds − 1)/(ps − 1)), and

(2) if 1 ≤ d ′ < d , then d does not divide e

(

pd′s−1
ps−1

)

.

�

We need to study normal subgroups M0 in standard form of a given G0 in standard
form. Our next tasks are to give criteria for containment of one subgroup in another,
and for normality.

Lemma 4.8 (Containment) Suppose M0 = 〈ω̂d1 , ω̂e1αs1〉 and G0 = 〈ω̂d , ω̂e, α〉 are
subgroups of �L(1,pR) expressed in standard form. Then M0 is a subgroup of G0 if
and only if

(1) d | d1,
(2) s | s1,
(3) and d | (e (ps1 −1)

(ps−1)
− e1).

Proof Suppose M0 ≤ G0. Then ω̂d1 and ω̂e1αs1 are elements of G0. Let B = 〈ω̂〉.
Then G0 ∩ B = 〈ω̂d〉 contains M0 ∩ B = 〈ω̂d1〉, so |〈ω̂d1〉| divides |〈ω̂d〉| and hence
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d | d1. Also, we have M0/(M0 ∩ B) ∼= M0B/B � G0B/B ∼= G0/(G0 ∩ B). Since
M0/(M0 ∩ B) = 〈〈ω̂d1〉ω̂e1αs1〉 ∼= ZR/s1 and G0/(G0 ∩ B) = 〈〈ω̂d〉ω̂eαs〉 ∼= ZR/s , it
follows that s | s1.

Given that s divides s1 (as shown above), we have (ω̂eαs)s1/s ∈ G0. Now by [11,
Lemma 2.1], for each i ≥ 1, (ω̂eαs)i = ω̂J αsi where J ≡ e(psi − 1)/(ps − 1) (mod
pR − 1), and hence

(ω̂eαs)s1/s = ω̂J ′
αs1 ,

where J ′ = e(ps1 − 1)/(ps − 1). Writing

(ω̂eαs)s1/s = ω̂J ′
αs1 = ω̂J ′

ω̂−e1 ω̂e1αs1,

and since (ω̂eαs)s1/s , ω̂e1αs1 ∈ G0, we see that ω̂J ′−e1 ∈ G0 and this is true if and
only if d | (J ′ − e1).

Conversely, suppose the three conditions of the lemma are satisfied. Then since
d | d1, there exists an integer j such that (ω̂d)j = ω̂d1 . Thus ω̂d1 ∈ G0. Now s | s1

and d | (e
(ps1 −1)
(ps−1)

− e1). As above, by [11, Lemma 2.1], we get (ω̂eαs)s1/s ∈ G0.
However, we know that

(ω̂eαs)s1/s = ω̂J ′
αs1 = ω̂J ′−e1 ω̂e1αs1 ∈ G0,

where J ′ − e1 = (e
(ps1 −1)
(ps−1)

− e1). Since d | (J ′ − e1), we have ω̂J ′−e1 ∈ G0, forcing
ω̂e1αs1 to be in G0. �

Lemma 4.9 (Normality) Suppose M0 = 〈ω̂d1 , ω̂e1αs1〉 is in standard form and is a
subgroup of G0 = 〈ω̂d , ω̂eαs〉 (so the conditions of Lemma 4.8 hold). Then M0 is
normal in G0 if and only if

(1) d1 | d(ps1 − 1) and
(2) d1 | (e1(p

s − 1) + eps(pR−s1 − 1)).

Proof Now M0 is normal in G0 if and only if (ω̂d1)g ∈ M0 and (ω̂e1αs1)g ∈ M0 for
all g ∈ G0. Since 〈ω̂d1〉 � G0 whenever M0 = 〈ω̂d1 , ω̂e1αs1〉 is a subgroup of G0,
it follows that M0 is normal in G0 if and only if (ω̂e1αs1)g ∈ M0 for all g ∈ G0.
Furthermore, since G0 = 〈ω̂d , ω̂eαs〉, we have that M0 is normal in G0 if and only if
(ω̂e1αs1)ω̂

d ∈ M0 and (ω̂e1αs1)ω̂
eαs ∈ M0. Now

(ω̂e1αs1)ω̂
d = ω̂−dω̂e1αs1 ω̂d = ω̂e1−dαs1 ω̂d = ω̂e1αs1 ω̂d−dps1

.

Thus

(ω̂e1αs1)ω̂
d ∈ M0 ⇐⇒ ω̂d−dps1 ∈ M0

⇐⇒ ω̂d−dps1 ∈ M0 ∩ 〈ω̂〉 = 〈ω̂d1〉
⇐⇒ d1 | d(ps1 − 1).
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Next consider (ω̂e1αs1)ω̂
eαs

. Then

(ω̂e1αs1)ω̂
eαs = (ω̂e1−eαs1 ω̂e)α

s = ω̂(e1−e)ps

(αs1 ω̂e)α
s = ω̂(e1−e)ps

αs1 ω̂eps

= ω̂(e1−e)ps

αs1 ω̂eps

(αs1)−1αs1 = ω̂(e1−e)ps

(ω̂eps

)(α
s1 )−1

αs1

= ω̂(e1−e)ps

ω̂epR−s1+s

αs1 = ω̂(e1−e)ps+epR−s1+s−e1(ω̂e1αs1).

Hence (ω̂e1αs1)ω̂
eαs ∈ M0 if and only if ω̂(e1−e)ps+epR−s1+s−e1 ∈ M0, and

ω̂(e1−e)ps+epR−s1+s−e1 ∈ M0 ⇐⇒ ω̂(e1−e)ps+epR−s1+s−e1 ∈ M0 ∩ 〈ω̂〉
⇐⇒ d1 | ((e1 − e)ps + epR−s1+s − e1)

⇐⇒ d1 | (e1(p
s − 1) + eps(pR−s1 − 1)).

Thus M0 is normal in G0 if and only if (1) d1 | d(ps1 − 1) and (2) d1 | (e1(p
s − 1) +

eps(pR−s1 − 1)). �

Next, for M0 normal in a subgroup G0, and G0 transitive on V ∗, we determine the
number of M0-orbits in terms its parameters.

Lemma 4.10 (Orbit Length) Let M0 = 〈ω̂d1, ω̂e1αs1〉 and G0 = 〈ω̂d , ω̂eαs〉 be sub-
groups of �L(1,pR) expressed in standard form. Suppose also that M0 is a normal
subgroup of G0 and G0 is transitive on V ∗. Then M0 has t0 = d1/c orbits of equal
length (pR − 1)/t0 in V ∗, where if e1 = 0 then c = 1; and if e1 �= 0, then c is deter-
mined by:
(1) d1 | e1(p

cs1 − 1)/(ps1 − 1) and
(2) d1 � e1(p

c′s1 − 1)/(ps1 − 1) for c′ < c.

Note that conditions (1) and (2) above certainly define a positive integer c ≤ R
s1

,

since by Lemma 4.4 (3) applied to M0, d1 divides e1
pR−1
ps1−1 .

Proof Suppose first that e1 �= 0.The set of 〈ω̂d1〉-orbits in V ∗ is 
1 := {〈ωd1〉,ω〈ωd1〉,
. . . ,ωd1−1〈ωd1〉}, each orbit having length (pR − 1)/d1. Now 〈ω̂d1〉 is characteristic
in 〈ω̂d〉 (since any subgroup of a cyclic group is characteristic), and since 〈ω̂d〉 � G0,
we have 〈ω̂d1〉 � G0. Thus 
1 is invariant under G0 and G0 is transitive on 
1. In
this action the normal subgroup M0 of G0 therefore has orbits of equal length in 
1

(see [33, Theorem 10.3]). Moreover, since 〈ω̂d1〉 acts trivially on 
1, the group in-
duced by M0 on 
1 is equal to the group induced by 〈τ1〉, where τ1 := ω̂e1αs1 . Thus
the 〈τ1〉-orbits in 
1 have equal length c, where c | d1 and the M0-orbits in V ∗ have
equal length (pR − 1)c/d1. Hence the following conditions hold for c.

(1) τ c
1 fixes 〈ωd1〉 and

(2) if c′ < c, then τ c′
1 does not fix 〈ωd1〉.

Using similar arguments to those in the proof of Lemma 4.7,
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The M0-orbits in V ∗ are of equal length (pR − 1)c/d1 ⇐⇒ (1) d1 | e1
pcs1−1
ps1−1 , and

(2) d1 � e1
pc′s1 −1
ps1−1

for c′ < c.

As remarked before the proof, these conditions determine c uniquely. Now suppose
e1 = 0. Then α fixes each of the orbits of 〈ω̂d1〉 in V ∗ setwise, and hence M0 has
t0 = d1 orbits of equal length (pR − 1)/d1 in V ∗. �

4.3 Proof of Theorem 1.1 for the one-dimensional affine case

Recall that we have G,M as in Condition 3.5 with a = 1 and that we are assuming
that (Kq, E ) is a (G,M)-homogeneous arc-transitive factorisation, with factors �i =
Cay(V ,Si) = �(Oi ) where Si = Oi (0) = −Si for 1 ≤ i ≤ k. By Lemma 4.3, we may
assume that M0 �≤ GL(1, q) where n = q = pR .

Suppose that in standard form G0 = 〈ω̂d , ω̂eαs〉 and M0 = 〈ω̂d1 , ω̂e1αs1〉 with
standard parameters (d, e, s) and (d1, e1, s1) respectively. Since M0 �≤ GL(1, q), the
parameter s1 > 0.

Lemma 4.11 If e1 = 0 then d1 = k and E (M) = Cyc(q, k) as in Part 2(a) of Theo-
rem 1.1.

Proof If e1 = 0 then by Lemma 4.10 all M0-orbits in V ∗ have length q−1
d1

, and

hence k = d1 and the M0-orbits in V ∗ coincide with the orbits of 〈ω̂k〉. It follows
that E (M) = Cyc(q, k). �

Thus we may assume in addition that e1 �= 0. Now since G0 is transitive on V ∗,
M0 is normal in G0 and M0 has k orbits of length q−1

k
in V ∗, the parameters satisfy

a number of conditions given in the results of the previous subsection. We collect
these conditions below and prove that they are sufficient for the existence of such a
factorisation.

Condition 4.12 Let M0 = 〈ω̂d1, ω̂e1αs1〉 and G0 = 〈ω̂d , ω̂eαs〉 be subgroups of
�L(1,pR) = 〈ω̂, α〉. Then (G0,M0) is said to be admissible, and also the pair of
integer triples (d, e, s) and (d1, e1, s1) are said to be admissible, if 0 < s < R,0 <

s1 < R, 0 < e1 < d1, 0 ≤ e < d and the following all hold.
(1) d1 | (pR − 1),
(2) s1 | R,

(3) d1 | (e1
pR−1
ps1 −1 ),

(4) d | d1,
(5) s | s1,
(6) d | (e (ps1 −1)

(ps−1)
− e1),

(7) d1 | d(ps1 − 1) and
(8) d1 | (e1(p

s − 1) + eps(pR−s1 − 1)).
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Furthermore, either d = 1 and e = 0, or both of the next two conditions hold:
(9) e > 0, d divides e((pds − 1)/(ps − 1)), and
(10) if 1 < d ′ < d , then d does not divide e((pd ′s − 1)/(ps − 1)).

Finally, the positive integer c determined by the next two conditions is strictly less
than d1 :

(11) d1 | e1(p
cs1 − 1)/(ps1 − 1) and

(12) d1 � e1(p
c′s1 − 1)/(ps1 − 1) for c′ < c.

Theorem 4.13 Let M0 = 〈ω̂d1, ω̂e1αs1〉 and G0 = 〈ω̂d , ω̂eαs〉 be subgroups of
�L(1,pR) = 〈ω̂, α〉 acting on V ∗, such that M0 �≤ GL(1,pR) and φ ∈ M0 (where
φ : x −→ −x ). Further let G = T � G0 and M = T � M0 be corresponding sub-
groups of A�L(1,pR), where T = Z

R
p .

(1) If (KpR , E ) is a (G,M)-homogeneous arc-transitive factorisation of index k, and
if (d, e, s) and (d1, e1, s1) are standard parameters for G0,M0 respectively, then
(G0,M0) is admissible and k = d1/c where c is the integer determined by Con-
dition 4.12(11), (12).

(2) Conversely if (d, e, s), (d1, e1, s1) is admissible, then (KpR , E (M)) is a (G,M)-
homogeneous arc-transitive factorisation of index k = d1/c, where c is the inte-
ger determined by Condition 4.12(11), (12), and E (M) is as in Definition 3.2.

Proof Suppose that the hypotheses of Theorem 4.13(1) hold. We verify that all parts
of Condition 4.12 hold. Parts (1), (2), (3) follow from Lemma 4.4, parts (4), (5), (6)
from Lemma 4.8, parts (7), (8) from Lemma 4.9. By Lemma 4.7, either (d, e) = (1,0)

or conditions (9), (10) both hold. By Lemma 4.10, the integer c determined by Con-
dition 4.12(11), (12) divides d1 and d1/c is the number of M0-orbits in V ∗. Since this
number is k it follows that c < d1. Thus (G0,M0) is admissible and Part 1 is proved.

Now suppose that the pair (d, e, s), (d1, e1, s1) is admissible, as in Part 2. By
Condition 4.12(1)-(3), (d1, e1, s1) are standard generators for M0. To see that G0

is also in standard form, observe that Condition 4.12(1),(4) together imply that d |
(pR − 1), while Condition 4.12(2),(5) imply that s | R. Finally by Condition 4.12(6),
we have d | (e (ps1 −1)

(ps−1)
− e1), and hence (multiplying by (pR − 1)/(ps1 − 1), which is

an integer by (2))

d divides e(
pR − 1

ps − 1
) − e1(

pR − 1

ps1 − 1
).

Now Condition 4.12(3),(4) imply that d | e1(
pR−1
ps1 −1 ), and hence d | e(pR − 1)/(ps −

1). Thus the three conditions of Lemma 4.4 are satisfied, so G0 is in standard form.
Next, Condition 4.12(4)-(6) and Lemma 4.8 imply that M0 ≤ G0, and then Condi-
tion 4.12(7), (8) and Lemma 4.9 imply that M0 is a normal subgroup of G0. Since
either (d, e) = (1,0) or Condition 4.12(9), (10) hold, it follows from Lemma 4.7
that G0 is transitive on V ∗. Finally by Lemma 4.10, the integer c determined by
Condition 4.12(11), (12) divides d1 and k := d1/c is the number of M0-orbits in
V ∗. Since by assumption c < d1, we have k ≥ 2, and since φ ∈ M0 it follows from
Lemma 2.9 that for each non-trivial M-orbital O, the graph �(O) is M-arc-transitive
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and O is selfpaired. Since G0 is transitive on V ∗, it permutes the �(O) transitively by
Lemma 2.4. Thus (KpR , E (M)) is a (G,M)-homogeneous arc-transitive factorisation
with E (M) as in Definition 3.2. �

Corollary 4.14 Let (Kq, E ) be a (G,M)-homogeneous arc-transitive factorisation
of index k such that G ≤ A�L(1, q). Then Theorem 1.1(2)(a) or (b) holds.

Proof By Proposition 3.4, we may assume that φ ∈ M0. If M0 ≤ GL(1, q) then by
Lemma 4.3, Theorem 1.1(2)(a) holds, while if this is not the case then, by Theo-
rem 4.13, Theorem 1.1(2)(b) holds. �

4.4 Twisted cyclotomic factorisations

Even though Proposition 3.4 and Theorem 4.13 give a complete classification in
terms of admissible pairs of the (G,M)-homogeneous arc-transitive factorisations
of Kq with G a 2-transitive, one-dimensional affine group, it is not quite clear what
pairs of subgroups (G0,M0) are admissible according to Condition 4.12. An explicit
classification of these admissible pairs would yield an explicit classification of the
factorisations in Theorem 1.1(2)(b).

Problem 4.15 Give an explicit classification of admissible pairs (G0,M0).

We construct an infinite family of admissible pairs (G0,M0), demonstrating that
the set is non-vacuous. First we give the corresonding M-edge-partition. As before
q = pR and ω is a fixed primitive element of Fq .

Definition 4.16 (Twisted generalised Paley graphs and twisted cyclotomic partitions)
Let R be even, p ≡ 3 (mod 4), and let h be an odd divisor of p − 1. Then the graph

TGPaley(pR,
pR−1

2h
) = Cay(V , 〈ω4h〉 ∪ ω3h〈ω4h〉) is called a twisted generalised Pa-

ley graph on V . The corresponding twisted cyclotomic partition of Kq is the par-
tition TCyc(q,2h) = {E1, . . . ,E2h}, where Ei = {{u,v} | v − u ∈ ω2(i−1)(〈ω4h〉 ∪
ω3h〈ω4h〉)} for 1 ≤ i ≤ 2h.

Remark 4.17 Note that when p is odd and R is even, 8 | (pR −1), and hence 〈ω4h〉 =
−〈ω4h〉 so the graph TGPaley(q,

q−1
2h

) is well defined as an undirected Cayley graph.
In 2001, Peisert [27] classified all self-complementary arc-transitive graphs, prov-
ing that there are two infinite families of examples, namely the Paley graphs and

the graphs TGPaley(pR,
pR−1

2 ). Furthermore, he proved (see [27, Lemma 6.4]) that,
apart from the exceptional isomorphism GPaley(9,4) ∼= TGPaley(9,4), the graphs
TGPaley(q,

q−1
2 ) and GPaley(q,

q−1
2 ) are not isomorphic. We extend this result be-

low in Proposition 4.18 to show that the generalised Paley graphs and twisted gen-
eralised Paley graphs are not isomorphic apart from this one exception. (Note that,

by considering the order and valency of TGPaley(pR,
pR−1

2h
), the only generalised

Paley graph it could possibly be isomorphic to would be GPaley(pR,
pR−1

2h
).) Also

in Proposition 4.18 we prove that (Kq,TCyc(q,2h)) is a homogeneous factorisation,
called a twisted cyclotomic factorisation.
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Proposition 4.18 Let R be even, p ≡ 3 (mod 4), and let h be an odd divisor of

p − 1. Let � = TGPaley(pR,
pR−1

2h
), let G0 = 〈ω̂2, ω̂α〉 and M0 = 〈ω̂4h, ω̂hα〉, sub-

groups of �L(1,pR), with corresponding subgroups G = T � G0 and M = T � M0
of A�L(1,pR). Then

(1) M ≤ Aut(�) and � is M-arc-transitive; moreover either (R,p,h) = (2,3,1) or

the graphs � and GPaley(pR,
pR−1

2h
) are not isomorphic.

(2) (G0,M0) is admissible and the integer c determined in Condition 4.12(10), (11)
is 2.

(3) (KpR ,TCyc(q,2h)) is a (G,M)-homogeneous arc-transitive factorisation of in-
dex 2h, with all factors isomorphic to �.

Proof (1) By definition, � = Cay(V ,S), where S = 〈ω4h〉 ∪ ω3h〈ω4h〉. The M0-orbit
in V containing ω4h is equal to S, since ω̂hα maps ω4h to ω5hp = ω4hp.ωh(p−3).ω3h ∈
ω3h〈ω4h〉. Thus M ≤ Aut(�), and moreover, since M is transitive and M0 is transitive
on S, it follows that � is M-arc-transitive.

Suppose now that (R,p,h) �= (2,3,1), set �′ = GPaley(pr ,
pR−1

2h
), and suppose

that σ : �′ −→ � is an isomorphism. Now σ ∈ Sym(V ) and conjugates Aut(�′) to
Aut(�). Moreover, as � is arc-transitive we may assume that σ fixes 0 and ω4h. By
[25, Theorem 1.3], Aut(�′) = T � L0 ≤ A�L(1,pR), where L0 = 〈ω̂2h,α〉. This
implies in particular that σ ∈ NSym(V )(T ) = AGL(R,p), and since � fixes 0, that
σ ∈ GL(R,p). Suppose first that there exists a prime divisor r of pR − 1 such that r

does not divide pi − 1 for any i < R. Then the unique subgroup K ∼= Zr of L0 also
lies in M0 and acts irreducibly on V . It follows that σ lies in NGL(R,p)(K) = 〈ω̂, α〉
(see for example, [15, Satz II.7.3]). A straightforward computation shows that L0 is
normal in 〈ω̂, α〉, and so Lσ

0 = L0 contains M0, and this is a contradiction.
Thus no such prime exists and so, by a result of Zsigmondy [35], the even integer

R is 2 and p = 2a −1 for some a. By our assumption a ≥ 3. We claim that K := 〈ω̂4h〉
is the unique cyclic subgroup of L0 of index 4. Let K ′ be such a subgroup. Since
|L0 : 〈ω̂2h〉| = 2 it follows that |K ′ : (K ′ ∩ 〈ω̂2h〉)| ≤ 2 and hence K ′ contains the
unique subgroup K0 = 〈ω̂8h〉 of 〈ω̂2h〉 of order |K ′|

2 . Now L0/K0 ∼= D8 contains
K ′/K0 as a subgroup of order 2, so either K ′ = K and the claim holds, or K ′ =
〈ω̂8h,αω̂2i〉 for some i ∈ {0,1,2,3}. Suppose we are in the latter case. As K ′ is
abelian, ω̂8h = (ω̂8h)αω̂2i = ω̂8hp . Since 2h | (p − 1), this implies that p = 7 and
so h = 1 or 3 and K ′ ∼= Z12 or Z4 respectively. Now (αω̂2i )2 = ω̂2i(p+1) = ω̂16i ,
and hence αω̂2i has order 2 (if i = 0 or 3) or 6 (if i = 1 or 2). In either case K ′
is not cyclic, which is a contradiction. Thus the claim is proved. Therefore Kσ is
the unique cyclic subgroup of Lσ

0 of index 4. However the subgroup 〈ω̂4h〉 of M0 is
such a subgroup. Hence σ normalises 〈ω̂4h〉. Moreover, ω̂4h acts irreducibly on V ,
and the argument at the end of the previous paragraph leads to a contradiction in this
case also. Thus the graphs �,�′ are not isomorphic when (R,p,h) �= (2,3,1). This
completes the proof of Part 1.

(2) Using the facts that h is odd, R is even, h | (p − 1), and p ≡ 3 (mod 4), it
is straightforward to verify each part of Condition 4.12 with the triples (d, e, s) =
(2,1,1) and (d1, e1, s1) = (4h,h,1), and to determine that the positive integer c is
equal to 2.
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(3) By Theorem 4.13(2), noting that φ ∈ M0, it follows that (KpR , E (M)) is a
(G,M)-homogeneous arc-transitive factorisation. Moreover G0 is transitive on V ∗
and G normalises M , and hence G permutes the non-trivial M-orbitals transitively.
Thus each non-trivial M-orbital O is selfpaired and the subset O(0) is equal to
ω2iS for some i. It follows that E (M) = TCyc(q,2h) and the index of (KpR , E (M))

is 2h. �

To conclude, the generalised Paley graphs and twisted generalised Paley graphs
are not in general isomorphic, and hence the cyclotomic factorisations and twisted
cycloctomic factorisations form two infinite and different families of homogeneous
arc-transitive factorisations of complete graphs. It would be interesting to know if
there are any other infinite families of examples arising from the admissible pairs of
Condition 4.12.

5 The affine 2-transitive case

In this section we complete the proof of Theorem 1.1. By Proposition 3.4, we may as-
sume that G,M are affine groups as in Condition 3.5 with G acting 2-transitively on
V , and Oi ,Ei,�i = Cay(V ,Si) as given in the discussion following Condition 3.5.
Moreover, by Corollary 4.14 we may assume that G0 satisfies one of (b)-(h) of The-
orem 2.5(2), and by Lemma 4.3 we may assume that M0 is not contained in the
subgroup of scalars of �L(a, q). First we show that cases (b)-(f) do not lead to any
examples. Let Z := Z(GL(a, q)), and for a subgroup H of �L(a, q) let H denote
the subgroup HZ/Z of �L(a, q)/Z ∼= P�L(a, q).

Lemma 5.1 The group G0 satisfies one of (g) or (h) of Theorem 2.5(2).

Proof Assume that G0 satisfies one of (b) to (f) of Theorem 2.5(2). Since M0 �≤ Z it
follows that M0 is a non-trivial normal subgroup of G0. If case (b) holds for G0, then
one of (i) M0 contains PSL(a, q) so M0 contains SL(a, q), or (ii) (a, q) = (a,2) and
M0 contains Z3, or (iii) (a, q) = (a,3) and M0 contains the normal subgroup Q8 of
G0. In each of these cases M0 is transitive on V ∗ which is a contradiction. Similarly
if (c) or (d) holds then M0 contains Sp(a, q)′ or G2(q)′ (with a = 6) respectively,
and again M0 is transitive on V ∗, a contradiction. Finally in cases (e) and (f) the only
non-scalar normal subgroup M0 of G0 is G0 itself, again a contradiction. �

5.1 Case 2(g)

First we determine the possibilities for M0. Here V = V (2, q) and we let P1(V )

denote the set of 1-spaces of V . Assertions regarding numbers and lengths of orbits
of various subgroups on P1(V ) were checked using MAGMA [8].

Lemma 5.2 Suppose that G0 satisfies (g) of Theorem 2.5(2) and φ ∈ M0, M0 �≤ Z.
Then one of the following holds.
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Table 1 M0-orbits on the 1-spaces of V = V (2, q) where M0 is as in Lemma 5.2(2)

q M0 No. of M0-orbits Length of each M0-orbit

in P1(V ) in P1(V )

5 3 2

7 Q8 ≤ M0 ≤ Z ◦ Q8 2 4

11 3 4

23 6 4

7 2 4

11 M0 = PSL(2,3) 1 12

23 2 12

7,11, M0 = PGL(2,3) 1 |P1(V )|
23

(1) SL(2,5) ≤ M0 � G0 ≤ N := N�L(2,q)(SL(2,5)), M0 is transitive on P1(V ), and
q = 9,19,29 or 59. Moreover, either G0 = M0 ∼= A5, or q = 9 and G0 ∼= S5.

(2) Q8 ≤ M0 � G0 ≤ N := N�L(2,q)(SL(2,3)), and q = 5,7,11 or 23. Moreover,
either M0 ≤ Z ◦ Q8, or q �= 5 and M0 ≥ SL(2,3); the M0-orbits in P1(V )

are described in Table 1. Also either G0 ∼= PGL(2,3), or q = 5,11 and G0 ∼=
PSL(2,3).

Proof (1) Suppose first that SL(2,5) � G0 ≤ �L(2, q) with q = 9,11,19,29 or 59.
Then G0 ≤ N := N�L(2,q)(SL(2,5)). and A5 ∼= PSL(2,5) � G0 ≤ N . By [31, p. 417
(Ex. 7)], the subgroup A5 is maximal in PSL(2, q) for each of these values of q , and
there are two conjugacy classes of such subgroups interchanged by PGL(2, q). Thus
N = G0 = A5 for q = 11,19,29 or 59. For q = 9, N ∼= S5. Since M0 is a non-trivial
normal subgroup of G0, M0 must contain SL(2,5). In particular, M0 is transitive on
P1(V ). If q = 11 then SL(2,5) is transitive on V ∗ and hence q �= 11.

(2) Now suppose that SL(2,3) � G0 ≤ �L(2, q) with q = 5,7,11 or 23. Then the
group G0 ≤ N := N�L(2,q)(SL(2,3)). By [31, Theorem 6.26(ii)], it follows that N =
PGL(2,3) ∼= S4, and so either G0 = PGL(2,3), or q = 5,11 and G0 = PSL(2,3)

(since PSL(2,3) is transitive on the P1(V ) only for q = 5 or 11). Since M0 is a non-
trivial normal subgroup of G0, M0 must contain Q8 and hence either M0 ≤ Z ◦ Q8
or SL(2,3) ≤ M0. For each possibility for M0, its orbits in P1(V ) were computed
using MAGMA and the results are given in Table 1. In the case where q = 5 and
M0 ≥ SL(2,3), the group M0 is transitive on V ∗, which is not allowed. Thus for
q = 5, we can only have Q8 ≤ M0 ≤ Z ◦ Q8. �

Although the information in Table 1 does not tell us much about the number of
M0-orbits in V ∗, it is useful in enabling us to see (almost directly) if the resulting
M-arc-transitive factors are connected.

Corollary 5.3 If G0,M0 are as in Lemma 5.2, then all of the �i = Cay(V ,Si) are
connected.
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Proof By Lemma 5.2, each M0-orbit in P1(V ) has size at least two, and so each
M0-orbit in V ∗ contains a basis for V = V (2, q). It follows that the Cayley graphs
�i = Cay(V ,Si) are connected. �

Using MAGMA [8], we constructed explicitly all the possibilities for M0 in
Lemma 5.2(1), and in each line of Table 1, and we computed the number k of M0-
orbits in V ∗. Also, for each group M = T � M0 we constructed the M-arc-transitive
graph � := �(O), where O is the (selfpaired) M-orbital containing (0, v) for a fixed
v ∈ V ∗, and we computed Aut(�). The results are given in Tables 2 and 3. Note
that O is selfpaired since φ ∈ M0, and the graph � has valency (q2 − 1)/k = |O(0)|.
Also, since M0 is normal in G0 and G0 is transitive on V ∗, (Kq2 , E (M)) is a (G,M)-
homogeneous arc-transitive factorisation with all factors isomorphic to �. We make a
formal definition of this graph � as G(q2, k) in Definition 5.4, and a formal statement
in Proposition 5.5 of the classification of this family of factorisations.

Definition 5.4 (The graph G(q2, k)) Let M = T � M0 ≤ A�L(2, q) be an affine
permutation group on V = V (2, q) such that M0 is one of the groups listed in Tables 2
and 3. Let v be a fixed element of V ∗ = V \{0}, let S := vM0 , and let k := (q2 −1)/|S|
(the number of M0-orbits in V ∗). Then G(q2, k) is defined as Cay(V ,S).

Proposition 5.5 Let (Kq2 , E ) be a (G,M)-homogeneous arc-transitive factorisation
of index k such that G = T �G0, with G0 as in Theorem 2.5(2)(g), M0 �≤ Z and φ ∈
M0. Then E = E (M), and all possibilities for M0, k, the factors �i

∼= G(q2, k) and
their valencies and automorphism groups are listed in Table 2 and 3. In particular,
Theorem 1.1(2)(c) holds.

The proof follows from the discussion above and the MAGMA computations de-
scribed. In Remark 5.7 we make a a series of comments about important aspects of
these factorisations. First we determine precisely which of the examples also arise in
other parts of Theorem 1.1.

Lemma 5.6 Let (Kq2 , E (M)) be a (G,M)-homogeneous arc-transitive factorisation
corresponding to a line of Table 2 or 3, and suppose that this factorisation also occurs
in another Part of Theorem 1.1. Then either line (1) of Table 2 holds, or one of the
lines (2) or (3) of Table 3 holds, and in each case E (M) = TCyc(q2, k) occurs in
Part 2(b).

Proof The cases where k = 2 were considered by Peisert in [27]. They are as fol-
lows.

(1) q = 9, SL(2,5) ≤ M0 < (Z ◦ SL(2,5)) · Z2 and �i
∼= G(92,2) (line (1) of Ta-

ble 2),
(2) q = 7, SL(2,3) ≤ M0 ≤ Z ◦ SL(2,3) or M0 = Z ◦ Q8, and �i

∼= G(72,2) (line
(3) of Table 3), or

(3) q = 23, M0 = Z ◦ SL(2,3) and �i
∼= G(232,2) (line (11) of Table 3).

The �i in these cases are three exceptional arc-transitive self-complementary
graphs denoted by Peisert as G(92), G(72), and G(232) respectively. By [27, Lemma
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Table 2 SL(2,5) ≤ M0 � G0 ≤ �L(2, q), and Aut(G(q2, k)) = T � (Y ◦ SL(2,5)) (if q = 19,29 or 59)
or T � ((Y ◦ SL(2,5)) · Z2) (if q = 9), where Y < Z = Z(GL(2, q)); for lines (2)–(11), Aut(G(q2, k)) ≤
A�L(2, q)

G(q2, k) M0 |M0| |V ∗|
k

|Y |, Remarks

where

Y < Z

SL(2,5) 120 TGPaley

(1) G(92,2) Y ◦ SL(2,5) 240 40 4 see Remark 5.7(3)

(Y ◦ SL(2,5)) · Z2 480

SL(2,5) 120 see Remark 5.7(4)

(2) G(192,3) 120 6

Y ◦ SL(2,5) 360

SL(2,5) 120 see Remark 5.7(4)

(3) G(292,7) 120 4

Y ◦ SL(2,5) 240

see Remark 5.7(4)

(4) G(592,29) SL(2,5) 120 120 1

6.6 and 6.7], G(92,2) and G(72,2) are isomorphic to the twisted generalised Paley
graphs TGPaley(81,40) and TGPaley(49,24) respectively. Since k = 2 this means
that the edge-partition E (M) in these two cases is TCyc(92,2) and TCyc(72,2) re-
spectively, as in Lemma 5.6(1). On the other hand, the graph G(232,2) is “new” in
the sense that it is neither the Paley graph nor the twisted TCyc(232,2), see [27,
Lemma 6.8]. We show below that this case is really new.

In line (1) of Table 3, we verified using MAGMA that the factor G(25,3) is a
generalised Paley graph of valency 8. Suppose that (K25, E (M)) is also an (H,L)-
homogeneous arc-transitive factorisation with H = T �H0, L = T �L0, L0 < H0 ≤
〈ω̂, α〉. Since G(25,3) is L-arc-transitive of valency 8, L0 must contain 〈ω̂6〉, and
since H0 permutes transitively on the 3 factors, it follows that either H0 contains
〈ω̂2〉, or L0 ≤ 〈ω̂〉. In the latter case E (M) = Cyc(25,3) by Lemma 4.3, and we may
therefore assume in this case that H0 = 〈ω̂, α〉. Thus the partition E (M) is preserved
both by the subgroup G0 that projects onto G0 ∼= A4 or S4 modulo Z, and also by H0
that projects to D12. These two subgroups generate the whole group PGL(2,5) which
cannot act transitively on the three parts of Cyc(25,3), a contradiction. Thus L0 �≤
〈ω̂〉, 〈ω̂2〉 ≤ H0, and E (M) �= Cyc(25,3). We may assume that (H,L) is admissible
as in Condition 4.12. Let H0 = 〈ω̂d , ω̂eαs〉 and L0 = 〈ω̂d1, ω̂ei αs1〉 in standard form.
From our discussion we must have s1 = s = 1, d ≤ 2, d1 | 6, and by Lemma 4.11,
0 < e1 < d1. Now Aut(GPaley(25,8))∩ A�L(1,25) = 〈ω̂3, α〉, and since L acts arc-
transitively, d1 | 6 and hence e1 = 3, d1 = 6. By Condition 4.12(7), 6 | 4d so d is a
multiple of 3, which contradicts the fact that d ≤ 2. Thus E (M) for line (1) of Table 3
does not occur in any other part of Theorem 1.1.

In line (2) of Table 3, G(49,6) ∼= TPaley(49,8), there are 6 factors, so consider-
ing the 2-part of |G| we see that G0 must project onto G0 = S4 modulo Z. Suppose
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Table 3 M0 ⊇ SL(2,3) or M0 ⊇ Q8, M0 � G0 ≤ GL(2, q) and T = Z
2
q , where q = 5,7,11 or 23

G(q2, k) M0 |M0| |V ∗|/k Aut(G(q2, k)) Remarks

(1) G(52,3) Q8 8 8 S5 � S2 GPaley

Z ◦ Q8 16 (in product action) see Remark 5.7(5)

(2) G(72,6) Q8 8 8 T � (Q8 · Z3) TGPaley

Q8.3 24 see Remark 5.7(4)

Z ◦ Q8 24 TGPaley

(3) G(72,2) SL(2,3) 24 24 T � (Z ◦ SL(2,3)) see also

Z ◦ SL(2,3) 72 Remark 5.7(3)

(4) G(112,15) Q8 8 8 T � 〈ω̂15, α〉 GPaley

see Remark 5.7(4)

(5) G(112,3) Z ◦ Q8 40 40 T � 〈ω̂3, α〉 GPaley

see Remark 5.7(4)

(6) G(112,5) SL(2,3) 24 24 T � GL(2,3) see Remark 5.7(4)

GL(2,3) 48

(7) G(232,66) Q8 8 8 T � Q8 see Remark 5.7(4)

(8) G(232,6) Z ◦ Q8 88 88 T � (Z ◦ Q8) see Remark 5.7(4)

(9) G(232,22) SL(2,3) 24 24 T � SL(2,3) see Remark 5.7(4)

(10) G(232,11) SL(2,3) · Z2 48 48 T � (SL(2,3) · Z2) see Remark 5.7(4)

(11) G(232,2) Z ◦ SL(2,3) 264 264 T � (Z ◦ SL(2,3)) see Remark 5.7(3)

that (K49, E (M)) is also an (H,L)-homogeneous arc-transitive factorisation with
H = T � H0, L = T � L0, L0 < H0 ≤ 〈ω̂, α〉. Now G(49,6) is not a generalised
Paley graph by Proposition 4.18, and hence by Lemmas 4.3 and 4.11, L0 �≤ 〈ω̂〉
and α �∈ L0; and we may assume that (H,L) is admissible as in Condition 4.12.
Let H0 = 〈ω̂d , ω̂eαs〉 and L0 = 〈ω̂d1, ω̂ei αs1〉 in standard form. Since L0 �≤ 〈ω̂〉 and
α �∈ L0 we must have s1 = s = 1 and e1 > 0. Since G(49,6) is L-arc-transitive of
valency 8, d1 | 12. Since H0 permutes transitively the 6 factors and L0 �≤ 〈ω̂〉, it fol-
lows that d1 = 6d with d = 1 or 2. Suppose that d1 = 6. Then by Condition 4.12(3),
3 | e1 and since 0 < e1 < d1 we have e1 = 3. Then the integer c determined in Con-
dition 4.12 is c = 2 implying that L0 has k = d1/c = 3 orbits in V ∗, a contradiction.
Thus d = 2, d1 = 12. Since (d, e) �= (1,0), by Condition 4.12(9) we have e = 1, so
H0 = 〈ω̂2, ω̂3α〉. By Condition 4.12(3), 3 | e1, and by Condition 4.12(8), 2 | (1 + e1)

so e1 = 3 or 9. The two subgroups 〈ω̂12, ω̂3α〉 and 〈ω̂12, ω̂9α〉 are conjugate under
α, so we may assume that L0 is the former. A computation in MAGMA [8] verified
that A := Aut(G(49,6)) = L.3, that A is contained in Z ◦ G, and that A leaves in-
variant the edge-partition TCyc(49,6). (Note that A = T � A0 and A = A4.) Thus
TCyc(49,6) is invariant under the actions of both A and the group H (used to define
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TCyc(49,6) in Proposition 4.18). Moreover, 〈A,H 〉 = Z ◦ G and we conclude that
E (M) = TCyc(49,6).

In lines (4) and (5) of Table 3, G(121, k) is a generalised Paley graph with k = 15
or 3 respectively, and we may assume that G0 projects to G0 = A4 modulo Z. Sup-
pose that (K121, E (M)) is also an (H,L)-homogeneous arc-transitive factorisation
with H = T � H0, L = T � L0, L0 < H0 ≤ 〈ω̂, α〉. Since there are either 15 factors
of valency 8, or 3 factors of valency 40, it follows that H0 must contain 〈ω̂2〉 of or-
der 60. Thus H0 contains Z6. This implies that 〈G0,H0〉 contains PSL(2,11) which
cannot permute a set of 3 or 15 factors transitively.

Similarly in lines (7) or (8) of Table 3, M = Aut(G(232, k)) is arc-regular, and
isomorphic to an orbital graph of a subgroup of A�L(1,232). An exactly analo-
gous argument to the one in the previous paragraph proves that the factorisation
(K232 , E (M)) is not equivalent to one arising from a pair of subgroups (H,L) of
A�L(1,232).

We claim that in each of the remaining cases, namely lines (2)–(4) of Table 2
or lines (6), (9)–(11) of Table 3, no subgroup of A�L(1, q2) acts arc-transitively
on the graph G(q2, k). This claim implies that (Kq2 , E (M)) does not arise in any
other Part of Theorem 1.1, proving the lemma. Suppose to the contrary that A :=
Aut(G(q2, k)) = T � A0 admits an arc-transitive action of a subgroup H = T � H0
where H0 ≤ 〈ω̂, α〉. We consider each of the lines in turn.

Lines (2), (3) or (4) of Table 2. Here the graphs G(q2, k) have valency 120, and
automorphism subgroup A0 = Y ◦ SL(2,5), for a subgroup Y ≤ Z of order 6,4,1
respectively. For H to be arc-transitive, H0 must contain a cyclic subgroup of order
60. However A0 has no such subgroup.

Lines (6), (9), (10) or (11) of Table 3. Here we checked, using MAGMA, that
the orders of cyclic subgroups of A0 were at most 8 in the case of lines (6), (9) or
(10), and at most 66 for line (11). On the other hand, for H to be arc-transitive, H0
must contain a cyclic subgroup of order at least (q2 − 1)/2k which is 12, 12, 24, 132
respectively. This is a contradiction. �

To complete this subsection we make a series of remarks about the graphs
G(q2, k), and the information given in Tables 2 and 3.

Remark 5.7

(1) The graph G(q2, k) = �(O) for the non-trivial selfpaired M-orbital O = (0, v)M

(see Definition 5.4). It has valency q2−1
k

, and by Lemma 5.3 is connected. Dis-
tinct pairs (q, k) correspond to non-isomorphic such graphs as the orders or va-
lencies would be different.

(2) Different groups M0 may give rise to the same graph G(q2, k), as noted in Ta-
bles 2 and 3. The tables also list the automorphism groups of the G(q2, k) which
were computed using MAGMA. In particular, in lines (7) and (8) of Table 3,
we found by construction a subgroup K ≤ A�L(1,232) and a K-orbital graph
� ∼= G(232, k) such that K = Aut(�), whence M = Aut(G(232, k). (Note that
by X ·Y , we mean an extension of X by Y , while X◦Y denotes a central product.)

(3) If k = 2, that is, in line (1) of Table 2, or line (3) or (11) of Table 3, then G(q2, k)

is an arc-transitive self-complementary graph. These are the three exceptional
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graphs studied in [27], where they are denoted by G(q2), for q = 9, 7, 23 re-
spectively. Persert showed that the first two graphs are twisted generalised Paley
graphs, while the third is “new” in the sense that it is neither a Paley graph nor a
twisted generalised Paley graph, see [27, Lemmas 6.6–6.8] and Lemma 5.6.

(4) Isomorphisms between G(q2, k) and a generalised, or twisted generalised Paley
graph were determined using MAGMA, and are denoted in the “Remarks” col-
umn of Tables 2 and 3 by GPaley or TGPaley respectively. Whether or not the
edge-partitions are the usual cyclotomic or twisted cyclotomic partitions is de-
termined in Lemma 5.6. Line (2) of Table 3 is exceptional in that E (M) is the
corresponding twisted cyclotomic partition, and this is the only example with
k > 2 for which this occurs.

(5) In line (1) of Table 3, G(q2, k) is also isomorphic to the Hamming graph H(5,2)

by [25, Theorem 1.3(2)].

5.2 Case 2(h)

Here E � G0 ≤ GL(4,3), where E = 21+4 is extraspecial subgroup of order 25. Now
G0 ≤ N := NGL(4,3)(E), and modulo the centre Z we have E ≤ G0 ≤ N , where
E ∼= Z

4
2. Also N = EH where Z < H and H ∼= S5. We find the possibilities for the

groups G0 and M0.

Lemma 5.8 k = 5, M0 = E and G0 = EL, where Z < L ≤ H and L = Z5, D10,
F20, A5 or S5.

Proof Now G0 = EL where Z < L ≤ H . The group E has 5 orbits of length 8 in
the set P1(V ) of 1-spaces in V = F

4
3. Since G0 is transitive on P1(V ) it follows that

the subgroup L is one of Z5,D10,F20,A5 or S5. In particular this implies that E is
the unique minimal normal sugroup of G0. Since by assumption M0 �≤ Z, M0 is a
non-trivial normal subgroup of G0. Hence M0 contains E.

Now G0 permutes the M0-orbits in V ∗ transitively, and these M0-orbits are unions
of E-orbits. However, the group E has 5 orbits of length 16 in V ∗, which are permuted
primitively by G0. Since M0 is intransitive on V ∗, it follows that M0 and E have the
same orbits in V ∗, and hence that k = 5 and M0 = E. �

It follows from this lemma that there is only one edge partition arising in this case,
namely E (M) for the unique group M = T � E. The factors �i of this factorisation
were identified in [23] as Hamming graphs H(9,2). Thus we have the following
proposition, which completes the proof of Theorem 1.1.

Proposition 5.9 Let (Kq2 , E ) be a (G,M)-homogeneous arc-transitive factorisation
of index k such that G = T �G0, with G0 as in Theorem 2.5(2)(h), M0 �≤ Z and φ ∈
M0. Then k = 5, M0 = E = 21+4, E = E (M), and each �i

∼= H(9,2). Also G0 = EL,
where Z < L and L = Z5, D10, F20, A5 or S5. In particular, Theorem 1.1(2)(d) holds.
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