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Abstract Drinfeld defined a unitarized R-matrix for any quantum group Uq(g).
This gives a commutor for the category of Uq(g) representations, making it into a
coboundary category. Henriques and Kamnitzer defined another commutor which
also gives Uq(g) representations the structure of a coboundary category. We show
that a particular case of Henriques and Kamnitzer’s construction agrees with Drin-
feld’s commutor. We then describe the action of Drinfeld’s commutor on a tensor
product of two crystal bases, and explain the relation to the crystal commutor.

Keywords Coboundary category · Quantum group · R-matrix · Crystal basis

1 Introduction

Let A and B be the crystals of two representations of a simple complex Lie alge-
bra g. Using the Schützenberger involution, Henriques and Kamnitzer [5] defined an
isomorphism σA,B : A ⊗ B → B ⊗ A, which they call the crystal commutor. This
gives g-crystals the structure of a coboundary category.

By an analogous construction, Henriques and Kamnitzer also defined a commutor
σhk

V,W : V ⊗ W → W ⊗ V , where V and W are finite dimensional representations
of Uq(g). This gives Uq(g) representations the structure of a coboundary category.
There is some choice in lifting the Schützenberger involution to representations, so
the commutor here is not unique.
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There is a more standard isomorphism from V ⊗W to W ⊗V , called the braiding.
This is defined by v⊗w �→ Flip◦R(v⊗w), where R is the universal R matrix. In [4],
Drinfeld introduced a “unitarized” R matrix R̄, and showed that the map V ⊗ W →
W ⊗ V given by v ⊗ w �→ Flip ◦ R̄(v ⊗ w) is a coboundary structure on the category
of Uq(g) representations.

The first purpose of this note is to relate these two ways of putting a coboundary
structure on the category of Uq(g) representations, thus answering a question from
[5]. We then show that, for any two crystal bases, Drinfeld’s commutor preserves the
tensor product of the lattices and acts by the crystal commutor on the tensor product
of the bases (up to some negative signs). Thus the crystal commutor is essentially a
combinatorial limit of Drinfeld’s commutor for representations. This explains why
the crystal commutor is a coboundary structure, and not a braiding, as one might
naively expect.

This paper is organized as follows. In sections 2–6 we review some back-
ground material concerning the quantum Weyl group, crystal bases, and Drinfeld’s
unitarized R-matrix. In Section 7 we construct the unitarized R matrix as R̄ =
(Y−1 ⊗ Y−1)�(Y ), where Y belongs to a completion of Uq(g). In Section 8 we
realize R̄ as (ξ ′−1 ⊗ ξ ′−1) ◦ ξ ′, where ξ ′ is a slight modification of Schützenberger
involution. In Section 9 we describe how R̄ acts on crystal bases. We finish with two
questions.

2 Notation

We must now fix some notation. For the most part we follow conventions from [3].

• g is a complex simple Lie algebra with Cartan algebra h, and A = (aij )i,j∈I is its
Cartan matrix.

• 〈·, ·〉 denotes the paring between h and h� and (·, ·) denotes the usual symmetric
bilinear form on either h or h�. Fix the usual bases αi for h� and Hi for h, and
recall that 〈Hi,αj 〉 = aij .

• di = (αi, αi)/2, so that (Hi,Hj ) = d−1
j aij . Let B denote the matrix (d−1

j aij ).

• qi = qdi .
• Hρ is the element of h such that 〈αi,Hρ〉 = di = (αi, ρ) for all i.
• W is the Weyl group for g, which is generated by the simple reflections si , for

i ∈ I .
• θ is the diagram automorphism such that w0(αi) = −αθ(i), where w0 is the longest

element in the Weyl group W .
• Uq(g) is the quantized universal enveloping algebra associated to g, generated over

C(q) by Ei , Fi for all i ∈ I , and KH for H in the co-weight lattice of g. As usual,
let Ki = KHi

. For convenience, we recall the exact formula for the coproduct:

⎧
⎪⎨

⎪⎩

�Ei = Ei ⊗ Ki + 1 ⊗ Ei

�Fi = Fi ⊗ 1 + K−1
i ⊗ Fi

�Ki = Ki ⊗ Ki

(1)
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• [n] = qn−q−n

q−q−1 , and X(n) = Xn

[n][n−1]···[2] .
• Vλ is the irreducible representation of Uq(g) with highest weight λ. Let vλ denote

a fixed highest weight vector in this representation.

3 The completion Ũq(g)

We will be working in the completion Ũq(g) of Uq(g) with respect to the weak topol-
ogy generated by all matrix elements of finite dimensional representations. This sec-

tion includes two equivalent explicit definitions of Ũq(g) (Definition 3.1 and Corol-
lary 3.6), as well as some basic results about its structure. Most importantly, we show

that Ũq(g) is isomorphic to the direct product of the endomorphism rings of all Vλ.

Thus an element of Ũq(g) is equivalent to a choice of x ∈ End(Vλ) for each λ ∈ P+.

Definition 3.1 Let R be the ring consisting of series
∑∞

k=1 Xk , where each Xk ∈
Uq(g) and, for any fixed λ, Xk · Vλ = 0 for all but finitely many k. Notice that there
is a well defined action of R on any Vλ. Let I be the two sided ideal in R consisting

of elements which act as zero on all Vλ. Then Ũq(g) is defined to be R/I .

Comment 3.2 This is equivalent to the completion with respect to the topology men-
tioned above, since Uq(g) is semi simple, so the set of matrix elements of finite di-
mensional representations is point-separating for Uq(g). In particular the natural map

of Uq(g) to Ũq(g) is an embedding.

This completion has a simple description as follows:

Theorem 3.3 Ũq(g) is isomorphic as an algebra to
∏

λ∈P+
EndC(q)(Vλ).

Before proving Theorem 3.3 we will need two technical lemmas.

Lemma 3.4 There is an element pλ ∈ Uq(g) such that

(i) pλ(vλ) = vλ

(ii) For any μ �= λ, pλ sends the μ weight space of Vλ to 0.
(iii) pλVμ = 0 unless 〈μ − λ,ρ∨〉 > 0 or μ = λ.

Proof Fix a lowest weight vector vlow
λ ∈ Vλ. Vλ is a quotient of U−

q (g) · vλ, so we can

choose some F ∈ U−
q (g) such that Fvλ = vlow

λ . Similarly, we can choose some E ∈
U+

q (g) such that Evlow
λ = vλ. Then p′ := EF clearly satisfies the first two conditions.

For each i ∈ I , let Ri = E
(〈λ,α∨

i 〉)
i F

(〈λ,α∨
i 〉)

i . Let

pλ =
(

∏

i∈I

Ri

)

p′,
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where the product is taken in any order. It is straightforward to see that this element
satisfies the desired properties. �

Lemma 3.5 Let Iλ be the kernel of the action of Uq(g) on Vλ. Then Uq(g)/Iλ is
isomorphic to EndC(q)Vλ.

Proof Let d = dim(Vλ). Using the PBW basis in the Es, there is a d dimensional
subspace F of elements in U+

q (g) that act non-trivially on Vλ, and in fact such that
pλF is still d dimensional, where pλ is as in Lemma 3.4. One can tensor this space
with the PBW operators from U−

q (g) to get a d2 dimensional subspace of Uq(g) that
acts non-trivially on Vλ. The result follows. �

Proof of Theorem 3.3 Using Lemmas 3.4 and 3.5, we can realize any endomorphism
of Vλ using an element of Uq(g) that kills Vμ unless 〈μ − λ,ρ∨〉 > 0, or μ = λ. The
result follows. �

We include the following result to show how our definition of Ũq(g) relates to
other completions that appear in the literature. This could also be taken as the defini-

tion of Ũq(g).

Corollary 3.6 Let each λ ∈ P+, let Iλ be the two sided ideal of Uq(g) generated

by all E
〈λ,α∨

i 〉
i and F

〈λ,α∨
i 〉

i . Let U ′′
q (g) = lim← Uq(g)/Iλ, using the partial order on

weights where μ ≤ λ if and only if λ − μ ∈ P+. U ′′
q (g) acts in a well defined way

on any finite dimensional module, so there is a map U ′′
q (g) → Ũq(g). This is an

isomorphism.

Proof The same argument as we used to prove Theorem 3.3 shows that the image

is
∏

λ∈P+
End(Vλ), which is all of Ũq(g). The map is injective by the definition of

U ′′
q (g). �

Comment 3.7 The completion Ũq(g) is related to the algebra U̇ from [9, Chapter 23]
as follows. U̇ acts in a well defined way on each irreducible representation Vλ, and
no non-zero element of U̇ acts as zero on every Vλ. Hence U̇ naturally embeds in

Ũq(g). There is a canonical basis Ḃ for U̇ . All but finitely many elements of Ḃ act as
zero on any given Vλ (see [9] Remark 25.2.4 and Section 23.1.2), so the space of all

formal (infinite) linear combinations of elements of Ḃ also maps to Ũq(g). This map

is bijective, and so Ũq(g) is naturally identified with the space of all formal linear
combinations of elements of Ḃ .

It is clear the Ũq(g) has the structure of a ring, and that it acts in a well de-
fined way on finite representations. It also has a well defined topological coalge-
bra structure, with the coproduct of u defined by the action of an element u on
a tensor product V ⊗ W . This is only a topological coproduct because it maps
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Ũq(g) into
∏

λ,μ

EndC(q)Vλ ⊗ EndC(q)Vμ, which can be though of as a completion

of
∏

λ

EndC(q)Vλ ⊗
∏

μ

EndC(q)Vμ. The restriction of this coproduct to Uq(g) agrees

with the normal coproduct so, since Uq(g) is a dense subalgebra of Ũq(g), we see

that Ũq(g) is a topological Hopf algebra.

We will need to consider the group of invertible elements of Ũq(g) acting on Ũq(g)

by conjugation. This action preserves the algebra structure of Ũq(g), but does not
preserve the coproduct.

Definition 3.8 Let X be an invertible element in Ũq(g). Define CX (conjugation

by X) to be the algebra automorphism of Ũq(g) defined by u → XuX−1.

Comment 3.9 We caution the reader that CX is not that Hopf theoretic adjoint action
of X, as defined in, for example, [3].

Comment 3.10 For any invertible X ∈ Ũq(g), the action of X on representations is
compatible with the automorphism CX in the sense that, for any representation V ,
the following diagram commutes:

V
X

V

Ũq(g)

CX

Ũq(g).

In general, CX does not preserve the subalgebra Uq(g) of Ũq(g), although it does in
all cases we consider here.

3.1 Coalgebra antiautomorphisms

We will be particularly interested in the case where CX is a coalgebra antiautomor-
phism. Explicitly, this means that CX satisfies the equation

�op(CX(u)) = CX ⊗ CX

(
�(u)

)
, for all u ∈ Uq(g). (2)

Such X are important because of the following result, which follows immediately
from Comment 3.10 and the fact that Uq(g) is semi-simple.

Proposition 3.11 CX is a coalgebra antiautomorphism if and only if the map

V ⊗ W → W ⊗ V

v ⊗ w �→ Flip ◦ (X−1 ⊗ X−1)�(X)v ⊗ w
(3)

is an isomorphism of Uq(g) representations for all V and W .
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4 Coboundary categories and the unitarized R-matrix

We now briefly review the universal R matrix, and the corresponding braiding on the
category of Uq(g) representations. We then give Drinfeld’s definition of a cobound-
ary category, and review his unitarization procedure whereby the universal R matrix
is modified, resulting in a coboundary structure on the category of Uq(g) representa-
tions.

4.1 The R-matrix

Definition 4.1 A braided monoidal category is a monoidal category C , along with a
natural isomorphism σbr

V,W : V ⊗ W → W ⊗ V for each pair V,W ∈ C , such that for
any U,V,W ∈ C ,

(σ br
U,W ⊗ Id) ◦ (Id ⊗ σbr

V,W ) = σbr
U⊗V,W

(Id ⊗ σbr
U,W ) ◦ (σ br

U,V ⊗ Id) = σbr
U,V ⊗W .

The system σbr := {σbr
V,W } is called a braiding on C .

We will use the term braiding for such a σbr and use the term commutativity
constraint for any natural isomorphism V ⊗ W → W ⊗ V .

Let ˜Uq(g) ⊗ Uq(g) be the completion of Uq(g) ⊗ Uq(g) in the weak topology
defined by all matrix elements of representations Vλ ⊗ Vμ.

Definition 4.2 A universal R-matrix is an element R of ˜Uq(g) ⊗ Uq(g) such that
σbr

V,W := Flip ◦ R gives a braided structure to the monoidal category of Uq(g) repre-
sentations.

Comment 4.3 The universal R matrix is not truly unique. However, it exists, and there
is a well studied standard choice. We will use a result of Kirillov-Reshetikhin and
Levendorskii-Soibelman (see Theorem 7.1) which describes this standard R-matrix
in terms of Tw0 .

4.2 Coboundary categories

An analogous notion to braided monoidal categories is that of a coboundary monoidal
category, due to Drinfeld [4, Section 3].

Definition 4.4 A coboundary monoidal category is a monoidal category C , along
with a natural isomorphism σV,W : V ⊗ W → W ⊗ V for each pair V,W ∈ C , satis-
fying

(i) σW,V ◦ σV,W = Id.
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(ii) For all U,V,W ∈ C , the following diagram commutes:

U ⊗ V ⊗ W
σU,V ⊗Id

Id⊗σV,W

V ⊗ U ⊗ W

σV ⊗U,W

U ⊗ W ⊗ V
σU,W⊗V

W ⊗ V ⊗ U.

Following [5, Section 3], we call (i) the symmetry axiom and (ii) the cactus axiom.
We will use the term commutor for a σ that satisfies these two conditions.

Though the braiding σbr is better known, the category of Uq(g) modules also has
a natural commutor σdr , which is our main object of study. We now review its con-
struction following Drinfeld [4, Section 3] and Berenstein-Zwicknagl [2, Section 1].

4.3 The unitarized R-matrix

Consider the “ribbon” or “quantum Casimir element” Q ∈ Ũq(g), which acts on the
irreducible representation Vλ, as multiplication by q(λ,λ+2ρ) (see for example [1]). In
fact, Q can act by fractional powers of q , so to be precise, we should adjoin a fixed
kth root of q to our base field C(q), where k is twice the dual Coxeter number for g.

Proposition 4.5 (See [1], Section 2.2) RopR = Q−1 ⊗ Q−1�(Q).

The element Q is central, and admits a central square root, denoted Q1/2, which
acts on Vλ as multiplication by the constant q(λ,λ)/2+(λ,ρ). R̄ is defined as

R̄ := R(RopR)−1/2.

Using Proposition 4.5 and the fact that Q1/2 is central, this is equivalent to

R̄ = R(Q1/2 ⊗ Q1/2)�(Q−1/2) = (Q1/2 ⊗ Q1/2)R�(Q−1/2). (4)

Definition 4.6 Define the commutor for the category of Uq(g)-modules by σdr :=
Flip ◦ R̄.

The following is an easy consequence of the definitions.

Proposition 4.7 ([4, Proposition 3.3]) σdr is a coboundary structure on the category
of Uq(g) modules, i.e. it satisfies the conditions of Definition 4.4.

5 The quantum Weyl group

Following Lusztig [9, Part VI] and [10, Section 5], we introduce an action of the braid

group of type g on any Vλ, and thus a map from the braid group to Ũq(g). The images

of elements of the braid group are invertible elements in Ũq(g), so, as discussed in

Section 3, we can define an action of the braid group on Ũq(g) by conjugation. This
action in fact restricts to an action of the braid group on Uq(g).
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5.1 The definition

We first define the action of the generators Ti . Our conventions are such that Ti is
T

′′
i,−1 = T ′−1

i,1 in the notation from [9].

Definition 5.1 (See [9, 5.2.1]) Ti is the element of Ũq(g) that acts on a weight vector
v by:

Ti(v) =
∑

a, b, c ≥ 0
a − b + c = (wt(v),αi)

(−1)bqac−b
i E

(a)
i F

(b)
i E

(c)
i v.

By [9, Theorem 39.4.3], these Ti generate an action of the braid group on each Vλ,

and thus a map from the braid group to Ũq(g). This realization of the braid group is
often referred to as the quantum Weyl group. It is related to the classical Weyl group
by the fact that, for any weight vector v ∈ V , wt(Ti(v)) = si(wt(v)).

Theorem 5.2 (See [3], Theorem 8.1.2 or [9], Section 37.1.3) The conjugation action

of the braid group on Ũq(g) (see Definition 3.8) preserves the subalgebra Uq(g), and
is defined on generators by:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CTi
(Ei) = −FiKi

CTi
(Fi) = −K−1

i Ei

CTi
(KH ) = Ksi(H)

CTi
(Ej ) = ∑−aij

r=0 (−1)r−aij K−r
i E

(−aij −r)

i EjE
(r)
i if i �= j

CTi
(Fj ) = ∑−aij

r=0 (−1)r−aij Kr
i F

(r)
i FjF

(−aij −r)

i if i �= j.

(5)

Fix some w in the Weyl group W , and a reduced decomposition of w into simple

reflections w = si1 · · · sik . By [9, Section 2.1.2], the element Tw ∈ Ũq(g) defined by

Tw := Ti1 · · ·Tik (6)

is independent of the reduced decomposition. Furthermore, the following holds.

Lemma 5.3 (See [3] Proposition 8.1.6) Let w ∈ W be such that w(αi) = αj . Then
CTw(Ei) = Ej .

5.2 The action of Tw0

Let w0 be the longest element of the Weyl group, and Tw0 the corresponding element
of the braid group given by Equation (6).
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Lemma 5.4 The action of CTw0
on Uq(g) is given by

⎧
⎪⎨

⎪⎩

CTw0
(Ei) = −Fθ(i)Kθ(i)

CTw0
(Fi) = −K−1

θ(i)Eθ(i)

CTw0
(KH ) = Kw0(H), so that CTw0

(Ki) = K−1
θ(i)

Proof Fix i. Then Tw0 can be written as Tw0 = Tθ(i)Tw for some w in the Weyl group.
By the definition of θ , CTw0

(Ei) is in the weight space −αθ(i). It follows that CTw(Ei)

is in the weight space αθ(i). Hence by Lemma 5.4, CTw(Ei) = Eθ(i). Therefore, by
(5), CTw0

(Ei) = −Fθ(i)Kθ(i), as required. A similar proof works for Fi . The action
on KH is straightforward. �

Comment 5.5 Note that CTw0
is not a coalgebra antiautomorphism, so we cannot use

Tw0 to construct a commutativity constraint in the manner of Proposition 3.11. We
will first need to correct Tw0 . There are essentially two natural ways of doing this—
one leads to the standard braiding and the other to Drinfeld’s coboundary structure.

We now understand the action of CTw0
on Uq(g). We also need to understand how

Tw0 acts on any finite dimensional representation and in particular on highest weight
vectors.

Lemma 5.6 Let V be any representation, and v ∈ V a weight vector such that Ei ·
v = 0. Then Ti(v) = (−1)nqdinF

(n)
i v, where n = 〈wt(v),α∨

i 〉.

Proof Fix v ∈ V with Ei(v) = 0, and let n = 〈wt(v),α∨
i 〉. It follows from Uq(sl2)

representation theory that Fn+1
i (v) = 0. The lemma then follows directly from the

definition of Ti (Definition 5.1). �

The following can be found in [9, Lemma 39.1.2] recalling that our Ti is equal
to T ′−1

i,1 in the notation from that book, although we find it convenient to include a
proof.

Proposition 5.7 Let w = si1 · · · si
 be a reduced word. For each 1 ≤ k ≤ 
, the fol-
lowing statements hold.

(i) Eik+1Tik · · ·Ti1(vλ) = 0.

(ii) Tik · · ·Ti1(vλ) = (−1)n1+···+nkqdi1n1+···+dik
nkF

(nk)
ik

· · ·F (n1)
i1

vλ,
where nj = 〈si1 · · · sij−1α

∨
ij
, λ〉.

Proof Note that wt(Eik+1Tik · · ·Ti1(vλ)) = sik · · · si1λ + αi+1, so it suffices to show
that the dimension of the sik · · · si1λ + αik+1 weight space in Vλ is zero. The di-
mensions of weight spaces are invariant under the Weyl group, so we may act by
si1 · · · sik and instead show that the λ + si1 · · · sikαik+1 weight space of Vλ is zero. But
si1 · · · sik sik+1 is a reduced word in the Weyl group, which implies that si1 · · · sikαik+1

is a positive root. Since λ is the highest weight of Vλ, part (i) follows.
Part (ii) Follows by repeated use of (i) and Lemma 5.6. �
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Definition 5.8 Fix a highest weight vector vλ ∈ Vλ. Define the corresponding lowest
weight vector vlow

λ ∈ Vλ by

Tw0vλ = (−1)〈2λ,ρ∨〉q(2λ,ρ)vlow
λ . (7)

Proposition 5.9 For any reduced expression w0 = si1 · · · sim , we have

vlow
λ = F

(nm)
im

· · ·F (n1)
i1

vλ,

where nj = 〈si1 · · · sij−1α
∨
ij
, λ〉.

Proof Note that Tw0vλ = Tim · · ·Ti1vλ. The result then follows from Proposition 5.7
part (ii). �

Comment 5.10 It follows from Proposition 6.11 below that vλ and vlow
λ are also re-

lated by

Tw0v
low
λ = vλ.

This is somewhat more difficult to prove directly. It can also be shown that vlow
λ

is the lowest weight basis vector in the unique canonical (or global) basis for Vλ

containing vλ.

6 Crystal bases, Schützenberger involution and the crystal commutor

In this section, we introduce crystal bases, abstract crystals, the Schützenberger invo-
lution and the crystal commutor. We also explore the relations between these topics.
We follow [6] for results on crystal bases and [5] for results on the crystal commutor.
Unfortunately, the conventions in [3] and [6] do not quite agree, so we have modified
some of the results from [6] to match our conventions. In particular, we will need to
work with crystal bases at ∞ instead of at 0 since, with our choice of coproduct for
Uq(g), crystal bases at 0 do not have a nice tensor product.

6.1 Crystal bases

Definition 6.1 Let A∞ = C[q]∞ be the algebra of rational functions in one variable
q−1 over C whose denominators are not divisible by q−1.

Definition 6.2 Fix a finite dimensional representation V of g, and i ∈ I . Define the
Kashiwara operators F̃i , Ẽi : V → V by linearly extending the following definition

{
F̃i(F

(n)
i (v)) = F

(n+1)
i (v)

Ẽi(F
(n)
i (v)) = F

(n−1)
i (v)

for all v ∈ V such that Ei(v) = 0.
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Comment 6.3 It follows from the representation theory of sl2 that F̃i and Ẽi can also
be defined by linearly extending

{
Ẽi(E

(n)
i (v)) = E

(n+1)
i (v)

F̃i(E
(n)
i (v)) = E

(n−1)
i (v)

for all v ∈ V such that Fi(v) = 0. Thus the operators are symmetric under interchang-
ing the roles of Ei and Fi , even if the definition does not appear to be.

Definition 6.4 A crystal basis of a representation V (at q = ∞) is a pair (L,B),
where L is an A∞-lattice of V and B is a basis for L/q−1 L, such that

(i) L and B are compatible with the weight decomposition of V .
(ii) L is invariant under the Kashiwara operators and B ∪ 0 is invariant under their

residues ei := Ẽ
(mod q−1 L)
i , fi := F̃

(mod q−1 L)
i : L/q−1 L → L/q−1 L.

(iii) For any b, b′ ∈ B , we have eib = b′ if and only if fib
′ = b.

The following three theorems of Kashiwara are crucial to us.

Theorem 6.5 ([6], Theorem 1) Let V,W be representations with crystal bases (L,A)

and (M,B) respectively. Then (L ⊗ M,A ⊗ B) is a crystal basis of V ⊗ W .

Theorem 6.6 ([6], Theorem 2) Let Lλ be the A∞ module generated by the F̃i acting
on vλ and let Bλ be the set of non-zero vectors in Lλ/q

−1 Lλ obtained by acting on
vλ with any sequence of F̃i . Then (Lλ,Bλ) is a crystal basis for Vλ.

Theorem 6.6 gives a choice of crystal basis for any Vλ, unique up to an overall
scalar. The following result shows that these are all the crystal basis, and furthermore
that any crystal basis of a reducible representation V is a direct sum of such bases.

Theorem 6.7 ([6], Theorem 3) Let V be a representation of Uq(g) and let (L,B)

be a crystal basis for V . Then there exists an isomorphism of Uq(g) representations
V ∼= ⊕jVλj

which takes (L,B) to (⊕j Lλj
,∪jBλj

).

6.2 Abstract crystals

It is often useful to work with the combinatorial data of B along with the operators
ẽi and f̃i , without specifying how this arises as a crystal basis. This gives rise to the
notion of (abstract) crystals.

Definition 6.8 An (abstract) crystal is a finite set B along with operators ei, fi : B →
B ∪ {0} and a weight function wt : B → P which obey certain axioms (see [5]).

Every crystal basis (L,B) gives an abstract crystal. Namely, we choose B to be the

underlying set and define ei := Ẽ
(mod q−1 L)
i , fi := F̃

(mod q−1 L)
i : B → B . The weight

map is defined using the decomposition of the crystal basis into weight spaces.
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There is well known tensor product rule for abstract crystals. For abstract crystals
A and B , the underlying set of A ⊗ B is A × B (whose elements we denote a ⊗ b)
and the actions of ei and fi are given by the following rules:

ei(a ⊗ b) =
{

ei(a) ⊗ b, if ϕi(a) ≥ εi(b)

a ⊗ ei(b), otherwise
(8)

fi(a ⊗ b) =
{

fi(a) ⊗ b, if ϕi(a) > εi(b)

a ⊗ fi(b), otherwise.
(9)

This is compatible with the notion of crystals arising from crystal bases, since, if
(L,A) and (M,B) are crystal bases for two representations V,W , then (L ⊗ M,A⊗
B) is a crystal basis for V ⊗ W and the crystal corresponding to (L ⊗ M,A ⊗ B) is
A ⊗ B as defined above.

6.3 The crystal commutor

From now on we only consider those crystals which come from crystal bases.
For those crystals, [5, Section 2.2] established the existence (and uniqueness) of a
Schützenberger involution ξB : B → B , which satisfies the properties

ξB(ei · b) = fθ(i) · ξB(b), ξB(fi · b) = eθ(i) · ξB(b), wt(ξB(b)) = w0 · wt(b).

Following a suggestion of A. Berenstein, the Schützenberger involution was used
in [5, Section 2.2] to define the commutor for crystals by the formula

σA,B : A ⊗ B → B ⊗ A

a ⊗ b �→ ξ(ξ(b) ⊗ ξ(a)) = Flip ◦ ξ ⊗ ξ(ξ(a ⊗ b)).
(10)

The second expression here is just the inverse of the first expression, and the equality
is proved in [5, Proposition 2].

Theorem 6.9 ([5], Theorem 6) g-Crystals, with the above tensor product rule and
commutor, forms a coboundary category.

6.4 Schützenberger involution on representations

In the previous section we described Schützenberger involution ξ as an involution
on the crystal associated to a representation V of Uq(g), and how ξ is used to de-
fine the crystal commutor σ . We now describe (following [5, 2.4]) how to modify
this construction to obtain an involution of the actual representation V , and hence a
commutor for Uq(g) representations.

There is a one dimensional family of maps Vλ → Vλ which exchange the actions
of Ei,Fi with Fθ(i),Eθ(i). Define ξVλ to be the unique such map which takes the
highest weight basis vector vλ to the lowest weight vector vlow

λ (see Definition 5.8).
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By Theorem 3.3, these ξVλ combine to define an element ξ ∈ Ũq(g). By construction
ξ is invertible and conjugation by ξ is given by

⎧
⎪⎨

⎪⎩

Cξ (Ei) = Fθ(i)

Cξ (Fi) = Eθ(i)

Cξ (KH ) = Kw0·H .

We can now define a commutor for the category of Uq(g) representations by, for any
representations V and W of Uq(g),

σhk
V,W := ξW⊗V ◦ (ξW ⊗ ξV ) ◦ Flip = Flip ◦ (ξV ⊗ ξW ) ◦ ξV ⊗W .

Note that Cξ is a coalgebra antiautomorphism, so, by Proposition 3.11, σhk
V,W is an

isomorphism of Uq(g) modules. In fact, Henriques and Kamnitzer [5, Theorem 4]
show the system of isomorphism σhk := {σhk

V,W } is a coboundary structure (see De-
finition 4.4). One main purpose of this paper is to examine the relationship between
Drinfeld’s commutor σdr and this σhk (or a slight modification thereof).

6.5 Crystal bases and the Schützenberger involution

We now show that Shützenberger involution on representations, as defined in Sec-
tion 6.4, induces Schützenberger involution on crystal bases, as defined in Section 6.3.
We begin with the following lemmas.

Lemma 6.10 For any reduced word w0 = si1 · · · sim , we have that

vlow
λ = F̃

nm

im
· · · F̃ n1

i1
vλ (11)

vλ = Ẽ
nm

θ(im) · · · Ẽn1
θ(i1)

vlow
λ (12)

where, as in Proposition 5.7, nj = 〈si1 · · · sij−1α
∨
ij
, λ〉.

Proof By Proposition 5.7, for each 0 ≤ k < m, we have Eik+1F
(nk)
ik

· · ·F (n1)
i1

vλ = 0.
So Equation (11) follows from the definition of the Kashiwara operators (Definition
6.2) and Proposition 5.9.

Now w0 = si1 · · · sim is a reduced word in W , which implies that sθ(im) · · · sθ(i1) is
as well. Thus by Equation (11),

vlow
λ = F̃


m

θ(i1)
· · · F̃ 
1

θ(im)
vλ, (13)

where 
j = 〈sθ(im) · · · sθ(im−j+2)α
∨
θ(im−j+1)

, λ〉. For all j ,

si1 · · · sij−1α
∨
ij

= −w0sθ(i1) · · · sθ(ij−1)α
∨
θ(ij ) = sθ(im) · · · sθ(ij+1)α

∨
θ(ij ).

Here the first equality follows because for all i ∈ I , w0(αi) = −αθ(i) and w0siw0 =
sθ(i). Thus nj = 
m−j+1 so, by Equation (13),

vlow
λ = F̃

n1
θ(i1)

· · · F̃ nm

θ(im)vλ.
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By Definition 6.2, this is equivalent to Equation (12). �

The following result follows from [10, Theorem 3.3 (b)]. For completeness, we
provide a proof.

Proposition 6.11 The action of the element ξ defined in Section 6.4 is an involution.
In particular

ξ(vlow
λ ) = vλ.

Proof Recall that ξV interchanges the action of Ei and Fθ(i). By Comment 6.3, ξV

also interchanges the action of Ẽi and F̃θ(i). Thus, applying ξVλ to both sides of
Equation (11),

ξ(vlow
λ ) = Ẽ

nm

θ(im) · · · Ẽn1
θ(i1)

vlow
λ .

The result then follows by Equation (12). �

We can now describe how ξV acts on a crystal basis:

Theorem 6.12 Let (L,B) be a crystal basis for a representation V . Then the follow-
ing holds.

(i) ξV (L) = L.

(ii) By (i), ξV gives rise to a map between ξ
(mod q−1 L)
V : L/q−1 L → L/q−1 L. For

each b ∈ B , we have

ξ
(mod q−1 L)
V (b) = ξB(b)

where λ is the highest weight of the crystal component containing b.

Proof First, we note that it is sufficient to prove the theorem in the case that
(L,B) = (Lλ,Bλ). The general case of the theorem then follows from an applica-
tion of Theorem 6.7.

So assume that V = Vλ, L = Lλ,B = Bλ. Note that ξVλ exchanges the action of
Ei and Fθ(i) and hence, by Comment 6.3, interchanges the actions of Ẽi and F̃θ(i).
Since L is generated by F̃i acting on vλ, we see that ξVλ(L) is generated by Ẽi acting
on ξVλ(vλ) = vlow

λ . Lemma 6.10 shows that vlow
λ ∈ L so, since L is invariant under

the action of the Ẽi , we conclude that ξVλ(L) ⊂ L. By Proposition 6.11, ξ2
Vλ

is the
identity, so in fact we must have ξVλ(L) = L.

For part (ii), note that vlow
λ is obtained by acting on vλ with the F̃i . Hence its

reduction modq−1 L must lie in B , and in fact must by the lowest weight element in
B . The result follows because Cξ acts on the set of Kashiwara operators according to
F̃i ↔ Ẽθ(i). �

Comment 6.13 There is an even stronger connection between ξVλ and the canonical
(or global) basis Bc

λ for Vλ: It follows from [9, Chapter 21] that ξVλ is the linear
extension of the set map ξλ : Bc

λ → Bc
λ. However, because this fact does not hold for
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tensor products of canonical bases, it will not be useful for us. That is why we state
the weaker fact above which holds for all crystal bases.

7 Realizing R̄ in the form (Y−1 ⊗ Y−1)�Y

We will construct the unitarized R matrix in the desired form by modifying a simi-
lar result for the standard R matrix, due to Kirillov-Reshetikhin and Levendorskii-
Soibelman. Their result is stated as an expression in the h-adic completion of
Uh(g) ⊗ Uh(g), although it in fact does give a well defined action on V ⊗ W for

any representations V and W of Uq(g), so is well defined in ˜Uq(g) ⊗ Uq(g). In order
to use Theorem 7.1, for this section only, we will write some expressions in the h-adic
completions of Uh(g) and Uh(g) ⊗ Uh(g), and simply note that all the ones we use

are well defined in Ũq(g) and ˜Uq(g) ⊗ Uq(g) as well. Translating the conventions in
[7] and [8] into ours, we obtain the following result.

Theorem 7.1 ([7, Theorem 3], [8, Theorem 1]) With notation as in Section 2, the
standard R-matrix for Uh(g) can be realized as

R = exp
(
h

∑

i,j∈I

(B−1)ijHi ⊗ Hj

)
(T −1

w0
⊗ T −1

w0
)�(Tw0).

Definition 7.2 Let J be the operator which acts on a finite dimensional represen-
tation V of Uq(g) by multiplying each vector of weight μ by q(μ,μ)/2+(μ,ρ). It is a
straightforward calculation to see that J can be realized in a completion of Uh(g) by

J := exp
[
h
(1

2

∑

i,j

(
(B−1)ijHiHj

)
+ Hρ

)]
. (14)

Actually, (μ,μ)/2 + (μ,ρ) can in some cases be a fraction. As in Section 4.3, we
should really adjoin a fixed kth root of q to our base field, with k equal to twice the
dual Coxeter number for g. This causes no difficulty.

Comment 7.3 It follows from Lemma 7.7 below that Theorem 7.1 is equivalent to
saying R = (X−1 ⊗ X−1)�(X), where X = JTw0 .

Definition 7.4 Y is the element in the completion of Uq(g) defined by Y :=
Q−1/2JTw0 .

We are now ready to state the main result of this section.

Theorem 7.5 The unitarized R matrix can be realized as

R̄ = (Y−1 ⊗ Y−1)�(Y ).

Comment 7.6 In fact, Y is a well defined operator on Uq(g) over C(q). That is, unlike
for the standard R matrix, we do not actually need to adjoin a kth root of q .
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We prove Theorem 7.5 by a direct calculation, using Theorem 7.1. We will need
the following technical lemma:

Lemma 7.7

�(J ) = (J ⊗ J ) exp
(
h

∑

i,j∈I

(B−1)ijHi ⊗ Hj

)

Proof

�(J ) = �

(

exp

[

h
(1

2

∑

i,j

(B−1)ijHiHj + Hρ

)])

= exp

[

h

(
1

2

∑

i,j

(B−1)ij (Hi ⊗ 1 + 1 ⊗ Hi)(Hj ⊗ 1 + 1 ⊗ Hj)

+ Hρ ⊗ 1 + 1 ⊗ Hρ

)]

= exp

[

h

(
1

2

∑

i,j

(B−1)ijHiHj ⊗ 1 + Hρ ⊗ 1

)]

× exp

[

h

(
1

2

∑

i,j

(B−1)ij 1 ⊗ HiHj + 1 ⊗ Hρ

)]

× exp

[

h
∑

i,j∈I

(B−1)ijHi ⊗ Hj

]

= (J ⊗ J ) exp
[
h

∑

i,j∈I

(B−1)ijHi ⊗ Hj

]
.

�

Proof of Theorem 7.5 From the definition, we have that

(Y−1 ⊗ Y−1)�(Y )

= (T −1
w0

J−1Q1/2 ⊗ T −1
w0

J−1Q1/2)�(Q−1/2JTw0)

= (T −1
w0

⊗ T −1
w0

)(J−1 ⊗ J−1)(Q1/2 ⊗ Q1/2)�(Q−1/2)�(J )�(Tw0)

= (Q1/2 ⊗ Q1/2)(T −1
w0

⊗ T −1
w0

)(J−1 ⊗ J−1)�(J )�(Tw0)�(Q−1/2),

where the last equality follows because Q1/2 is central. Then by Lemma 7.7:

(Y−1 ⊗ Y−1)�(Y )

= (Q1/2 ⊗ Q1/2)(T −1
w0

⊗ T −1
w0

) exp
(
h

∑

i,j∈I

(B−1)ijHi ⊗ Hj

)
�(Tw0)�(Q−1/2)

(15)
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= (Q1/2 ⊗ Q1/2) exp
(
h

∑

i,j∈I

(B−1)ijHi ⊗ Hj

)
(T −1

w0
⊗ T −1

w0
)�(Tw0)�(Q−1/2)

(16)

= (Q1/2 ⊗ Q1/2)R�(Q−1/2). (17)

Here Equation (16) follows because Tw0 permutes weight spaces as w0, so Tw0HiT
−1
w0= −Hθ(i). Equation (17) follows by Theorem 7.1. The theorem follows by Equa-

tion (4). �

8 Realizing R̄ using Schützenberger involution

This section contains our first main result (Corollary 8.4), which realizes the uni-
tarized R-matrix using a slight modification of Schützenberger involution. Fix two
representations V and W of Uq(g). As discussed in Section 6.4, there is a natural
isomorphism σhk

V,W : V ⊗ W → W ⊗ V defined by

σhk
V,W = Flip ◦ (ξ−1

V ⊗ ξ−1
W ) ◦ ξV ⊗W, (18)

where ξ is Schützenberger involution. We have added inverses to the expression to
make it more like Theorem 7.5. At the moment this has no effect, since ξ is an invo-
lution, but it will be important later on.

The commutor σhk endows the Category of Uq(g) representations with a cobound-
ary structure. In [5], Henriques and Kamnitzer note that one can multiply the action
of ξ on each irreducible representation by ±1, with the signs chosen independently
for each Vλ, and Equation (18) still defines a coboundary structure. They ask if there
is a choice of signs such that the resulting commutor coincides with Flip ◦ R̄, where
R̄ is the unitarized R matrix. It turns out that we need little bit more freedom. At the
end of this section, we realize Flip ◦ R̄ in terms of Schützenberger involution, where
the action of ξ on each irreducible representation is rescaled by certain 4th roots of
unity. It is convenient to first work with a different modification of ξ .

Definition 8.1 ξ ′′ is the element of Ũq(g) which acts on a weight vector v ∈ Vλ by
ξ ′′(v) = (−1)〈μ−w0(λ),ρ∨〉ξ(v), where μ is the weight of v. Notice, that μ − w0(λ) is
always in the root lattice, so 〈μ − w0(λ), ρ∨〉 is always an integer.

Proposition 8.2 Tw0, ξ
′′ and J are all invertible in Ũq(g), the actions of CTw0

, Cξ ′′
and CQ−1/2J = CJ all preserve the subalgebra Uq(g), and:

(i)

⎧
⎪⎨

⎪⎩

CTw0
(Ei) = −Fθ(i)Kθ(i)

CTw0
(Fi) = −K−1

θ(i)Eθ(i)

CTw0
(KH ) = Kw0(H), so that CTw0

(Ki) = K−1
θ(i)

(ii)

⎧
⎪⎨

⎪⎩

CJ (Ei) = KiEi

CJ (Fi) = FiK
−1
i

CJ (KH ) = KH
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(iii)

⎧
⎪⎨

⎪⎩

Cξ ′′(Ei) = −Fθ(i)

Cξ ′′(Fi) = −Eθ(i)

Cξ ′′(KH ) = Kw0·H

Furthermore, Y = ξ ′′ where, as in Section 7, Y = Q−1/2JTw0 .

Proof It is clear from the definitions that these elements act as invertible endomor-
phisms on each Vλ, and hence by Theorem 3.3 they are invertible. Their conjugation
actions preserve Uq(g) by (i), (ii) and (iii), which we prove below.

(i) This is Lemma 5.4.
(ii) Let v be a vector of weight μ in some finite dimensional representation.

It is a straightforward calculation to see that J (Eiv) = KiEi(J (v)), J (Fi(v)) =
FiK

−1
i (J (v)) and J (KH (v)) = Kw0·H J (v).

(iii) For Cξ ′′(Ei) and Cξ ′′(Fi) this follows immediately from Definition 8.1 and
the definition of Schützenberger involution (see Section 6.4). It is a straightforward
calculation to show that for any weight vector v, ξ ′′(KH (v)) = Kw0(H)ξ

′′(v). It fol-
lows that Cξ ′′(KH ) = Kw0(H).

It remains to show that Y = ξ ′′. A direct calculation using (i), (ii) and (iii) shows
that CJ CTw0

= Cξ ′′ . Since Q−1/2 is central, this implies that CY = Cξ ′′ .
For each λ, there is a 1-dimensional family of endomorphisms of Vλ which are

compatible with the automorphism CY = Cξ ′′ of Uq(g). By Comment 3.10, both Y

and ξ ′′ give such endomorphisms. Hence it suffices to check that they take the same
value on one element of Vλ, say the highest weight vector vλ.

However, from the definition of Y and the definition of vlow
λ (Definition 5.8), we

see that Y(vλ) = (−1)〈2λ,ρ∨〉vlow
λ . On the other hand, from the definition of ξ ′′ we see

immediately that ξ ′′(vλ) = (−1)〈2λ,ρ∨〉vlow
λ . �

The following corollaries give us the desired realization of the unitarized R matrix.

Corollary 8.3 The unitarized R matrix acts on a tensor product V ⊗ W by

R̄(v ⊗ w) = (ξ ′′−1
V ⊗ ξ ′′−1

W ) ◦ ξ ′′
V ⊗W(v ⊗ w)

Proof This follows from Theorem 7.5 since, by Proposition 8.2, Y = ξ ′′. �

This is not quite what we were looking for since, for v ∈ Vλ, the relationship
between ξ(v) and ξ ′′(v) depends on the weight of v, not just on λ. To fix this problem,
define ξ ′ : Vλ → Vλ by ξ ′(v) = i2〈λ,ρ∨〉ξ(v). Notice that 〈λ,ρ∨〉 is in general only a
half integer, so multiples of i do appear. We immediately deduce the following.

Corollary 8.4 The unitarized R matrix acts on a tensor product V ⊗ W by

R̄(v ⊗ w) = (ξ ′−1
V ⊗ ξ ′−1

W ) ◦ ξ ′
V ⊗W(v ⊗ w)

Proof Follows from Corollary 8.3 by a straightforward calculation. �
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Comment 8.5 Notice that ξ ′
Vλ

◦ ξ ′
Vλ

= (−1)〈2λ,ρ∨〉Id, and in particular ξ ′ does not in
general square to the identity, as required by Henriques and Kamnitzer. However,
their argument can be modified slightly to show directly that Flip ◦ (ξ ′−1

V ⊗ ξ ′−1
W ) ◦

ξ ′
V ⊗W still defines a commutor which satisfies the axioms of a coboundary category.

We do not include this, since it follows from the corresponding fact for Flip ◦ R̄.

9 The action of R̄ on a tensor product of crystal bases

This section contains our second main result, namely an explicit relationship between
Drinfeld’s commutor and the crystal commutor. Roughly, Theorem 9.2 shows that the
crystal commutor is the crystal limit of Drinfeld’s commutor (modulo some signs).

Recall that if (L,B) is a crystal basis for a representation V , we have both
a linear map ξ ′

V : V → V and a map of sets ξB : B → B (coming from regard-
ing B as an abstract crystal). The following proposition follows immediately from
Theorem 6.12.

Proposition 9.1 Let (L,B) be a crystal basis for a representation V . Then:

(i) ξ ′
V (L) = L.

(ii) By (i), ξ ′
V gives rise to a map between ξ ′(mod q−1 L)

V : L/q−1 L → L/q−1 L. For
each b ∈ B , we have

ξ ′(mod q−1 L)
V (b) = i〈λ,2ρ∨〉ξB(b)

where λ is the highest weight of the crystal component containing b.

Now let (L,A) and (M,B) be crystal bases for two finite dimensional representa-
tions V and W of Uq(g). The crystal commutor defines a map σA,B : A⊗B → B⊗A.
This map comes from Drinfeld’s commutor σdr = Flip ◦ R̄ in the following sense.

Theorem 9.2 With the above setup:

(i) σdr
V,W (L ⊗ M) = M ⊗ L

(ii) By (i), σdr
V,W gives rise to a map

σdr
V,W

(mod q−1(L⊗M)) : (L ⊗ M)/q−1(L ⊗ M) → (M ⊗ L)/q−1(M ⊗ L).

For all a ∈ A,b ∈ B ,

σdr
V,W

(mod q−1(L⊗M))
(a ⊗ b) = (−1)〈λ+μ−ν,ρ∨〉σA,B(a ⊗ b)

where λ,μ and ν are the highest weights of the components of A,B and A ⊗ B

containing a, b and a ⊗ b respectively.
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Proof By Corollary 8.4 and Proposition 9.1.i applied to the crystal bases (L,A),

(M,B) and (L ⊗ M,A ⊗ B):

Flip◦ R̄(L ⊗ M) = Flip◦ (ξ ′−1
V ⊗ ξ ′−1

W )◦ ξ ′
V ⊗W(L ⊗ M) = Flip(L ⊗ M) = M ⊗ L.

This establishes (i).
Similarly, (ii) follows directly from Corollary 8.4 and Proposition 9.1.ii. �

Note that consistently working modulo the lattices, one can see that the cobound-
ary properties of Drinfeld’s commutor σ are transferred to the crystal commutor. Of
course it is very easy to prove the coboundary properties of the crystal commutor
directly, but we feel this gives some explanation as to why these properties arise.

10 Questions

We finish with a short discussion of some questions we feel merit further exploration.

Question 1 For each connected subgraph � of the Dynkin diagram, let g� be the cor-
responding Levi subalgebra of g, and Uh(g�) be the corresponding Levi subalgebra of
Uh(g). One can define ξ ′′

� = Q
−1/2
� J�Tw� , where Q� and J� act on a representation

V of Uh(g) via the obvious functor to Uh(g�) representations, and Tw� is the braid
group element corresponding to the longest word in the Weyl group of g� . These ξ ′′

�

are invertible, so they generate a group W acting on Uh(g) (which preserves only the
algebra structure), and on representations of Uh(g). What group is this?

We believe that answering this question would be an important step in understand-
ing the relationship between the braid group and the cactus group. In the case g = sln
we hope that W is closely related to the cactus group, where, if � consists of nodes s

through t −1 of the Dynkin diagram, ξ ′′
� corresponds to the generator r[s,t] of the cac-

tus group (see [5, Section 3]). It cannot agree exactly since ξ ′′
�

2 �= Id (only ξ ′′
�

4 = Id).

Question 2 The commutor gives an action of the n-fruit cactus group Jn, and hence
its group algebra, on tensor products V ⊗· · ·⊗V of Uq(g) modules. Does this action
factor through any quotient algebra in some special cases? For example what about
the case when g = sln and each V is the standard representation. What about the
corresponding action on tensor products of crystals?

For the case of the braiding, the corresponding question has a nice answer in the
above special case. The action of the braid group factors through the Hecke algebra
and we have the quantum Schur-Weyl duality.
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