
Journal of Algebraic Combinatorics 2 (1993), 73-103
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Subconstituent Algebra of an Association
Scheme (Part II)*
PAUL TERWILLIGER
Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706

Received July 1, 1991; Revised November 5, 1992

Abstract. This is a continuation of an article from the previous issue. In this section, we determine
the structure of a thin, irreducible module for the Subconstituent algebra of a P- and Q- polynomial
association scheme. Such a module is naturally associated with a Leonard system. The isomorphism
class of the module is determined by this Leonard system, which in turn is determined by four
parameters: the endpoint, the dual endpoint, the diameter, and an additional parameter /. If the
module has sufficiently large dimension, the parameter / takes one of a certain set of values indexed
by a bounded integer parameter e.
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4. The Subconstituent algebra of a P- and Q-polynomial scheme

In this section, we determine the structure of a thin, irreducible module for a
Subconstituent algebra in a P- and Q-polynomial scheme.

THEOREM 4.1. Let Y = (X, {R i } 0 < i < D ) denote a commutative association scheme
with D > 3. Suppose Y is P-polynomial with respect to the ordering A0, A1, ..., AD

of it's associate matrices, and Q-polynomial with respect to the ordering E0, E1, ...,
ED of it's primitive idempotents. Then

is a Leonard system over R, where (p1j)0<i,j<D has i, j entry the intersection number
p1j. from Definition 3.1, (q1 j)0 < i , j < D has i, j entry the Krein parameter q1j from (38),
Ti := p1(i) is from (40), and Ti := p1(i) is from (41).

* Part I of this paper appears in Journal of Algebraic Combinatorics, Vol.1, No.4, December
1992. References for part II appear in part I.
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in (51), (56), and Definition 3.3. Let W denote a thin, irreducible T-module,
with endpoint u, dual-endpoint v, and diameter d, as defined in (79), (72), and
Definition 3.5. Then (ii)-(viii) hold:

(ii) Pick a nonzero u e EuW, and a nonzero v € E*W. Then

are bases for W.
We call S (resp. S*) a standard basis (resp. dual basis) for W.

is a Leonard system over R, where A = A1, A* = A*, and where [a] B denotes the
matrix representing a with respect to the basis B. LS(W) is uniquely determined by
W (once the orderings of the associate matrices and the primitive idempotents are
fixed).

Consequently, LS(W), LS(Y) are related as follows if d > 1:

Case I

Case IA

Case II
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Case IIA

Case IIB

Case IIC

Case III

(v) If d = 0 set f = I and if d > 1 let f be as in part (iv) above, where we interpret
f = (f1 ,f2) (unordered pair) in Cases I, II, and Case III(d odd), and f = ( f 1 , f2)
(ordered pair) in Case III(d even). Then f is uniquely determined by LS(W). We
refer to the 4-tuple (u, v, d, f) as the data sequence of W (with respect to the given
orderings of the associate matrices and primitive idempotents).

(vi) The statements

are all equivalent, where M is the Bose-Mesner algebra of Y.
If p is some object associated with LS(W), we will occasionally write p(W) to
distinguish it from the corresponding object associated with LS(Y).
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Note 4.2. p10 = 1, q10 = 1, p10 = 0, g10 = 0 by (31), (39), and these equations
give relationships among the constants q, h, h*, r1, r2 , . . . that appear in part (iv)
above. However, we make no use of these relationships until Corollary 4.12.

Proof of Theorem 4.1. It is convenient to prove the parts in the order (ii), (iii),
(vi), (i), (iv), (v), (vii), (viii).

Proof of (ii). This is immediate from parts (ii) and (v) of Lemmas 3.9 and 3.12.

Proof of (iii). First, we show the 4-tuple LS(W) is a Leonard system over
C. Certainly the matrices B := [A]s, B* := [A*]s are tridiagonal, and have
nonzero entries directly above and below the main diagonal, by parts (i)-(iii)
of Lemmas 3.9, 3.12. The matrices H := [A]s, H* := [A*]s. are diagonal,
for indeed H = d i a g ( T u , Tu+1,. . . , Tu+d ) and H* = diag(T*,T*, . . . , T*) by
construction. Also, H, H* each has distinct entries on the main diagonal by
part (iii) of Lemmas 3.8, 3.11. So far we have (4)-(7). Now let Q denote the
transition matrix from the basis S to the basis S* that is, the matrix whose
columns represent the elements of S with respect to S*. Then by linear algebra

Note by (53) and part (ii) of the present theorem that the sum of the elements
of S* is a scalar multiple of the first element in S. It follows that the entries
in the leftmost column of Q are all equal. Replacing (Q, S, S*) by (Q - 1 , S*, S)
in the above argument, we find the entries in the leftmost column of Q-1 are
all equal. Now conditions (8)-(11) of Theorem 2.1 are satisfied, so LS(W) is a
Leonard system over C. In fact LS(W) is over R. Certainly H e Matd+1(R) by
part (iii) of Lemma 3.8, so consider the entries a;(W), bi(W), and c i(W) of B.
We have

since this is an eigenvalue of the real symmetric matrix Ei+v AEi+v. From (12),
we find

where c0(W) = bd(W) = 0. In particular b0(W) e R, and

But also
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for this is an eigenvalue of the real symmetric matrix Ei+v A E i + v + 1 AEi+v. Now

since the product in (92) is never 0. Combining the above implications we find
b i - 1 ( W ) , Ci(W) € R (1 < i < d), so B e Matd+1(R) in view of (91). A similar
argument shows H*, B' E Matd+1(R), so LS(W) is over R.

Proof of (vi). It is immediate from (72), (79), and Definition 3.5 that

Combining this with Lemma 3.6, we find the first four statements of (vi) are
equivalent. Certainly the last statement implies the first and, hence, the first
four, so now suppose W = MS. Observe by (68), (69), and part (ii) of the
present theorem, that

is a standard basis for W, and that

is a dual basis for W. Now [A]s> = (p1j)0<i,j<D by (30), (97), (A]s = diag (T0,
T1, . . . , TD) by (46), (94), [A*]s = (q1j)0<i,j<D by (61), (95), and [A*] S = diag(T*,
T*,. . ., T*) by (60), (96), so the 4-tuples LS(W), LS(Y) are indentical.

Proof of (i). The two 4-tuples LS(Y), LS(MX) are identical by part (vi) of the
present theorem, and the 4-tuple LS(MX) is a Leonard system over R by part
(iii) of the present theorem.

Proof of (iv). The first statement is immediate from part (iii) of the present
theorem. Now let LS' denote the Leonard system on the right side of (82)-(88).
Then one may readily verify using the data in Theorem 2.1 that LS' has eigenvalue
sequence Tu, Tu+1, . . . , Tu+d and dual eigenvalue sequence T*, TV+d, ..., TV+d. It
follows from Lemma 2.4 that LS(W) = LS' for a suitable choice of the /
parameters.

Proof of (v). This is immediate from Lemma 2.4.

Proof of (vii). We may assume v = 0. Then since A* is real symmetric, and
since the basis S := (Euv, Eu+1v, ..., Eu+d v) of W is orthogonal, it follows from
linear algebra that
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[A*]s is real by part (iii) of the present theorem, so we may eliminate the complex
conjugate. Now computing the entries just above the main diagonal in the above
products we find

The result is immediate from this and induction.

Proof of (viii). Similar to the proof of (vii).

LEMMA 4.3. Let Y be as in Theorem 4.1, pick any x e X, and let W, W' denote
any thin irreducible T(x)-modules. Then the following are equivalent.

(i) W, W' are isomorphic as T(x)-modules.
(ii) LS(W) = LS(W').

(iii) W, W have the same data sequence.

Proof. Write E* = E*(x) (0 < i < D), A* = A*(x), T = T(x).

(i) —> (ii). Let a : W —> W' denote an isomorphism of T-modules, and
let S (resp. S*) denote a standard basis (resp. dual basis) for W. Since
SEi = EiS, aE* = E*S (0 < i < D) by (3), we find aS (resp. aS*) is a standard
basis (resp. dual basis) for W. But now

(ii) —> (i). Let S, S' denote standard bases for W, W', respectively, and define
the linear transformation a : W -» W' so that SS = S'. Then for B e {A, A*},

so a A - AS, a A* - A*a vanish on W. But A, A* generate T by part (ii) of
Lemmas 3.8, 3.11, so aa - aa vanishes on W for every a € T. Now a is an
isomorphism of T-modules by (3).

(ii) —> (iii). The diameter of W is determined by the sizes of the matrices in
LS(W). The endpoint of W is determined by the eigenvalue sequence of LS(W),
and the dual endpoint of W is determined by the dual eigenvalue sequence of
LS(W). The parameter f in the data sequence of W is determined by LS(W)
according to part (v) of Theorem 4.1.
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(iii) —> (ii). This is immediate from part (iv) of Theorem 4.1.

In Theorem 4.10 we will show that if the parameters u, v, d in a data sequence
satisfy certain general inequalities, then the parameter f in the data sequence
takes the following special form.

Definition 4.4. Let the scheme Y = (X, {Ri}0<i<D) be as in Theorem 4.1. Pick
any x e X, and let W denote a thin irreducible T(x)-module, with data sequence
(u, v, d, f). Then W is said to be strong whenever d > 1, and there exists an
integer e satisfying

such that, [referring to part (iv) of Theorem 4.1],

Case I f1, f2 is a permutation of

Case IA

Case II f1, f2 is a permutation of

Case IIA, IIB

Case IIC

Case III f1, f2 is a permutation of
(d odd)

Case III
(d even)
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The parameter e may not be unique.
If W is strong, the auxiliary parameter of W is the integer e with

subject to (98)-(106). (The auxiliary parameter is unique by the first condition
of (98).)

On our way toward Theorem 4.10, our next task is to consider how the
data sequences of the various modules are related. Theorems 4.6, 4.9 are our
main results on this subject. They are proceeded by the technical lemmas 4.5,
4.8. Recall nonempty subsets W, W' of the standard module V are said to be
orthogonal whenever (w, w') = 0 for all w e W and all w' e W'.

LEMMA 4.5. Let the scheme Y = (X, {Ri }0<i<D ) be as in Theorem 4.1. Pick any
x, y € X, any thin irreducible T(x)-module W, and any thin irreducible T(y)-module
W', such that W, W are not orthogonal. Let v, v' denote the dual endpoints of
W, W', respectively, and pick nonzero v e E*(x)W, v' e E*(y)W'. Then there exist
nonzero polynomials S, S' e C[A] such that

and

where (x, y) e Rp. (The supports Ws, W' are pom Definition 3.5.)

Proof. This will consist of two claims.

Claim 1. There exist nonzero polynomials S, S' e C[A] such that
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and

where A = A1 is the first associate matrix of Y and projBa denotes the orthogonal
projection of a onto 0.

Proof of Claim 1. By symmetry, it suffices to show there exists a nonzero
polynomial S e C[A] satisfying (112) and (113). To do this, it suffices to
show pro]wv' is nonzero and contained in Span{v, Av, ..., Ap-V+V'v}. Now by
assumption, there exist w € W, w' £ W' with (w, w')= 0, and by (74) we may
write w' = aV' for some element a of the Bose-Mesner algebra M. Since a is
symmetric we obtain

and since aw E W, we observe projwv' = 0. Now write

where d denotes the diameter of W, and where Vi e E*(x)W (v < i < v + d).
We will now show

To see this, note

since

(V = standard module), and E*(x)V, E*(y)V are orthogonal whenever piv' =
0 (0 < i < D). Now by (74), (114), and (115) we have

as desired. This proves Claim 1.

Claim 2.



82 TERWILLIGER

In particular, the polynomial

Proof of Claim 2. By symmetry it suffices to prove (116) and (118). But since
v' — projwv' is orthogonal to W, we have, for each integer i (0 < i < D),

which gives (116). Now pick any f € Ws\W' , so that Eev = 0, Eev' = 0. Then
from (116) and (117) we find

so A - T£ divides tp. Thus (118) holds, and we have proved Claim 2.

Now set

Observe S, S' are nonzero by Claim 1, and contained in C[A] by (118) and (119).
They satisfy (108) and (109) by (116) and (117), and (110) and (111) by Claim 1.
This proves Lemma 4.5.

THEOREM 4.6. Let the scheme Y = (X, {R i}0<i<D ) be as in Theorem 4.1. Pick
any x, y e X, any thin irreducible T(x)-module W, and any thin irreducible T(y)-
module W', such that W, W' are not orthogonal. Let (u, v, d, f), (u', v', d', f')
denote the data sequences of W, W, respectively, and suppose (x, y) e Rp for some
P (0 < P < D). Then the following statements (i)-(v) hold.

(iii) Assume |WsUW's|>2p + 2. Then d, d' > 1. Furthermore, there exists an integer
e satisfying
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such that [referring to part (iv) of Theorem 4.1]

Case I f1 f2 is a permutation of

Case IA

Case II f1 f2 is a permutation of

Case IIA, IIB

Case IIC

Case III

Then

(v) Suppose W is strong, and that

(iv) Suppose
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Then W is strong.

Proof of (i). Ws n W' = Q, for otherwise at least one of EiW, EiW' is zero for
each integer i (0 < i < D), contradicting the assumption that W, W' are not
orthogonal.

To simplify the notation for the rest of the proof, set

and note

Proof of (ii). Observe m, n are nonnegative by (110) and (111), so using (136)
and (137) we find

Proof of (iii). Combining (134), (135), and the assumption |Ws U W's| > 2p + 2,
we have

so d, d' > 1. Let v, v',s,s' be as in Lemma 4.5. Then, comparing the right
sides of (108) and (109), we find

where

We observe si = 0 for all i e Ws n W'.

Claim 1. Assume Case I (ss* = 0). Then
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and

where

Proof of Claim 1. From (82) we find

so

Evaluating this using (142), we obtain (140). To obtain (141), it suffices to show

By (139) and (89) and the definition of Ws, W's, we find

To evaluate this, we use the following notation. Set

Then
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as long as ((a/B)), ((B/G)) are defined. Evaluating the data in Case I of
Theorem 2.1 using (82), we find that for all (i - 1, i e Ws n W'):

where the (( )) expressions in (146)-(149) are all defined. From (15) we also
have

where the (( )) expressions in (150) and (151) are defined. Now using (145), we
find the product of the (( )) expressions in (146)-(151) is 1. Multiplying together
the remaining factors in (146)-(151), we find



We now return to the proof of Theorem 4.6.
Claim 2. Suppose m < n. Then

where

Then
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But (152) equals (144) upon applying (136) and (142).
To complete the proof of Theorem 4.6, we will need the following identity.

See the given reference for a proof.

LEMMA 4.7. (Terwilliger [68]). Let m, n denote any nonnegative integers with
m < n, and pick any nonzero scalars a, b, c, d, e, q e C such that



Case IIC

Case IIB

Case IIA

Case II

Case IA

Case I (s* =f1,=f1 = 0)

Case I (s*=f1,=f1= 0)

Case I (ss* = 0)

where Ak (0 < k < m) is given as follows:
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Case II f1, f2 is a permutation of

Case LA

and such that

Case I f1, f2 is a permutation of

Thus the determinant formula in Lemma 4.7 remains valid if we replace vi by
Ti+T, (0 < i < m + n+1). But after this replacement, the matrix (155) is obtained
from the matrix (154) by dividing column i by pi(0 < i < m + n + 1). Now
the determinant (155) can be readily determined from Lemma 4.7. In Case I
(ss* = 0), IA, II, IIA, IIB, IIC, III, the determinant (155) is obtained by taking
limits as indicated in Note 2.6.
Claim 3. There exists an integer rj such that

and observe by (14), (142) that

Proof of Claim 2. First assume Case I (ss* =0), and consider the matrix in
Lemma 4.7, where (a, b, c, d, e, q) are from (142). Note the determinant formula
in that lemma remains valid if we replace vi by avi + B, (0 < i < m + n + 1),
where a, B are any complex numbers. Choose

Case III
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and

where the product is over all integers £ such that

Recall by (17) that sq =1 (2 < £ < 2D). Therefore, the product (166) is
nonzero if we can show

Now the rows of the matrix (155) are linearily dependent by (139), (110), and
(111), so the determinant (156) of that matrix is 0. We have observed the
constants sT, sT+1, ..., sr+m are nonzero, and the Vandermonde determinants
in (156) are nonzero, so Ak = 0 for some integer k (0 < k < m). Now assume
Case I (ss* = 0), and consider the factors in the numerator of (157). The first
two factors a, q are assumed to be nonzero. The next factor is

Proof of Claim 3. Interchanging the roles of W, W', if necessary, we may assume
m < n. Also observe by (133) and (138) that

90 TERWILLIGER

Case IIA, IIB

Case IIC

Case III



Now set

for some integer n that satisfies (174). Now (158) holds since k is nonnegative,
and line (159) follows from (175) and (143). We have now proved Claim 3 for
Case I (ss* = 0). The remaining cases are very similar.

The product (173) must be 0 since Ak is 0, so

The remaining factor in the numerator of (157) is

where the product is over all integers n such that

and

Line (171) holds, since n < d - 1 by (138) and v, k are nonnegative. To see
(172), observe

where the product is over all integers ( such that

The next factor in the numerator of (157) is

Just as above, by (17) we have s*q^ =1 (2 < C < 2D). Therefore, the product
(170) is nonzero if we can show

The bound (168) is immediate, since r, m, k are nonnegative by (133) and (110),
and the definition of k. To see (169), observe by (111) and (138), that
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and part (iii) of the present theorem applies. Let the integer e be from that
part, let e' denote the auxiliary parameter of W', and set

Proof of (v). Note Ws C W' by (131), so

so equality holds in (181)-(183). From (181) we find p = v - v'. Comparing
(181) and (183), we see the three terms in parenthesis in (183) are equal to their
absolute value, and are, hence, nonnegative. This implies (131).

Proof of (iv). Assuming p < v - v' in (122), we find

Now (124)-(130) are obtained upon evaluating the data in Claim 3 using (180).
This proves (iii).

so

and

by (137), (177) and (178). Thus (123) holds. Solving (176) for n, we find

where 77 is from Claim 3. Let us check that s satisfies (123). Certainly e + d + d'
is even. Also, by (136), (158)
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Proof. Write A* = A*(x), and observe A*, E* (0 < i < D) commute with A*(y).

and

by Definition 4.4. Combining this information, we obtain (99). Lines (100)-(106)
are obtained in a similar manner. This proves (v), and the theorem.

We now give "dual" versions of Lemma 4.5 and Theorem 4.6.

LEMMA 4.8. Let the scheme Y = (X, {Ri}0<i<D) be as in Theorem 4.1. Pick any
x, y e X, any thin irreducible T(x)-modules W, W', and suppose W, A*p(y)W' are
not orthogonal for some integer p (0 < p < D). Let u, u' denote the endpoints
of W, W, respectively, and pick nonzero vectors u e EuW, u' e Eu'W'. Write
E* = E*(x) (0 < i < D). Then there exist nonzero polynomials V*, V*' € C[l] such
that

where we may assume

so (98) holds. Now for the moment assume Case I. Then by (124), f1, f2 is a
permutation of

To show W is strong, it suffices to show e satisfies (98)-(106). First consider (98).
Certainly e + d + D is even by (184), since e' + d' + D is even by Definition 4.4
and e + d + d' is even by (123). By Definition 4.4, (123), (131), (132), and (184)
we also have
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Claim 1. There exist nonzero polynomials <p*, p*' € C[A] such that

and

Proof of Claim 1. By symmetry, it suffices to show (189) and (190). To do this,
it suffices to show projwA*(y)u' is a nonzero and contained in Span{u, A*u, ...,
(A*)p-u+u'

u}. NOW by assumption, there exists w e W, w' e W' such that
(w, A*p(y)w') = 0, and by (81) we may write w' = au' for some element a of
the dual Bose-Mesner algebra M*(x). Since a is symmetric and commutes with
A*p(y), we obtain

and since aw e W, we observe projwA*(y)u' = 0. Now write

where d denotes the diameter of W, and where ui € EiW (u < i < p + d). Then

since

by (65). Now by (81), (191), and (192), we have

as desired. This proves Claim 1.

Claim 2.

In particular



such that

Case I f1, f2 is a permutation of

Observe s*, s*' are nonzero by Claim 1, and contained in C[A] by (195) and
(196). They satisfy (185) and (186) by (193) and (194), and satisfy (187) and
(188) by Claim 1. This proves Lemma 4.8.

THEOREM 4.9. Let the scheme Y = (X, {Ri}0<i><D) be as in Theorem 4.1. Pick
any x, y e X, any thin irreducible T(x)-modules W, W', and suppose A*p(y)W', W
are not orthogonal for some integer p (0 < p < D). Let (u, v, d, f), (u', v', d', f')
denote the data sequences of W, W', respectively. Then the following statements
(i)-(v) hold.

which gives (193). The remaining assertions of the claim are obtained as in
Claim 2 of Theorem 4.6.

Now set

Proof of Claim 2. Since A'p(y)u' - projwA*p(y)u' is orthogonal to W, we have, for
each integer i (0 < i < D),
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Then

(v) Suppose W' is strong, and that

Then W is strong.

Proof. Similar to the proof of Theorem 4.6.

THEOREM 4.10. Let the scheme Y = (X, {Ri}0<i<D) be as in Theorem 4.1. Pick
any x € X, and let W denote a thin irreducible T(x)-module, with some endpoint
u, dual endpoint v, and diameter d (0 <u, v < D - d < D). Then

(i) W is strong whenever
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Case LA

Case II f1, f2 is a permutation of

Case IIA, IIB

Case IIC

Case III

(iv) Suppose



First suppose (a), so that W = MS by part (vi) of Theorem 4.1. Then, using
Definition 4.4 one may readily check that M£ is strong (with auxiliary parameter
e = 0), so we are done in this case. Next suppose (b), and set W = M$, where
y is any element in X with (x, y) e Rv, such that £ is not orthogonal to W (y
exists by the definition of v). Then W' is a thin irreducible T(y)-module by
Lemma 3.6, W is strong by case (a) above, and W, W' are not orthogonal by
construction. Now W, W' satisfy the conditions of part (v) of Theorem 4.6 (with
p = v, v' = 0, d' = D), so W is strong. Next assume (c), and set W = MX.
Then W is a thin, irreducible T(x)-module, and strong by part (a) above. Also,
there exists y e X such that W, A*(y)W' are not orthogonal, since the all 1s
vector d e W, A*(y)d = |X|Euy by (69), and Span {Euy| y e X} = EuV is not
orthogonal to W by the definition of u. Now W, W', and y satisfy the conditions
of part (v) of Theorem 4.9 (with u' = 0, d' = D, and p = u), so W is strong.
Thus W is strong in general, and we are done.

Proof of (ii). Suppose n < (D-d)/2 or v < (D-d)/2. Then (203) holds, so W is
strong. But then 2u - D + d, 2v - D + d are nonnegative by (98), a contradiction.
This proves (ii).

Proof of (iii). In view of part (i) above, it suffices to prove W is strong under
the assumption d > 3. The proof is by induction on /j + v.

First assume v < p. Pick any y' € X such that (x, y') € Rv, and such that
y is not orthogonal to W. Now pick any y e X such that (x, y) e R1 and

Proof of (i). Assume (203). Then one of the following (a)-(c) holds.
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(iii) Suppose Y is thin. Then W is strong whenever
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(y, y') € Rv-1. Now Ev-1(y)V contains ff, and is therefore not orthogonal to
W. But now there exists a (thin) irreducible T(y)-module W', with endpoint
v' < v - 1, that is not orthogonal to W. Applying part (iv) of Theorem 4.6 to
W, W' with p = 1, we find by (131) that u' < u, d' > d, and v' = v - 1, where
u', d' are, respectively, the endpoint and diameter of W. In particular d' > 3
and u' + v' < u + v, so W is strong by induction. But now W, W' satisfy the
conditions of part (v) of Theorem 4.6, so W is strong. Next assume u < v.
Since EuV is contained in the column space of E1 o Eu-1 by (38), there exists
y e X such that A*(y)Eu-1$ is not orthogonal to W. But then there exists a
(thin) irreducible T(z)-module W, with endpoint u' < u - 1, such that A*(y)W'
is not orthogonal to W. Applying part (iv) of Theorem 4.9 to W, W' with p = 1,
we find v' < v, d' > d, and u' = u - 1, where v' and d' are, respectively, the
dual endpoint and diameter of W. In particular d' > 3 and u' + v' < u + v, so
W is strong by induction. But now W, W satisfy the conditions of part (v) of
Theorem 4.9, so W is strong.

COROLLARY 4.11. Let the scheme Y = (X, {Ri}0<i<D ) be as in Theorem 4.1, and
pick any x e X. Pick any integers u, v, d (0 < u, v < D - d < D), and assume
(u, < D/2 or v < D/2. Then the number of pairwise nonisomorphic, thin, irreducible
T(x)-modules with

(i) endpoint u, dual endpoint v, diameter d
(ii) endpoint u, dual endpoint v

(iii) endpoint n
(iv) dual endpoint v

is at most
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Proof of (i). Immediate from Lemma 4.3, Definition 4.4, and (203).

Proof of (ii). To obtain (208), sum (206) over all integers d (D - 2u < d < D - v).
To obtain (209), sum (207) over all integers d (D - 2v < d < D - u).

Proof of (Hi). Line (210) is the sum of (208) over all integers v ( u / 2 < v < p),
plus the sum of (209) over all integers v (n < v < 2u).

Proof of (iv). Similar to (iii).

COROLLARY 4.12. Let the scheme Y = (X, {Ri}0<i<D) be as in Theorem 4.1. Pick
any x e X, pick any integer i (0 < i < D), and write E* = E* (x), T = T(x).
(Observe E*AE* : E*V -> E*V is the adjacency map for the undirected graph
with vertex set X n E*V, and edge set {(y, z) | (y, z) e R1 y, z e X n E*V}.) Let
W denote an irreducible T-module with E*W= 0. Then the following statements
(l)-(5) hold.

(1) E*W is an E*AE*-invariant subspace of E*V.
(2) Suppose W is thin. Then E*W is a (one-dimensional) eigenspace of E*AE*.
The eigenvalue is A := a i - v (W) , where v is the dual endpoint of W.

An E* AE*-eigenvalue of this form will be said to be of thin type.

(3) E*V is an orthogonal direct sum E*W0 + E*W1 +. . .+ E* Wn, where W0, W1, . . .,
Wn are irreducible T-modules that intersect E*V nontrivially. In particular, if Y is
thin with respect to x then every eigenvalue of E*AE* : E*V —> E*V is of thin type.
(4) Suppose i < D/2, and that W is thin. Then there are at most a* ways to choose
W up to isomorphism of T(x)-modules, where

In particular, E*AE* has at most si distinct eigenvalues of thin type.

We note T0 = 1, s1 = 5, s2 = 16, a3 = 39,. . .

(5) Suppose i = 1, and that W is thin, with some endpoint u, diameter d, and
auxiliary parameter e. Then (u, v, d, e), A is given in one of (i)-(v) below (here we
use the notation of part (iv) of Theorem 4.1).
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Case IIC does not occur

Case III(D even) does not occur

Case III(D odd)

(i) (u,v, d, e) = (0, 0, D, 0), A = p11.
(ii) (u, v,d, e) = (1, 1,D-1, 1), A equals

Case I(S* = 0)

Case I(S* = r1 = 0) - 1

Case IA -1

Case II

Case II4 -1

Case IIB

(in) (u, v, d, e) = (1, 1, D - 1, -1), A equals

Case I(S* = 0)

Case I(S* = r1 = 0)
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Case IA

Case II

Case IIA

Case IIB

Case IIC -1

Case III(D even)

Case III(D odd)

(iv) (u, v, d, e) = (1, 1, D - 2, 0), A equals

Case I(S* = 0)

Case I(a* = r1 = 0)

Case IA

Case II
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Case IIA

Case IIB

Case IIC

Case III(D even)

Case III(D odd) does not occur

(v) (u, v, d, e) - (2, 1, D - 2, 0), A equals

Case I(s* = 0)

Case I(s* = r1 = 0)

Case IA

Case //

Case IIA is -2

Case IIB

Case IIC is -2



Proof of (1). Immediate.

Proof of (2). Immediate from Theorem 2.1.

Proof of (3). Immediate from Lemma 3.4.

Proof of (4). Si is the sum of (211) over v = 0, 1, . . . , i.

Proof of (5). The given values for (u, v, d, e) represent all the integer solutions
to (93) and (98) that satisfy v < 1. In case (i), we have A = p11, by parts (i) and
(vi) of Theorem 4.1. In case (ii)-(v), A = a0(W) is computed using Theorem 2.1
and Note 4.2.
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Case III


