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Abstract. Shannon introduced the concept of zero-error capacity of a discrete memoryless channel.
The channel determines an undirected graph on the symbol alphabet, where adjacency means that
symbols cannot be confused at the receiver. The zero-error or Shannon capacity is an invariant of
this graph. Gargano, Korner, and Vaccaro have recently extended the concept of Shannon capacity
to directed graphs. Their generalization of Shannon capacity is called Sperner capacity. We resolve
a problem posed by these authors by giving the first example (the two orientations of the triangle)
of a graph where the Sperner capacity depends on the orientations of the edges.

Sperner capacity seems to be achieved by nonlinear codes, whereas Shannon capacity seems to be
attainable by linear codes. In particular, linear codes do not achieve Sperner capacity for the cyclic
triangle. We use Fourier analysis or linear programming to obtain the best upper bounds for linear
codes. The bounds for unrestricted codes are obtained from rank arguments, eigenvalue interlacing
inequalities and polynomial algebra.

The statement of the cyclic q-gon problem is very simple: what is the maximum size Nq(n)
of a subset Sn of {0, 1,...,q - 1}n with the property that for every pair of distinct vectors x =
(xi), y — (yi) € Sn, we have Xj — yj = 1(mod q) for some j? For q = 3 (the cyclic triangle), we show
N3(n) ~ 2n. If however Sn is a subgroup, then we give a simple proof that |Sn| < \73n.

Keywords: information theory, directed graph, Sperner theorem, Shannon capacity

1. Introduction

The idea of zero-error capacity of a discrete memoryless channel was introduced
by Shannon [18] in 1956. The input alphabet becomes the vertex set V of a
graph G, and two vertices are joined if the action of noise cannot result in the
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Figure 1, The two orientations of the triangle.

corresponding symbols being confused at the output of the channel. Distinct
sequences v — (v1 , . . . , vn), v' = (v'1, ..., v'n) in Vn are then said to be really
different if some pair (v i, v'i) is an edge in G. If N(G, n) is the maximum size
of a subset S C Vn of pairwise really different sequences, then the zero-error
capacity C(G) is given by

The problem of determining the capacity of the pentagon remained unsolved for
some twenty years until the solution by Lovasz [15].

Gargano, Korner and Vaccaro [7] have recently introduced the concept of
the Sperner capacity E(G) of a directed graph G. Here distinct sequences
v = (v1, ...,vn), v' = (v'1,..., v'n) in Vn are really different if there are indices
i, j such that vi —» v'i and v'j -» vj are both edges in G. The Sperner capacity
£(G) is given by

where N(G, n) again denotes the maximum size of a code in Vn, that is a subset
S of pairwise really different sequences. However Gargano, Korner and Vaccaro
did not have any example of a directed graph for which the Sperner capacity
depended on the orientation of the edges. Thus, it was not known whether
Sperner capacity and Shannon (zero-error) capacity were different. The smallest
candidate was the triangle, where the two orientations T and T' are shown in
Figure 1. The Sperner capacity £(T') is log 3 (all logarithms are base 2), as may
be seen by taking sequences with equally many 0s, 1s, and 2s. Gargano, Korner
and Vaccaro raised the problem of determining the Sperner capacity £(T), and
it is this problem that we resolve here. We prove that
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so that £(T) = 1. More accurate determination of N(T, n) appears hard.
The term Spemer capacity is inspired by Sperner's theorem [19] on the size of

a maximal antichain in the boolean lattice. We may restate this result as follows:
if V = {0, 1} and G = 0 -> 1, then N(G, n) = (Ln/2J). The subsets of size |n/2|
form a maximal antichain. Thus, £(G) = 1, and (1) shows that the extra symbol
and edges in T do not increase the Sperner capacity. This is rather surprising,
but it raises the question of identifying those transformations of directed graphs
that preserve Sperner capacity.

Our results on the cyclic triangle problem also settle Problem 5 of Korner
and Simonyi [14]. These authors consider a family Q of graphs on a common
vertex set V. A subset S C Vn is said to be Q-separated if for every pair
x = (x1 , ..., xn), y = (y1, ..., yn) e S, and every graph G € Q, there is an index
i such that (x i , yi) is an edge in G. The subset is said to be symmetrically
S-separated if for every pair x = (x1 , . . . , xn), y = (y1,..., yn) 6 5, and every
graph G £ Q there exist indices i and j such that (xi, yi) = (yj, xj) is an edge in
G. Let N(<G, n)(Na(Q, n)) be the maximum size of a (G-separated (symmetrically
(G-separated) subset of Vn. Problem 5 asks if

for all classes of graphs Q. An example for which equality does not hold is
provided by the class Q that consists of the undirected triangle. To make this
clear, we use the main theorem of Gargano, Korner, and Vaccaro [6] to rewrite
the left side of (2) as

where the minimum is taken over all orientations of all graphs G in Q. The left
side of (2) equals 1 and the right side equals log3, the Shannon capacity of the
triangle. For more information about the fruitful interplay between information
theory and extremal set theory, we refer the reader to [3], [5], [6], [7], [13], and
[14].

In the next section we prove that the dimension of a linear code S C Zn for
the cyclic triangle problem satisfies dim 5 < n/2. Since (log3)/2 < 1, we see
that it is impossible to achieve the Sperner capacity of the directed triangle T
using a linear code. This is strikingly different from classical information theory,
where group codes achieve capacity on the Gaussian channel, and linear error-
correcting codes meet the Gilbert-Varshamov bound (for details see [4] and [16]).
It is interesting to contrast the cyclic triangle problem with that of constructing
error-correcting ternary codes. The Hamming metric and the definition of
two really different sequences are both invariant under translation by any fixed
element of Zn, arbitrary coordinate permutations, and negation. However, the
Hamming metric is also invariant under the full monomial group; all signed
permutation matrices are symmetries. This raises an interesting question about
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external problems involving the notion of pairwise really different sequences. Is
it possible to quantify the power of group coding in a way that depends on the
symmetry group of the notion of difference?

If a graph on q vertices is invariant under a g-cycle then it is possible to identify
vertices with elements of Zq, so that the definition of two really different sequences
is invariant under addition of any fixed element of Zn. This coordinatization
goes through whenever the graph is invariant under a sharply transitive group
H. Let A be the set of vertices not joined to the vertex 0. Then a code is a
subset 5 of Zn such that if x = y belong to 5, then x & y + An. Most cases of
interest allow this group theoretic description.

One class of extensions of the cyclic triangle is the cyclic q-gon, where x —> y
if yj = xj + 1 mod q for some j. Another way to generalize, more classical, is
to use the complementary graph, where x —> y if yj = xj + 1 mod q for some j.
For q = 3 these cases are isomorphic. A third class of extensions is when x —> y
if yj = xj, xj + 1, xj - 1 mod q for some j. For q = 5 this is isomorphic to
Lovasz's problem mentioned above. We discuss each of these cases in the paper
and determine, as far as we can, when linear codes are good and when not.

Our methods are linear and nonlinear. We obtain upper bounds for linear
codes using Jamison's theorem [12] or linear programming. For nonlinear codes
we use a technique of Haemers [9] based on eigenvalues of Kronecker products
of matrices to obtain upper bounds. The examples of linear and nonlinear codes
that appear in this paper do not involve random codes, and are elementary and
constructive.

2. Linear methods for the cyclic triangle problem

In this section we use Fourier analysis on Zn to derive upper bounds on the size of
group codes for the cyclic triangle problem. A group code 5 is a subgroup of the
additive group Zn with the property that if x = (x1, ..., xn), y = (y 1 , ..., yn) are
distinct elements of S, then there are indices i, j such that xi -» yi and yj -» xj

are edges in the triangle T. We then show how to use linear programming to
derive bounds for arbitrary (nongroup) codes.

THEOREM 2.1. If H C Zn is a group code for the triangle T, then |H| < 3n/2.

Proof. Suppose H is a subgroup of ZN and H has no word (except 0) with all
0s and 1s. We will show that |H| < V3n. If f : ZN -> C define the Fourier
transform of /, for a € Zn

It is easy to verify the inversion formula

34
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and Parseval's formula,

where g is any function and z is z conjugate. Choose f(x) = 1E(x)(-1)X1+...+xn

where xi = 0, 1, 2 and g(x) = 1H(x), where 1E is the indicator function of
E = {0, 1}n. Since no element x of H has all entries 0 and 1 except x = 0, the
right side of (5) is 1/3n. But it is easy to verify that

where Vj(a) = |{i = 1, ..., n : ai = j } | , j = 0, 1, 2. Also if H has d linearly
independent generators over {0, 1, 2}, z',..., zd, then

Then (5) becomes, after multiplication by 32n-d,

But v1(a) + v2(a) = n and 1 - w2 = (-1/w)(1 - w) so

The right side is V3n/3d in magnitude while the left side is a sum of terms of
the form ± wl and, after reducing via 1 4- w + w2 = 0, becomes A + Bw where A
and B are integers. But if d > n/2 then |A + Bw| < 1 in magnitude and is not
zero, which is impossible since w = 1 + ^3i and the lattice A + Bw contains no
points with magnitude < 1 except 0. This completes the proof. D

A second proof which extends to give a (tight) bound for primes q > 3 depends
on a theorem of Jamison (see also [2]).

THEOREM 2.2. (Jamison [12]). If Zk - {0} is a union of L flats of codimension 1
then (g - 1)k < L.

COROLLARY 2.1. Let H < Zn be a linear code where the zero vector is the only
word with all entries in the set (s1 = 0,s2, ..., sd}. Then
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Proof. Suppose |H|+ - qk, i.e., there are k linearly independent generators
xi,i = 1, . . . ,k of H

Consider the flats Fi,e = {u € Zk : E i = 1 =u i x i j
 = f) where j = 1, ..., n and

f takes one of the q - d values which must occur in some coordinate of each
element of H. Since each element u except u = 0 belongs to one of F j , E the
union of the flats Fj,e is all of Zk - {0}, and there are L = n(q - d) flats. By
Jamison's theorem, (q - 1)k < n(q - d). The proof is complete since |H| = qk. D

Remarks. For q = 3 and even n, we may take

Then H is a group code of dimension n/2 and every nonzero vector in H
has some entry equal to 1. This example shows that the bound provided by
Theorem 2.1 is tight.

More generally, let H be a subgroup of Zn with the property that no code
word in H except 0 has every entry equal to 0 or 1. Then Theorem 2.2 implies
dim H < (q - 2)n/(q -1). If n is divisible by q -1 then the rows of the Kronecker
product

generate a subgroup H with the required property that meets the bound provided
by Jamison's theorem.

Linear programming bounds

We now follow Lovasz [15] and use linear programming to derive bounds for
arbitrary codes S. Let Q = {0,1}nU{0, -1}n and let p(z), z e Zn be any function
from Zn to R for which p(z) = 0 if z & fl and p(z) = p(-z). The matrix E given
by
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is symmetric, and it is positive semidefinite (psd) if all eigenvalues are nonnegative.
Since E commutes with translation by any fixed element of Zn, the eigenvectors
of E are the columns of the character matrix U of the additive group Zn. The
eigenvalue corresponding to the column Ua(z) = w(a,z) is

Thus, E is psd if and only if p(a) > 0 for all a € Zn. Finally, we normalize E
by taking p(0) = 1.

Henceforth we suppose p(z) = 0 if z £ ft, Ezp(z) = 0, P(a) > 0 for all
a e Zn, and p(0) = 1, so that E is psd. Since U*EU = A2 for some diagonal
matrix A, we may write E as a gram matrix:

Define

Then

Let S C Zn be a code for the cyclic triangle T. Then the vectors &z, z e S are
orthonormal, since (Ez,Ez) = P(0) = 1. and {Ez,Ez') = p(z-z') = 0. Now Bessel's
inequality gives

The linear programming problem is then to maximize p(0) given P(z) = 0 for
z £ fi, P(a) > 0 for all a e Zn, and p(0) = 1.
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By averaging over the group of transformations that fixes /? (which is the
direct product of the symmetric group Sn with (-In)) we may suppose p(z) to
be a constant pi on the orbit {z e J? | |z| = i}. For n = 3, 4, and 5 the optimal
functions p(z) are listed below:

If we adjoin the values of 1/p(0) for n = 1, 2, to the table, namely 1, 3, it is
tempting to conjecture that 1/p(0) = (2n+1 + (-1)n)/3 since this holds for n < 5.
However, for n = 6, 7, ... solving the linear program (for which we are grateful
to R. Vanderbei) gives 1/p(0) = 48.6, 104.478,..., 243, .... It thus appears that
this method does not give the right constant. It is interesting that the use of rank
inequalities in Section 3 gives the right constant while the linear programming
bounds are so far from being tight. The latter method could perhaps be improved
by using 6 = E az£z rather than az = constant, as above, but then the best choice
of p and a involves nonlinear programming. Note that allowing p(z, w) instead
of p(z — w) does not increase generality. The linear programming method needs
symmetric inner products, whereas the rank method makes use of unsymmetric
matrices even though the original problem is symmetric. This all seems both
interesting and mysterious and calls for further investigation.

Let us apply a linear programming method to obtain upper bounds in the
case of Lovasz's problem and its extensions. Thus, suppose G = Zn and H is a
group code with the property that if x e H then Xj = 0, ±1 for some j. In this
case the Jamison bound (10) gives |H| < q(q-3)n/(q-1) since d = 3. Here we will
obtain a better bound (by Lovasz's method, slightly extended) valid for nonlinear
codes. Our proof is a variant of that of Lovasz [15].

If we can find a positive-definite qn x qn matrix p(x, y) = p x - y where x, y e
G = Zn, then for any code 5, we may obtain the bound

provided that px = 0 for x & N and p0 = 1. To prove (12), observe by positive
definiteness, there exist vectors £x e R9n for which

Now following Lovasz, set
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note that (7, £y) = 1 for all y € G and that if x = y € S then £x and £y are
orthogonal since x-y & N and hence {Ex, £y) = px-y = 0. Also, {£x, ̂ x} = p0 - 1,
so by Bessel's inequality

and (12) is proved.
Let us use

For p x - y to be positive definite we need to check that the Fourier transform of
px is nonnegative.
Now

for all a e G, if and only if

If q = 2p + 1, then the worst value for oti is p, so for this case, we need
8 = -1/cos((q - 1)r/q) = 1/cos(r/q). From (12) this gives the bound

For q = 5 this gives the value x/5n, which is the same as the bound (10),
|S| < 5(5-3)n/(5-1), but for q > 5, the bound in (19) is better (smaller) even
though it applies to nonlinear codes than Jamison's bound (10) valid only in the
linear case. If (19) is achieved, it seems hard to see whether the achieving codes
are linear or nonlinear. The problem remains open for q = 7 to our knowledge.
We obtain the bound (3.17667207394095)n from (19), better than (3.659305)n

from (10). For q even, the upper bound

and this is achieved by the subgroup of Zn of vectors all of whose components
are even. Since for q = 5, and for even q, linear codes achieve capacity, it is
tempting to conjecture that this is true also for q = 7, although, as Lovasz points
out there is no n for which the bound in (19) is an integer, so that in a sense
(19) cannot be sharp and so q = 7 is essentially different from q = 5.
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3. Eigenvalue interlacing inequalities

To begin, let G be any directed graph on q vertices. It will be convenient to
label these vertices by the residue classes in Zq = Z/qZ. The directed graph G
distinguishes a class B of q x q matrices with real entries; the entries on the main
diagonal are constrained to be 1, and the ijth entry is constrained to be zero
when i —> j is an edge in G. We shall be interested in choosing the unspecified
entries so as to minimize the rank of a matrix B in the class B.

Let B e B, and let D = ®nB be the Kronecker product of n copies of the
matrix B. There is a natural labeling of rows and columns of D by vectors in Zn.
For distinct vectors x = (x1, ..., xn), y = (y1, ..., yn), we have Dxy = 0 if there
is an index i for which yi —> xi is an edge in G. In order to apply eigenvalue
interlacing inequalities, we need to work with a Hermitian matrix, so we consider
D + DT. Here (D + DT)XX = 2, and (D + DT)xy = 0 if there are indices i, j
such that Xi ->yi and yj -» xj are edges in G. The remaining entries depend on
the representative B. If S is a code in Zn, then the vectors in S index the rows
and columns of a principal submatrix of D + DT, which is 2I|s|. The eigenvalues
of this principal submatrix interlace the eigenvalues of D + DT as described in
Theorem 3.1 below (for proofs of this theorem and similar results see Haemers
[8] or Horn and Johnson [10]).

THEOREM 3.1. Let E be an M X M Hermitian matrix;, and let \ 1 ( E ) > . . > X M ( E )
be the eigenvalues of E. If P is an m x m principal submatrix of E with eigenvalues
\ 1 (P)>. . .>\ m (P) then

We are now ready to give a universal upper bound on N(G, n) for arbitrary
directed graphs G.

THEOREM 3.2. Given a directed graph G, let B be the class of matrices determined
by G. For B £ B, let T+(5) be the number of eigenvalues \ of E- ®nB + (®nB)T

for which A > 2. Then

Proof. A code S determines a principal submatrix I|s| of ®nB, so that rank
(®nB) = (rank(B))n > |S|. Part (2) follows directly from Theorem 3.1. n

Remarks.

(1) We may relax the definition of a code and allow ordered subsets S; if
x = ( x 1 , . . . , xn), y = (y1,..., yn) are distinct elements of S, and if x > y,
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then there exist an index j such that yj —> xj is an edge in G. The code
now determines a principal submatrix of ®nB that is lower triangular with
all entries on the main diagonal equal to 1. Again we have |5| < (rank(B))n.

(2) Lovasz [15] used linear programming to determine the Shannon zero-error
capacity of the pentagon. The rank argument appearing in part (1) of The-
orem 3.2 was used by Haemers [8] to settle several problems left unresolved
by Lovasz.

In the remainder of this section, we assume q > 3 is odd, and we take G to
be the q-cycle Cq with edges 0 —»1 —»2 — > • • • —> q-1 —> 0. We shall derive an
upper bound for N(Cq, n) by choosing an appropriate representative B e B. We
begin with a preliminary observation.

LEMMA 3.1. If p> 1 is a factor of q, then N(Cq, n) < N(CP, n).

Proof. Consider the image 5 of a code 5 in Zn under the canonical homomorphism
(p: Zn -> Zn which sends each entry to its residue modulo p. Since Cp is the
image of Cq mod p, the subset 5 is a code in Zn. Finally observe that two
distinct code words in S cannot be congruent mod p, so that |S| = |S|. D

Let ei, i = 1, ..., q be the standard basis vectors of Rq, and let P be the
permutation matrix that represents the linear transformation e1 —» e2 — > • • • — »
eq -» e1. Set £ = e2Ti/q. Then the vector zi = (1, ei, e2i, ..., e(q-1)T is a right
eigenvector of P associated with the eigenvalue e-i. Let q = 2m + 3, and let

which is a polynomial with real coefficients. The q-cycle Cq determines a class
of real q x q matrices, and from this class we select the representative

This matrix is diagonalizable, with Bzi = -f(ei)zi, for i = 0, 1, ...,q-l.
Thus, z0, ..., zm, zm+3,..., zq-1 are eigenvectors of B with eigenvalue 0, zm+1

is associated with the eigenvalue - f ( f m + 1 ) , and zm+2 is associated with the
eigenvalue -f(em+1).

Remarks.
(1) Since rank(B) = 2, we obtain N(Cq, n) < 2n by applying part (1) of Theo-

rem 3.2. In the remarks following Theorem 3.2 we showed this bound holds
when we relax the definition of a code by allowing ordered subsets of Zn.
In this case it is possible to construct a code of size 2n by suitably ordering
the set of binary vectors.
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(2) Let q be a prime, and let B be the class of matrices determined by an
arbitrary cyclic tournament on q points with outdegree d. We relax the
definition of B and allow complex matrices. The tournament determines
(q - d - 1) powers Pi1 of the basic permutation matrix P, such that all
linear combinations of the identity matrix and these powers belong to B.
Nonsingularity of the Vandermonde determinant implies that there exists a
representative B e B for which rank(B) = d+1. Now part (1) of Theorem 3.2
gives N(G, n) < (d+1)n. When we relax the definition of a code by allowing
ordered subsets it is often possible to achieve this bound by suitably ordering
all vectors in Wn, where W is a subset of Zq.

(3) A. Blokhuis [1] has given an elementary proof of the bound N(G, n) < (d+1)n

using elementary polynomial algebra, and avoiding Kronecker products.

We return to the matrix B given by (22). The transpose BT = -f(PT) =
-f(P-1), and

In particular BT vanishes at all eigenvectors except zm+1 and zm+2, where the
eigenvalues are -f(em+1) and -f(em+1), respectively.

Let D = 8nB be the Kronecker product of n copies of B. The eigenvectors
of D are obtained by taking Kronecker products of the eigenvectors 2i. The
eigenvector zi1 ® • • • ® zin is associated with the eigenvalue (-1)nf(?i1) • • • f(ein).
Let U be the matrix of eigenvectors. Then

where A is diagonal. Hence,

Let /> = -f(em+1). The nonzero eigenvalues of D + DT are <i^n-i + < i £ n - i ; for
0 < i < n/2 the multiplicity is (n) + (nni), and for i = n/2 it is (n/2). We need

to study the relation between <j> and 4 in order to find which eigenvalues are
positive.

LEMMA 3.2. If q = 2m + 3, then

Proof. For 1 < i < m, we have

Since eq = 1,



THE SPERNER CAPACITY OF LINEAR AND NONLINEAR CODES 43

Further, the identity Eq-1 f ( € i ) = q reduces to j> + } = -q = (1 - e)z, so we
obtain z = q/(e - 1). D

For convenience, set c = (j> > 0 and n(j) = dj + e - j . Then //(j) is real,
nonzero and has period q. We distinguish two cases.

Case I. n is even.
Now < n / 2 < £ n / 2 = cn/2 so that 2cn/2 is an eigenvalue of D + DT with multiplicity

(n/2). By Lemma 3.2,

If 0 < i < n/2, then cn/2(-1)n/2-im(n/2 - 0 is an eigenvalue of D + DT, and we
rewrite the multiplicity of that eigenvalue as (n/2-(n-2- i ))

 + (n/2+(n/2-i)). If the
indices i are congruent modulo 2g, then signs of the eigenvalues are identical.
Note that the signs of (-l)n/2-im(n/2 - i) and (-l)n/2-i+q«(n/2 - i + q) are
opposite. We conclude that the number of positive eigenvalues of D + DT is
equal to

where i1, i2, , . . , iq € {0, 1, ...,2q- 1} are such that (-l)n/2-i1V(n/2 - il) > 0.

Case II. n is odd.
In this case Lemma 3.2 gives

so that

Substituting j> = q/(e - 1) we obtain
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We conclude that the sign of pift(n-i) + <iV(n-i) equals the sign of

when these quantities are nonzero.
Again the sign remains the same if i is replaced by i + 2qj, and the sign is

reversed if i is replaced by i + (2j + l)q. We have ^(j) = n(j + 1) if and only
if j = (q - l)/2(modq). Thus, we may conclude that the number of positive
eigenvalues of D + DT is equal to

where i1, i2, ..., iq-1 € { 0, 1, ..., 2q - 1 } \ { (q - l)/2 } are such that
(-1)(n+1)/2-il(m((n + 1)/2 M((n +1)/2-il)) > 0.

We need a final technical lemma.

LEMMA 3.3. Let £ be a primitive Mth root of unity, and let i e {0, 1, ..., M - 1}.
Then

Proof. We have

THEOREM 3.3. For n sufficiently large, we have

where p is the smallest prime factor of q.

Proof. By Lemma 3.3, we may suppose q is prime. We have derived formulae
for the number of positive roots of D + DT. Applying Lemma 3.1 to these
formulae, with M = 2q and f = -e, we obtain
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where In consists of the elements i in {0, 1,..., 2q-1} such that (-1)n/2-iV(n/2-
i) > 0 for n even, and (-1)(n+1) /2- i(t((n+ l)/2-t-l)-p((n + l)/2-i)) > 0 for n
odd. Since |1 + (-c)l| < (2 + 2 cos 7r/q)1/2 for 1 < l < 2q -1, the dominant term
on the right-hand side is that indexed by / = 2q, and the sum of the remaining
terms is less than or equal to |In|(2q - 1)(2 + 2 cos vr/q)n/2. D

4. Upper bounds for double-loop networks

In Section 3 we derived the upper bound N(G, n) < (d + 1)n for an arbitrary
cyclic tournament G with outdegree d. Clearly eigenvalue interlacing inequalities
can be used to improve this bound. The critical step is choosing the analog of
the polynomial fx) that appears in Section 3. In this section we take G to be
the double-loop network G,(l, 2), with vertex set the residue classes Zq (where
q > 5 is odd) and edges i -> i + 1 and i —> i + 2 for all i € Zq. For more
information about double-loop networks see Hwang and Li [11].

We write q = 2m + 3, e = e2Ti/q, and take

again the coefficients bi are real. The representative matrix B is given by

All entries on the main diagonal of B equal 1, and for 0 < i < q - 1, we have
Bi(i+1) = Bi(i+2) = 0. The nonzero eigenvalues of B are g(1) = A, g(lm+1) = tl,
and g(em+1) = $. The eigenvalues of D + DT are Aaib^n-a-b + AaibVn-a-b with
multiplicity (n)(n-a). The following lemma is the counterpart of Lemma 3.2.

LEMMA 4.1. I-f q = 2m + 3, then

Now we calculate the number of positive eigenvalues of D + DT. Since A is
positive, we fix a, 0 < a < n and compute r b i / n - a - b + $bipn-a-b. Again there are
two cases.

Case I. n- a is even.
Then for 0 < b < (n - a)/2,
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Case II. n — a is odd.
Then for 0 < b < (n - a)/2,

Note that gcd(m, q) = 1 or 3, and gcd(m, q) = 3 if and only if 3 divides q.
Let

Then em = £m', gcd(m', q') = 1, and //(mj) has period q'. Define

The next theorem now follows directly from Lemma 3.3.

THEOREM 4.1. Let q = 2m + 3, where m>1, and let q', £ and J n - a be as defined
above. Then

We need to know the cardinality of the set Jn - a in order to estimate the right-
hand side of (25). We may suppose that fm' = e2i/q ' . Then n(mj) > 0 for
-q'/4 < j < q'/4 and M(mj) < 0 for q'/4 <j< 3q'/4. Hence, | Jn-a| = (q' + l)/2
when n - a is even.

Next we consider the sign of fi(mj) + n(m(j - 1)). If s = [q/4], then

and for all j,
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The only uncertainty is n(ms) + n(ms - 1) and this depends on q' mod 4. More
precisely, if q' = 1( mod 4) then s = (q' + 3)/4 and (j ,(ms) + n(m(s - 1)) < 0,
whereas, if q = 3( mod 4) then s - (f + 1)/4 and z(ms) + n(m(s - 1)) > 0.
Thus, for n - a odd we have

THEOREM 4.2. Let q > 5 be an odd integer and let

Then

Proof. It follows from (26) that the dominant term on the right-hand side of
(25) is at most

and the sum of the remaining terms is no more than
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