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Abstract Demazure characters of type A, which are equivalent to key polynomi-
als, have been decomposed by Lascoux and Schützenberger into standard bases. We
prove that the resulting polynomials, which we call Demazure atoms, can be obtained
from a certain specialization of nonsymmetric Macdonald polynomials. This combi-
natorial interpretation for Demazure atoms accelerates the computation of the right
key associated to a semi-standard Young tableau. Utilizing a related construction, we
provide a new combinatorial description of the key polynomials.
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1 Introduction

The Demazure character formula generalizes the Weyl character formula to highest-
weight modules over symmetrizable Kac-Moody Lie algebras. In particular, if V (λ)

is a highest weight module of weight λ, then the extremal weight vector uωλ of weight
ωλ generates a U(n)-submodule U(n)uωλ. The formal character of this submodule
is given by Demazure’s character formula [1], [5]. The Demazure characters corre-
sponding to the general linear Lie algebra gln(C) are equivalent to the key polyno-
mials, which are described [11] as the sums of the weights of semi-standard Young
tableaux (SSYT) whose right key is bounded by a certain key K(ω,λ).

Lascoux and Schützenberger [9] study the smallest non-intersecting pieces,
U(ω,λ), of type A Demazure characters. They call the resulting polynomials stan-
dard bases and describe them combinatorially as the sums of the weights of all semi-
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standard Young tableaux whose right key is equal to the key K(ω,λ). Each semi-
standard Young tableau appears in precisely one such polynomial, implying that the
polynomials U(ω,λ) form a decomposition of the Schur functions.

There exists a decomposition of the Schur functions into the polynomials
Eγ (x;0,0), which are obtained by setting q = t = 0 in the combinatorial formula
for integral form nonsymmetric Macdonald polynomials [2]. The Eγ (x;0,0) are ob-
tained from the weights of semi-skyline augmented fillings, which are fillings of com-
position diagrams with positive integers in such a way that the columns are weakly
decreasing and the rows satisfy an inversion condition. Semi-skyline augmented fill-
ings are in bijection with semi-standard Young tableaux and satisfy a variation of the
Robinson-Schensted-Knuth algorithm [10].

Theorem 1.1 The standard base U(ω,λ) is equal to the specialized nonsymmetric
Macdonald polynomial Eω(λ)(X;0,0).

We obtain an efficient method for computing the right key of a semi-standard
Young tableau as a corollary to Theorem 1.1. Begin with a semi-standard Young
tableau T and map T to the semi-skyline augmented filling �(T ) whose weight is
equal to that of T . Let the shape of �(T ) be given by the composition γ . Then the
right key of T is the unique key with weight γ .

The Demazure character κω(λ) corresponding to a partition λ and permutation ω

can be described combinatorially as the sum of the weights of all SSYT whose right
key is less than or equal to K(ω,λ). (In this paper we use the notation κω(λ) as in [11]
for ease of notation and to emphasize the fact that the Demazure characters we are
working with coincide with the key polynomials described by Reiner and Shimozono.
The notation Dω(eλ) typically refers to the Demazure character corresponding to a
highest-weight module of weight ωλ over an arbitrary symmetrizable Kac-Moody
Lie algebra [7].)

Demazure characters can be computed by summing over Demazure atoms. That
is,

κω(λ) =
∑

τ≤ω

U(τ, λ),

where the ordering on the permutations is the Bruhat order. A permuted-basement
semi-skyline augmented filling is defined by rules similar to those which describe an
ordinary semi-skyline augmented filling. Permuting the basements of semi-skyline
augmented fillings provides an alternate method for computing Demazure characters
combinatorially.

Theorem 1.2 The Demazure character κω(λ) is equal to the sum of the weights of all
permuted-basement semi-skyline augmented fillings of shape λ with basement ω.

A similar connection exists between nonsymmetric Macdonald polynomials spe-
cialized to q = t = ∞ and Demazure characters of the corresponding affine Kac-
Moody algebra [4]. This correspondence and its proof provide a representation-
theoretic perspective on the role of nonsymmetric Macdonald polynomials in the
study of affine Lie algebras.
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2 Demazure characters

Let g = gln(C) be the general linear Lie algebra and let � be the corresponding
root system whose highest weights are partitions. If n is the subalgebra of g with
basis Xα (α ∈ �+), then U(n) is the universal enveloping algebra. Let V (λ) be the
irreducible highest-weight module of weight λ. Given a permutation ω, let uωλ be the
extremal vector of weight ωλ of V (λ). Then the character κω(λ) of U(n)uωλ is given
by the Demazure character formula. In this section we describe the explicit formula
using Demazure operators.

2.1 The Demazure operator

Let P be the polynomial ring Z[x1, x2, . . .] and let S∞ be the permutation group of
the positive integers. This group acts on P by permuting the indices of the variables.
If si is the elementary transposition (i, i + 1), define the linear operators ∂i and πi as
in [11] by

∂i = 1 − si

xi − xi+1
, πi = ∂ixi . (2.1)

Given ω ∈ S∞, let ω = si1si2 . . . sik be a decomposition of ω into elementary trans-
positions. When the number k of transpositions in such a product is minimized, the
word i1i2 . . . ik is called a reduced word for ω. The operator πω = πi1πi2 . . . πik is
obtained by applying the product of the operators πij , where i1i2 . . . ik is a reduced
word for ω. This operator is the Demazure operator [1], [5] for the general linear
Lie algebra gln(C). One obtains the Demazure character corresponding to a parti-
tion λ and a permutation ω by applying the operator πω to the dominant monomial
xλ = ∏

i x
λi

i . For example, if λ = (2,1) and ω = (1,2,3), then the corresponding
Demazure character is π1π2(x

2
1x2) = x2

1x2 + x2
1x3 + x1x

2
2 + x1x2x3 + x2

2x3.

2.2 An equivalent definition [11]

A key is a semi-standard Young tableau such that the set of entries in the (j + 1)th

column form a subset of the set of entries in the j th column, for all j ≥ 1. A bijection
exists between weak compositions and keys given by γ = (γ1, γ2, . . .) �→ key(γ ),
where key(γ ) is the key such that for all j , the first γj columns contain the letter j .
To invert this map, send the key T to the composition describing the content of T .
Figure 1 depicts key(2,1,1,4,0,3), written in French notation.

Fig. 1 T = key(2,1,1,4,0,3)
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Fig. 2 Here v is not
column-frank but w is

Let col(T ) be the word obtained from an SSYT T by reading the column entries
of T from top to bottom, left to right. If a word w is Knuth equivalent [8] to col(T ),
write w ∼ T . There exists a unique word v in each Knuth equivalence class such that
v = col(T ) for some semi-standard Young tableau T .

The column form of a word w, denoted colform(w), is the composition consist-
ing of the lengths of the strictly decreasing subwords of w. Let w be an arbitrary
word such that w ∼ T for T of shape λ. The word w is said to be column-frank if
colform(w) is a rearrangement of the nonzero parts of λ′, where λ′ is the conjugate
shape of the partition λ obtained by reflecting the Ferrers diagram of λ across the line
x = y. (In Figure 2, v is not column-frank but w is.)

Let T be a semi-standard Young tableau of shape λ. The right key of T , denoted
K+(T ), is defined in [11] to be the unique key of shape λ whose j th column is given
by the last column of any column-frank word v such that v ∼ T and colform(v)

is of the form (. . . , λ′
j ). For example, S = 5 3 2 1 · 4 2 in Figure 2 has right key

K+(T ) = 5 4 2 1 · 4 2.
Given an arbitrary partition λ and permutation ω (written in one-line notation),

there exists an associated key K(ω,λ) defined as follows. Consider the subword
consisting of the first λ1 letters of ω and reorder the letters in decreasing or-
der. This is the first column of K(ω,λ). The second column of K(ω,λ) contains
the first λ2 letters of ω in decreasing order. Continuing this way, one derives the
word col(K(ω,λ)) [9]. For example, ω = 241635 and λ = (4,2,2,1) give the key
K(ω,λ) = 6 4 2 1 · 4 2 · 4 2 · 2.

Define a partial order on the set of all semi-standard Young tableaux of shape λ by
setting T ≤ S if and only if the entry in the ith row and j th column of T is less than
or equal to the corresponding entry in S for all i and j . The key polynomial κω(λ) is
defined [11] as the sum of the weights of all SSYT having right key less than or equal
to K(ω,λ). This polynomial is precisely the type A Demazure character πω(xλ) [9],
so we use these terms interchangeably.

2.3 Intersections of key polynomials

Notice that for a fixed partition λ, the sets of semi-standard Young tableaux contribut-
ing weights to the polynomials πω(xλ) intersect nontrivially. For example,

π(1,2,3)(x
(2,1)) = π1π2(x

2
1x2) = x2

1x2 + x2
1x3 + x1x

2
2 + x1x2x3 + x2

2x3,

π2(x
(2,1)) = π2(x

2
1x2) = x2

1x2 + x2
1x3,
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π1(x
(2,1)) = π1(x

2
1x2) = x2

1x2 + x1x
2
2

Here the monomial x2
1x3 appears in both π1π2(x

2
1x2) and π2(x

(2,1)), but the SSYT
T with column word col(T ) = 3 1 · 1 is the only SSYT of shape λ = (2,1) and
weight x2

1x3.
In fact, the definition of the operator πω implies that if ω is longer than σ and

ω = siσ , then the semi-standard Young tableaux appearing as monomials in πσ (xλ)

are a subset of those appearing in πω(xλ) = πiπσ (xλ). Therefore it makes sense to
consider the intersections and complements of Demazure characters.

Let ω be a permutation of length k. Consider all permutations σ less than ω in the
Bruhat order. We study the subset of monomials in πω(xλ) which do not appear in
πσ (xλ) for any such σ . The sum of these monomials is the polynomial obtained by
replacing the operators πi by the operators πi = πi − 1 in the formula πω(xλ). The
operator πi = πsi is therefore defined by

f −→ (si(f ) − f )/(1 − xi/xi+1) = πi(f ),

and, given any reduced word si1si2 . . . sik for ω, define πω(f ) = πi1(f )πi2(f ) . . .

πik (f ). For example, if f = x2
1x2x3, then π1f = (x1x

2
2x3−x2

1x2x3)

(1−x1/x2)
= x1x

2
2x3.

Lascoux and Schützenberger [9] call these polynomials the standard bases and
prove that the standard basis U(ω,λ) equals the sum of the weights of all SSYT hav-
ing right key equal to K(ω,λ). We retain the notation U(ω,λ) but call the polynomi-
als Demazure atoms to avoid confusion with various objects referred to as standard
bases.

The operators πi satisfy the Coxeter relations πiπi+1πi = πi+1πiπi+1 and
πiπj = πjπi for ‖j − i‖ > 1 [9]. Lift the operator πi to an operator θi on the free
algebra by the following process. Given i and a word w in the commutative alphabet
X = (x1, x2, . . .), let mj be the number of occurrences of the letter xj in w, for each j .
Let k = mi − mi+1. If k ≥ 0, then w and wsi differ by the exchange of a subword
xk
i with the subword xk

i+1. The analogous statement is true for k < 0. When k ≥ 0,
define wθi to be the sum of all words in which the subword xk

i of w has been changed
respectively into xk−1

i xi+1, xk−2
i x2

i+1, . . . , xk
i+1. For example, if w = x3

1x4
2x3x5x

3
7 ,

then wθ2 = x3
1x3

2x2
3x5x

3
7 + x3

1x2
2x3

3x5x
3
7 + x3

1x2x
4
3x5x

3
7 .

Every partition λ = (λ1, λ2, . . .) has a corresponding dominant monomial,

xλ =
∏

i

x
λi

i ,

which equals the weight of the Yamanouchi tableau of shape λ. (The Yamanouchi
tableau is the SSYT such that, for each i, the entries in the ith row are all equal to i.)

Theorem 2.1 (Lascoux-Schützenberger [9]) Let xλ be the dominant monomial cor-
responding to λ and let si1si2 . . . sik be any reduced decomposition of a permutation
π . Then U(ω,λ) = xλθi1θi2 . . . θik .

Theorem 2.1 provides an inductive method for constructing the Demazure atom
U(ω,λ). Begin with U(id, λ) = xλ and apply θi1 to determine U(si1 , λ). Then ap-
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Fig. 3 The crystal graph for λ = (2,1)

ply θi2 to U(si1 , λ) to determine U(si1si2 , λ). Continue this process until the desired
standard basis U(ω,λ) is obtained.

Lascoux and Schützenberger further break down this procedure to produce a crys-
tal graph structure [9]. (Throughout this paper, our crystallographic notation will fol-
low the notation appearing in [6].) To describe the operator fi needed for this pro-
cedure, let col(T ) be the column word corresponding to the semi-standard young
tableau T . Change all occurrences of i in col(T ) to right parentheses and all occur-
rences of i + 1 in col(T ) to left parentheses. Ignore all other entries in col(T ) and
match the parentheses in the usual manner. If there are no unmatched right paren-
theses, then fi(col(T )) = col(T ). Otherwise replace the rightmost unmatched right
parenthesis by a left parenthesis and convert the parentheses back to occurrences of i

and i + 1. The resulting word is fi(col(T )). Figure 3 depicts the crystal graph corre-
sponding to the partition (2,1).

The Demazure character corresponding to ω = si1si2 . . . sik is obtained from this
procedure by applying the appropriate fi operators. To see this, begin with the SSYT
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of highest weight, which corresponds to the monomial xλ. Apply f
mik

ik
, where mik

is the number of unmatched right parantheses. Add the resulting monomials to the
initial monomial to obtain the Demazure character κsik (λ). Next apply f

mik−1
ik−1

to the
monomials in κsik (λ) and collect these monomials together with the monomials of κsik
to obtain κsik−1 sik (λ). Continue this procedure to obtain κω(λ).

3 Combinatorial description of Eγ (X;0,0)

The polynomials Eγ (X;0,0) are obtained from the nonsymmetric Macdonald poly-
nomials by letting q and t approach 0. The combinatorial formula for nonsymmetric
Macdonald polynomials provided by Haglund, Haiman, and Loehr [2] can be spe-
cialized in this manner to obtain a combinatorial formula for Eγ (X;0,0). Several
definitions are needed to describe this formula.

Let γ = (γ1, γ2, . . .) be a weak composition of n. The column diagram of γ is a
figure dg′(γ ) consisting of n cells arranged into columns, as in [2]. The ith column
contains γi cells, and the number of cells in a column is called the height of that
column. A cell a in a column diagram is denoted a = (i, j), where i is the row and j

is the column of the cell containing a.
For example, the following depicts the column diagram of γ = (0,2,0,3,1,2,0,

0,1).

dg′(γ ) =

The augmented diagram of γ , defined by d̂g(γ ) = dg′(γ ) ∪ {(0, i) : 1 ≤ i ≤ m}
(where m is the number of parts of γ ), is the column diagram with m extra cells
adjoined in row 0. In this paper the adjoined row, called the basement, always contains
the numbers 1 through m in strictly increasing order.

The augmented diagram for γ = (0,2,0,3,1,2,0,0,1) is depicted below.

d̂g(γ ) =

An augmented filling, σ , of an augmented diagram d̂g(γ ) is a function σ :
d̂g(γ ) → Z+, which we picture as an assignment of positive integer entries to the
cells of γ . Let σ(k) denote the entry in the kth cell of the augmented diagram en-
countered when d̂g(γ ) is read across rows from left to right, beginning at the highest
row and working downward. This ordering of the cells is called the reading order.
(A cell a = (i, j) is greater than a cell b = (i′, j ′) in the reading order if either i′ > i

or i′ = i and j ′ < j .) The reading word read(σ ) is obtained by recording the entries
in this reading order. The content of a filling σ is the multiset of entries which appear
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in the filling. The cells a1 = (i1, j1) and a2 = (i2, j2) of γ are said to be attacking if
any of the following three conditions are true:

• i1 = i2
• i1 − i2 = 1 and j2 < j1
• i2 − i1 = 1 and j1 < j2.

A filling is said to be non-attacking if for every pair of attacking cells {a1, a2}, we
have σ(a1) �= σ(a2). The fillings utilized in the combinatorial description of De-
mazure atoms are non-attacking fillings with additional row and column restrictions.

The following triples of cells are introduced to provide restrictions on the row
entries of a filling. Note that the triple types are not related to symmetry types. Type A

and type B merely refer to the positions of the cells in the diagram.
Let a1 = (i1, j1), a2 = (i2, j2), and a3 = (i3, j3) be three cells in d̂g(γ ) such that

column j1 is taller than or equal in height to column j2. If i1 = i2, i1 − i3 = 1, and
j1 = j3, then a1, a2, and a3 are said to form a type A triple, as depicted below.

Define for x, y ∈ Z+

I (x, y) =
{

1 if x > y

0 if x ≤ y
.

Let σ be an augmented filling and let {σ(a1), σ (a2), σ (a3)} be the entries of σ

in the cells {a1, a2, a3}, respectively, of a type A triple. The triple {a1, a2, a3} is
called a type A inversion triple if and only if I (σ (a1), σ (a2)) + I (σ (a2), σ (a3)) −
I (σ (a1), σ (a3)) = 1.

Consider the following ordering of the cells a1, a2, a3 obtained from their entries.
Let ai < aj if either σ(ai) < σ(aj ) or σ(ai) = σ(aj ) and ai comes before aj in
reading order. If this ordering produces a counter-clockwise orientation of the cells
a1, a2, a3 when read from smallest to largest, then the cells form a type A inversion
triple. This definition is equivalent to that given by the function I (x, y).

Similarly, consider three cells {a1 = (i1, j1, a2 = (i2, j2), a3 = (i3, j3)} ∈ λ such
that column j2 is strictly taller then column j1. The cells {a1, a2, a3} are said to form
a type B triple if i1 = i2, j2 = j3, and i3 − i2 = 1, as shown below.

Let σ be an augmented filling and let {σ(a1), σ (a2), σ (a3)} be the entries of σ in
the cells {a1, a2, a3} of a type B triple. The triple {a1, a2, a3} is called a type B inver-
sion triple if and only if I (σ (a3), σ (a1)) + I (σ (a1), σ (a2)) − I (σ (a3), σ (a2)) = 1.

As for type A inversion triples, there is an equivalent definition for type B in-
version triples. Again let ai < aj if either σ(ai) < σ(aj ) or σ(ai) = σ(aj ) and ai

comes before aj in reading order. The three cells form a type B inversion triple if
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the ordering of the cells, when read from smallest to largest, produces a clockwise
orientation.

Define a semi-skyline augmented filling of an augmented diagram d̂g(γ ) to be an
augmented filling F such that the entries in each column (read top to bottom) are
weakly increasing and every type A or type B triple of cells is an inversion triple.
Corollary 2.4 of [10] states that these conditions are enough to guarantee that the
filling is non-attacking. Specializing the combinatorial formula for the nonsymmetric
Macdonald polynomials Eγ (x;q, t) given in [2] implies that

Eγ (x;0,0) =
∑

F∈SSAF(d̂g(γ ))

xF ,

where SSAF(d̂g(γ )) is the set of all semi-skyline augmented fillings of shape γ .

4 Proof of Theorem 1.1

The set of Demazure atoms for the partition λ can be considered as a decomposition
of the Schur function sλ. For any partition λ of n, it is known [9] that

∑

ω∈Sn

U(ω,λ) = sλ.

The functions Eγ (X;0,0) are also a decomposition of the Schur functions [10], so it
is natural to determine their relationship to the Demazure atoms. Theorem 1.1 states
that U(ω,λ) = NSω(λ), where ω(λ) denotes the action of ω on the parts of λ when λ

is considered as a partition of n into n non-negative parts.

4.1 Several useful lemmas

Section 3.1 of [10] provides a bijection ρ between row-strict plane partitions and
semi-skyline augmented fillings which preserves the entries in each row. The map
can be considered as a map from a collection {Ri} of sets of row entries to an SSAF.
Insert the rows from lowest to highest. Assume that the lowest j rows and the largest
k entries of row j + 1 have been inserted. Consider αk+1, the (k + 1)th largest entry
in row j + 1. Place αk+1 on top of the leftmost entry, β , of row j such that the cell on
top of β is empty and β ≥ αk+1. Continue in this manner until all the row entries have
been placed into the diagram. The result is the unique SSAF with row entries {Ri}.

A different bijection, � , is described in [10] to map directly between SSYTs and
SSAFs. Begin with a semi-standard Young tableau T of shape λ and insert its entries
into an empty SSAF, using the following insertion procedure. When inserting an entry
α1 into an SSAF F , find the first entry α2 of F in reading order which is greater than
or equal to α1. If there is no entry on top of α2, place α1 on top of α2 and the inser-
tion is complete. If the entry directly above α2 is greater than α1, continue to the next
entry in reading order which is greater than or equal to α1 and repeat. If the entry, α3,
directly above α2 is less than α1, replace it with α1 and find the next entry in reading
order which is greater than or equal to α3. Repeat this procedure until the insertion is
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complete. Applying this insertion to the columns of T , beginning with the smallest
entry in the rightmost column and moving through the column entries from small-
est to largest, rightmost column to leftmost column, produces a semi-skyline aug-
mented filling whose shape is a rearrangement of λ. This map is a weight-preserving,
shape-rearranging bijection between semi-standard Young tableaux and semi-skyline
augmented fillings [10].

Proposition 4.1 There exists a map �i :SSAF−→SSAF such that the following dia-
gram commutes for all SSYT T .

T
fi

�

T ′

�

F
�i

F ′

(Here fi is the crystal operator described in Section 2.)

Proof Let F be an arbitrary semi-skyline augmented filling and let read(F ) be the
reading word obtained by reading F left to right, top to bottom, as described in Sec-
tion 3. First match any pair i and i + 1 which occur in the same row of F and remove
these entries from the reading word of F . Next apply the parenthetical matching pro-
cedure of [9] described in Section 2.3 to the reading word to determine which of the
remaining occurrences of i and i + 1 are unmatched. In other words, replace each
i + 1 by a left (open) parenthesis and each i by a right (closed) parenthesis and match
left and right parenthesis.

Pick the rightmost unmatched i. Convert it to an i + 1. (If there is no unmatched
i, then �i(F ) = F .) The result is a collection of row entries which differ from those
of read(F ) in precisely one entry. Use the procedure ρ described above to map this
collection of rows to a unique SSAF. (This map is well-defined for our collection of
row entries because the row directly below the rightmost unmatched i either does not
contain the entry i or contains both the entry i and the entry i + 1.) The resulting
SSAF is �i(F ) = F ′. We must show that �i(�(T )) = �(f̃i(T )).

Recall that the map ρ is a bijection between semi-skyline augmented fillings and
row-strict plane partitions which preserves the entries in each row. The inverse of
ρ sends the entries in the rth row of an SSAF F to the rth row of a row-strict plane
partition in decreasing order. The reading word for a row-strict plane partition is given
by reading the rows from left to right, top to bottom. The matching procedure on this
word and therefore the operator fi are the same as those applied to the column word
of an SSYT. This means that the resulting crystal graph is the image of the ordinary
crystal graph under the weight-preserving bijection between SSYT of a fixed shape
and row-strict plane partitions of the transposed shape. Therefore it is enough to show
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that the following diagram commutes for all row-strict plane partitions P .

P
fi

ρ

P

ρ

F
�i

F ′

We claim that if the rightmost unmatched i in F appears in the rth row of F , then
the rightmost unmatched i in ρ−1(F ) appears in the rth row of ρ−1(F ). Moreover,
if there is no unmatched i in F , then there is no unmatched i in ρ(F ).

Notice that the first step in the procedure for matching entries in F is to match each
pair of entries {i, i +1} appearing in the same row of F . These entries will also appear
in the same row of ρ(F ). Since the row entries in ρ(F ) appear in strictly decreasing
order, the i + 1 appears first in the reading word. Therefore this pair of entries will
be matched in ρ(F ). Once these entries are matched, the remaining occurrences of
i and i + 1 appear in the same order in the reading word for F as in the reading
word for ρ(F ). Therefore the rightmost unmatched i appears in the same row of F

as in ρ(F ), and if each i is matched in F then each i is matched in ρ(F ).
To see that the proposition follows from this claim, first consider the situation in

which there is no unmatched i in F . The claim implies that there is no unmatched i

in ρ(F ). Then �i(F ) = F and fi(T ) = T . The diagram commutes since F = ρ(T ).
Next let ir be the rightmost unmatched i in F , appearing in the rth row of F . The rth

row of �i(F ) is the only row whose entries are different from F . The i in this row
was changed to an i + 1. Similarly, the rth row of fi(ρ(F )) is the only row which
whose entries are different from ρ(F ), and the difference is an i replaced by an i +1.
Therefore fi(ρ(F )) is the image of �i(F ) under ρ and the diagram commutes. �

We need one additional Lemma to prove Theorem 1.1.

Lemma 4.1 Let F ∈ SSAF(γ ). Then either �i(F ) ∈ SSAF(γ ) or �i(F ) ∈
SSAF(siγ ).

Proof Assume that F ∈ SSAF(γ ). If �i(F ) = F , then �i(F ) ∈ SSAF(γ ). We must
prove that when an unmatched i is sent to i +1, the resulting semi-skyline augmented
filling is either in SSAF(γ ) or in SSAF(siγ ). Let ir denote the rightmost unmatched
i in F , where r is the row in which ir appears. Similarly, let (i + 1)r denote the i + 1
which replaces ir in �i(F ).

If ir appears in F immediately above an entry greater than i, then (i + 1)r is
mapped to the same position by ρ. In this case the remaining entries of the rth row
are mapped to the same positions in �i(F ) as in F . If the (r + 1)th row does not
contain an i + 1, its entries are sent to the same positions as in F and therefore the
shape of �i(F ) is equal to the shape of F . If there exists an i + 1 = (i + 1)r+1 in
the (r + 1)th row of F , then there must also be an i = ir+1 since ir is unmatched.
The only situation in which the placement of this row into �i(F ) differs from its
placement in F is if (i + 1)r+1 appears to the right of ir in F . In this case (i + 1)r+1
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would be inserted on top of (i +1)r and ir+1 would replace (i +1)r+1. The remaining
entries of row r + 1 would be inserted into the same positions in �i(F ) as in F . The
remaining rows of �i(F ) are inserted into the same positions as in F unless row
r + 2 contains an i and an i + 1. If row r + 2 does contain both i and i + 1, then a
similar argument shows that either ir+2 and (i + 1)r+2 appear in the same positions
as in F or switch positions in �i(F ). Repeating this argument for each row implies
that the shape of �i(F ) is the same as that of F .

If ir appears in F immediately above another entry equal to i, denote this entry
by ir−1 . Since ir is the rightmost unmatched i in read(F ), row r − 1 must contain
an i + 1 = (i + 1)r−1. This entry must appear to the right of ir−1, for otherwise ir
would appear on top of (i +1)r−1 in F . In this case the entry immediately below ir−1
must be equal to i = ir−2 (regardless of the column heights) in order to satisfy the
inversion conditions of an SSAF. Then there must be an i + 1 to the right of ir−2 in
this row as well. Applying the same arguments inductively to each row of F implies
that there must be an i and an i +1 in the first row of F . The semi-skyline augmented
filling conditions imply that an entry α in the first row of F must appear in the αth

column of F [10]. Therefore the entries i and i + 1 in the first row of F must lie in
the ith and (i + 1)th columns respectively. Thus ir−1 appears in the ith column of F

and (i + 1)r−1 appears in the (i + 1)th column. The entry (i + 1)r therefore passes
the ith column and is placed into the (i + 1)th column of �i(F ).

If there is no entry on top of (i + 1)r−1 in F , then all other entries in row r of F

are placed in the same positions in �i(F ). If an entry appears in the (i + 1)th column
of F , then this entry will be inserted onto the ith column in �i(F ). In both cases, the
entries in the ith and (i + 1)th column are permuted and all other entries remain the
same.

Let β be the (possibly empty) entry which lies in the (i + 1)th column of the rth

row of F and hence the ith column of the rth row of �i(F ). This entry β must be
less than i. If there is no i + 1 in row r + 1 of F , then the entries on top of β and
i + 1 in �i(F ) might be permuted but the other entries in row r + 1 of �i(F ) retain
the same positions they held in F . In this case the remaining rows are the same as in
F up to a permutation of the entries in the ith and (i + 1)th column and hence �i(F )

is either in SSAF(γ ) or SSAF(si(γ )). If there is an i + 1 in row r + 1 of F , then
there is an i in row r + 1 as well since ir is unmatched in F . Then ir+1 must lie in
the ith column of F and (i + 1)r+1 must lie to the right of ir+1. Therefore (i + 1)r+1
is placed on top of (i + 1)r in �i(F ) and ir+1 is placed in the cell which contained
(i + 1)r+1 in F . If an entry appears on top of β in F , this same entry appears on top
of β in �i(F ). All other entries in row r + 1 of �i(F ) remain in the same positions
as in F .

The entries in row r + 2 follow a similar pattern. If there is an i + 1 = (i + 1)r+2

in this row of F , there must also be an i = ir+2. Then ir+2 occupies in �i(F ) the
position occupied by (i +1)r+2 in F . The entry in the (i +1)th column of F occupies
the ith column of �i(F ), and (i + 1)r+2 occupies the (i + 1)th column. Otherwise
the only entries affected are the entries in the ith and (i + 1)th column, which are
possibly permuted. Eventually a row is reached which does not contain an i + 1. At
this point the argument in the previous paragraph implies that the resulting shape of
�i(F ) is either γ or si(γ ). �
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Consider a semi-standard Young tableau T whose weight appears in U(ω,λ).
We abuse notation and write T ∈ U(ω,λ). If siω is longer than ω, then Las-
coux and Schützenberger’s definition of fi implies that either fi(T ) ∈ U(ω,λ) or
fi(T ) ∈ U(siω,λ). To see that the objects under consideration are the same, we must
show that the operators fi act the same as the operators �i .

4.2 Proof of Theorem 1.1

We are now ready to prove that the Demazure atoms U(ω,λ) are equivalent to the
polynomials Eω(λ)(X;0,0). We abuse notation by writing F ∈ Eω(λ)(X;0,0) when-
ever F is an SSAF of shape ω(λ). This abuse is justified by the fact that the monomial
xF appears in Eω(λ)(X;0,0).

Proof Fix a partition λ and argue by induction on the length of the permutation ω in
U(ω,λ). First let ω be the identity. Then U(ω,λ) is the dominant monomial. Consider
λ as a composition of n into n parts by adding zeros to the right if necessary. Each
cell a in the first column must have F(a) = 1, since the columns of F are weakly
increasing from top to bottom and the basement entry in this column is 1. Each cell
b in the second column must have F(b) ≤ 2 since the columns are weakly increasing
when read top to bottom and the basement entry is 2. Each cell in the second column
attacks the cell immediately to its left, and therefore cannot contain the entry 1. This
means that each cell in the second column must contain the entry 2. Continuing in-
ductively, we see that for all i, each cell c in the ith column must have F(c) = i. To
see that this is indeed an SSAF, we only need to check type A triples. But if the two
cells in the left-hand column are equal and less than the cell in the right-hand column,
the result is a type A inversion triple. Therefore, the Eλ(X;0,0) = U(id, λ).

Next assume that U(ω,λ) = Eω(λ)(X;0,0), for all permutations ω of length less
than or equal to k, for some k ≥ 0. (Here ω(λ) is the composition obtained by apply-
ing the permutation ω to the columns of λ when λ is considered as a composition of
n into n parts.) Then each permutation of length k +1 is obtained from a permutation
of length k by applying an elementary transposition si . Let τ be an arbitrary such per-
mutation of length k + 1 such that τ = siω for some ω of length k. The monomials
in U(τ, λ) are obtained from the monomials of U(ω,λ) whose image under (possibly
multiple applications of) θ̃i is not a monomial of U(ω,λ). Let T be an arbitrary SSYT
of U(siω,λ) such that T = (θ̃i )

m(S) for some SSYT S ∈ U(ω,λ) and some positive
integer m.

Repeated application of Proposition 4.1 implies that �((θ̃i)
m(S)) = (�i)

m(�(S)).
Since �(S) ∈ Eω(λ)(X;0,0) by the inductive hypothesis, Lemma 4.1 implies
that either (�i)

m(�(S)) ∈ Eω(λ)(X;0,0) or (�i)
m(�(S)) ∈ Esiω(λ)(X;0,0). If

(�i)
m(�(S)) ∈ Eω(λ)(X;0,0), then �((θ̃i)

m(S)) ∈ Eω(λ)(X;0,0), so (θ̃i)
m(S) ∈

U(ω,λ) because U(ω,λ) = Eω(λ)(X;0,0) by the inductive hypothesis. This contra-
dicts the assumption that (θ̃i)

m(S) ∈ U(siω,λ), so (�i)
m(�(S)) ∈ Esiω(λ)(X;0,0).

Therefore, U(siω,λ) ⊆ Esiω(λ)(X;0,0), and so U(τ, λ) ⊆ Eτ(λ)(X;0,0).
To see the reverse containment, let F be a filling represented by a monomial in

Esiω(λ)(X;0,0). Then F is an SSAF of shape γ = siω(λ) = τ(λ). Consider the
smallest j such that γj < γj+1. (Such a j must exist, for otherwise F ∈ Eλ(X;0,0).)
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The type B inversion condition implies that all of the entries in column j must be
equal to j and the lowest γj + 1 entries in column j + 1 must be equal to j + 1. The
entry j cannot appear in row γj + 1 of F , because if it did it would be to the right
of the j th column and therefore attack the j in row γj . This implies that the entry
j + 1 in row γj + 1 is unmatched, and in fact it is the rightmost unmatched j + 1 in
read(F ), since each row below row γj + 1 contains both a j and a j + 1.

Consider the procedure which sends the leftmost unmatched j + 1 in F to a j and
then inserts the resulting row entries back into an SSAF. This is precisely the inverse
of the map �j . Lemma 4.1 implies that F ′ = �−1

j (F ) either has shape τ(λ) or shape
σ(λ) for some permutation σ of length k such that siσ = τ . If F ′ has shape σ(λ),
then the inductive hypothesis implies that F ′ = �(T ) for some SSYT T ∈ U(σ,λ).
Then �j(F

′) = �(θ̃j )(T ) by Proposition 4.1. Since (θ̃j )(T ) is either in U(σ,λ) or
U(τ, λ) and F = �(θ̃j )(T ) is not in U(σ,λ), then F = �(θ̃j )(T ) ∈ U(τ, λ).

Apply �−1
j until F (m) = (�−1

j )(m)(F ) has shape σ(λ). This occurs for some m

less than or equal to the number of unmatched (j + 1)′s in F . To see this, let m be
the number of unmatched (j + 1)′s in F and assume that F (m−1) = (�−1

j )(m−1)(F )

has shape τ . Since τ �= σ , column j is strictly shorter than column j + 1. Apply �j

to F (m−1) to map the j + 1 in row γj + 1 to j = j0. Then j0 lies in the j th column
of F (m) but the other entries in this row of F (m) remain in the same positions as in
F (m−1). This arrangement of the entries in row γj + 1 implies that column j + 1 of
F (m) has height γj , and hence the shape of F (m) is different from the shape of F (m−1).
Since the shape of F (m) must be equal to either sj σ or σ , the shape of F (m) must be
σ . The inductive hypothesis implies that F (m) = �(T ) for some T ∈ U(σ,λ), since
σ has length less than that of τ = sj σ . Proposition 4.1 implies that F = �(θ̃j )

m(T ),
which means that F ∈ U(τ, λ). Therefore Eτ(λ)(X;0,0) ⊆ U(τ, λ).

The above shows that Eτ(λ)(X;0,0) = U(τ, λ) for an arbitrary choice of permu-
tation τ of length k + 1. Therefore it is true for all permutations of length k + 1.
Applying the principle of mathematical induction completes the proof. �

Theorem 1.1 provides a non-inductive construction of the Demazure atoms. In par-
ticular, given a partition λ � n and a permutation ω ∈ Sn, first consider λ as a compo-
sition of n into n parts by appending zeros if necessary. Then apply the permutation
ω to the columns of λ to obtain the shape ω(λ). Finally, determine all semi-skyline
augmented fillings of the shape ω(λ). The monomials given by the weights of these
SSAFs are the monomials appearing in the Demazure atom U(ω,λ).

5 Computation of right keys

Recall that the Demazure atom U(ω,λ) is equal to the sum of the weights of all SSYT
with right key K(ω,λ). Therefore all of the SSYT which map to an SSAF of shape
ω(λ) have the same right key, K(ω,λ). Theorem 1.1 provides a simple method to
determine the right key of a semi-standard Young tableau. The super SSAF (denoted
super(γ )) of a composition γ is the SSAF of shape γ whose ith column contains only
the entries i. The weight of this SSAF is the dominant monomial in the polynomial
U(ω,λ) under lexicographic ordering.
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Corollary 5.1 Given an arbitrary SSYT T , let γ be the shape of �(T ). Then
K+(T ) = key(γ ).

Proof We must show that the map � : SSYT → SSAF sends a key T to super(γ ),
where γ is the composition content(T ). We prove this by induction on the number of
columns of T . If T has only one column, C1 = α1 α2 . . . αl , then this column maps
to a filling F with one row such that the αth

i column contains the entry αi for each i.
This is precisely super(content(T )).

Next assume that �(T ) = super(content(T )) for all keys T with less than or equal
to m−1 columns. Let S be a key with m columns. After the insertion of the rightmost
m − 1 columns, the figure is super(content(S \ C1)) by the inductive hypothesis. We
must show that the insertion of the leftmost column produces super(content(S)).

Let super(content(S \ C1)) have shape γ = (γ1, γ2, . . . , γn). For each i, if γi �= 0,
then i = α is an entry in C1 since S is a key. Before the insertion of C1, each of the
cells in the ith column each contain the entry i. Therefore α cannot be bumped further
in the reading order than the cell in row γi + 1 of column i. This implies that each of
the non-zero entries of γ in C1 must appear at or above their respective columns, and
the pigeon-hole principle therefore implies that each appears at the top of its column.
The new columns are created by the entries in C1 which do not appear in any of the
subsequent columns of S. Therefore the result is indeed the SSAF super(content(S)).

Since super(ω(λ)) ∈ U(ω,λ) and U(ω,λ) is a collection of all SSYT with the
same right key, each SSYT which maps to a SSAF of shape ω(λ) has the same right
key as super(ω(λ)). Therefore, if T ∈ U(ω,λ), then K+(T ) = key(ω(λ)). �

Corollary 5.1 provides a quick procedure for calculating the right key of any
SSYT. In particular, if T is an arbitrary SSYT, then the right key of T is given
by key(shape(�(T ))). (See Figure 4 for an example.) This calculation facilitates
the computation of Demazure atoms and Demazure characters. Let γ be a compo-
sition which rearranges a partition λ, so that γ = ω(λ). The key polynomial κγ is
given by the weights of all semi-standard Young tableaux T of shape λ such that
K+(T ) ≤ key(γ ) [9]. Therefore

κγ =
∑

α≤γ

NSα,

where α ≤ γ if and only if ω1(α) = λ for some permutation ω1 such that ω1 ≤ ω in
the Bruhat order.

Fig. 4 Computation of the key of an SSYT
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6 Key polynomials and permuted basements

Several different methods for computing key polynomials are described in [11]. The
notion of a semi-skyline augmented filling with a permuted basement provides an
additional method which utilizes the action of the permutation group in a natural
way.

Let γ be a weak composition of n into n parts such that γ is obtained from a
partition λ by applying the permutation ω ∈ Sn. (Here λ is a partition of n into n non-
negative parts.) First construct the augmented diagram associated to λ. Next apply
the permutation ω to the entries in the basement, without permuting the columns. Fill
the cells with positive integers in such a way that the columns are weakly increasing
when read top to bottom and every triple is an inversion triple. The result, F̃ is called a
permuted basement SSAF with shape λ and basement ω. See Figure 5 for an example
with the basement entries in bold. To condense notation, we write pb(λ,ω) to denote
the set of all permuted basement SSAFs with shape λ and basement ω. Let K̃ω,λ =∑

F̃
xF̃ be the sum of the weights of all permuted basement SSAFs in pb(λ,ω).

Proposition 6.1 The sum of the weights of all permuted basement SSAFs with par-
tition shape λ and basement ω is the key polynomial κγ , where γ = ω(λ). (Symboli-
cally, K̃ω,λ = κω(λ).)

Proof Recall that the key polynomial κγ consists of the weights of all SSAFs whose
shape is less than or equal to γ under the Bruhat ordering. We construct a weight-
preserving bijection between these SSAFs and the set pb(λ,ω), where ω(λ) = γ . In
particular, this bijection preserves the row entries of each diagram.

Begin with an SSAF F of shape less than or equal to γ and an empty permuted
basement SSAF, G̃, with basement ω. Find the largest entry, α, in the first row of F

and place it on top of the leftmost entry (in the basement G̃) which is greater than or
equal to α. Next find the second largest entry, β , in the first row of F and place it on
top of the leftmost available entry in the basement of G̃ that is greater than or equal
to β . (We say an entry is available if it lies beneath an empty cell.) Continue in this
manner until all of the entries in the first row of F have been placed into G̃. Repeat
this process for each row (placing entries from row i of F into row i of G̃) until all
the row entries of F have been inserted into G̃.

If (a1, a2, . . . , ak) and (b1, b2, . . . , bk) are two ordered sets of integers, we write
[a1, a2, . . . , ak] ≤ [b1, b2, . . . , bk] if ai ≤ bi for all i when the ai and bi are written
in decreasing order. If Fi is the collection of entries in row i of F and F ′

i−1 is the set
containing the largest |Fi | entries in row i −1 of F , then we must have [Fi] ≤ [F ′

i−1].
Therefore the j th largest entry in row i of F must be less than or equal to at least j

Fig. 5 A permuted basement
SSAF with basement
(2,4,3,1,5) and shape (3,3,1)
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entries in row i − 1 of F , and hence after the placement of the largest j − 1 entries
of F there is still a position in the ith row of G̃ in which the j th largest entry can be
placed. Therefore the map is well-defined.

We must prove that the resulting diagram, G̃, is indeed a permuted basement
SSAF. To see this, we first show that G̃ satisfies the SSAF conditions. The columns of
G̃ are weakly increasing when read top to bottom by construction, so we must check
that every triple is an inversion triple.

Let the cells {a, b, c} form a type A triple in G̃ as shown.

We know by construction that a ≤ c. Since b was not placed on top of c, either b < a

or b > c. In either case, the three cells form a type A inversion triple.
Next assume the cells {a, b, c} form a type B triple in G̃ as shown.

Then b > a but b ≤ c. So these cells form a type B inversion triple. Therefore every
triple in G̃ is an inversion triple and hence G̃ satisfies the SSAF conditions.

Now we prove that the shape of G̃ is a partition. The shape of the SSAF F must be
less than or equal to γ . This means that the columns of F are obtained by permuting
the columns of the partition λ according to a permutation τ which is less than or
equal to ω in the Bruhat order. (From this point on we will use ≤ to denote Bruhat
inequality.) The ith letter in the permutation τ determines which column of F is the
ith tallest column. If the first row of F contains k1 non-empty cells, this set S1 of cells
are given by the first k1 entries in τ . If T1 is the collection of the first k1 entries in ω,
then [S1] ≤ [T1], since τ ≤ ω. Therefore each of the entries in S1 finds a position in
the first k1 columns of G̃.

Assume that the second row of F contains k2 non-empty cells, collected into the
set F2. These cells appear in the columns given by the first k2 letters in τ . Therefore
[F2] ≤ [S2], where S2 is the set consisting of the first k2 letters of τ . Let T2 be the set
consisting of the first k2 letters in ω. Then [S2] ≤ [T2] since τ ≤ ω in the Bruhat order.
The largest k2 entries in row 2 of F appear in the first k2 columns of G̃, since [F2] ≤
[S2] ≤ [T2] ≤ [(T1)]k2 , where [(T1)]k2 is the set containing the k2 largest entries in
T1. Continuing this line of reasoning implies that for each row i of F , the ki non-zero
entries in row i appear in the first ki columns of G̃. Therefore the resulting shape is a
partition shape. So G̃ is indeed a permuted basement SSAF.

Each SSAF in κγ maps to a permuted basement SSAF G̃, so to prove that K̃γ = κγ

we must show that these G̃ are the only permuted basement SSAFs with basement ω.
To see this, we describe an inverse to the map above. Consider an arbitrary permuted
basement SSAF, G, with shape λ and basement ω. Map the entries in each row of
G into an SSAF F by the same process described above. Again this mapping makes
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Fig. 6 The permutation
associated to this composition is
τ = (3,4,7,1,6,2,5,8)

sense since the set Gi of entries in the ith row of G have the property that [Gi] ≤
[G′

i−1]. The result is an SSAF by the same argument as for G̃ above.
We must prove that the shape of the SSAF F obtained from this mapping is

less than or equal to ω in the Bruhat order on compositions. We do this by prov-
ing that, for the permutation τ applied to λ to obtain the shape of F , we have
[τ(1), τ (2), . . . , τ (k)] ≤ [ω(1),ω(2), . . . ,ω(k)] for 1 ≤ k ≤ n. First notice that τ is
given by listing the columns of G in order from tallest to shortest, where columns of
the same height are listed from left to right. (See Figure 6 for an example.)

Let Ti be the set of entries in row i of G and let ki be the number of non-empty
cells in row i of G. Then we have [T1] ≤ [ω(1),ω(2), . . . ,ω(k1)]. (For ease of no-
tation, let [ω]i = [ω(1),ω(2), . . . ,ω(i)].) The columns of F containing the entries
from T1 represent the first k1 letters of the permutation τ applied to λ to obtain the
shape of F . Therefore [τ ]k1 ≤ [ω]k1 . The remaining letters of τ are listed in increas-
ing order following the first k1 letters. Let m be the first position after the kth

1 position
where τ and ω differ. Let α be the mth letter of τ and let β be the mth letter of ω.
Then α is the smallest positive integer that is not included in the first m − 1 letters
of τ .

We claim that [τ(1), τ (2), . . . , τ (m − 1), α] ≤ [ω(1),ω(2), . . .ω(m − 1), β].
To see this, first note that [τ ]m−1 ≤ [ω]m−1, since these sets are obtained from
{τ(1), τ (2), . . . , τ (k1)} and {ω(1),ω(2), . . .ω(k1)} by adding equivalent elements.
If β > α, then [τ ]m ≤ [ω]m since we are adding a larger element to [ω]m−1 than to
[τ ]m−1. Otherwise, let ρ be the (α − 1)th largest element in [ω]m−1. Then ρ > α − 1,
since β ≤ α − 1 but β /∈ [ω]m−1. Adding β to [ω]m−1 makes ρ the αth largest ele-
ment in [ω]m and therefore ρ is greater than or equal to the αth largest element, α,
in [τ ]m. The α − 1 smallest elements of τ are the set {1,2, . . . , α − 1} and hence are
less than any others set of positive integers consisting of α − 1 elements. Therefore
[τ ]m ≤ [ω]m. Repeat the above argument for each m ≥ k1 such that τ(m) �= ω(m).
This shows that [τ ]m ≤ [ω]m for all m ≥ k1.

Next let r2 be the lowest row containing less than k1 non-empty cells. Then [Tr2] ≤
[Tr2−1] and all of the entries in row r2 of F will appear in columns weakly to the left
of the columns ω(1),ω(2), . . . ,ω(k2), where k2 is the number of entries in row r2
of G. Continuing this line of reasoning for each row of G, we see that the ith tallest
column in F appears weakly to the left of the column ω(i). Since τi denotes the ith

tallest column in F (where columns of the same height are ordered from left to right),
we have [τ(1), τ (2) . . . , τ (j)] ≤ [ω(1),ω(2), . . . ,ω(j)] for all j ≤ k1. Therefore the
permutation applied to λ to obtain the shape of F is less than or equal to ω in the
Bruhat order. �

Figure 7 depicts the key polynomial associated to the partition (2,1) and permuta-
tion (3,1,2). Notice that when the basement of a permuted basement SSAF contains
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Fig. 7 κ(3,1,2),(2,1) = x2
1x2 + x1x2

2 + x2
1x3 + x1x2x3 + x1x2

3

the permutation δ = (n,n − 1, . . . ,2,1), the row entries appear in decreasing order.
Since every SSYT of shape λ appears in κδ(λ), the collection of row-strict plane par-
titions with shape λ is the set pb(λ, δ) with basements removed.

One might be inclined to generalize the notion of a permuted basement SSAF to
composition shapes. The definition makes sense, but the collection of all such objects
whose shape rearranges a fixed partition λ is much larger than the collection of SSYT
of shape λ. An exploration of these notions and their connection to the Robinson-
Schensted-Knuth algorithm will appear in [3].
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