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Abstract. The number of subgroups of type n and cotype v in a finite abelian p-group of type A is
a polynomial g$v(p) with integral coefficients. We prove g u v ( p ) has nonnegative coefficients for all
partitions p and v if and only if no two parts of A differ by more than one. Necessity follows from a
few simple facts about Hall-Littlewood symmetric functions; sufficiency relies on properties of certain
order-preserving surjections f that associate to each subgroup a vector dominated componentwise
by A. The nonzero components of f(H) are the parts of /, the type of H; if no two parts of A
differ by more than one, the nonzero components of A - f(H] are the parts of v, the cotype of H.
In fact, we provide an order-theoretic characterization of those isomorphism types of finite abelian
p-groups all of whose Hall polynomials have nonnegative coefficients.

1. Introduction and statement of the main result

Hall polynomials were introduced by P. Hall [8], who was interested in the
structure of lattices of subgroups of finite abelian groups. These polynomials
play a central role in the work of J.A. Green [7] and A.O. Morris [12] and [13]
on the representation theory of finite general linear groups. Hall polynomials
are defined as follows: Any abelian group G of order pn, where p is prime, is
isomorphic to a direct product of cyclic groups

where \1 > • • • > \t > 0. The partition A is called the type of G. Hall studied
the number g^v(p) of subgroups H of a finite abelian p-group G of type A, such
that n is the type of H and v is the type of G/H (the cotype of H).

No satisfactory formula for g u v ( p ) is known. In the 1950s Hall established
that g^v(p) is a polynomial in p with integral coefficients. In the 1960s T. Klein
[9] discovered how to compute these polynomials. In the 1970s Macdonald
provided, in his elegant text [10] on symmetric functions and Hall polynomials,
a comprehensive treatment of the subject. Yet Macdonald readily admits that
the method he gives for computing Hall polynomials is complicated.

*On leave from Princeton University.
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Example 1.1. The computation of Hall polynomials in [10] uses equations (4.9),
(4.8), and (4.4) in Chapter II. The polynomial g^v(p) is expressed as a sum of cuv

monic polynomials of the same degree. (The Littlewood-Richardson coefficient
c^v is the number of ways of filling the Ferrers diagram of A//z, with vi letters
i, so that the word read off from right to left in each row, beginning at the top
row, is a lattice permutation. That is, in every initial factor of the word there
must be at least as many i's as i's + 1.) Each of these monic polynomials is
expressed as a product of signed sums of products of q-binomial coefficients in
the variable q = p-1 times powers of p. For example,

Contrast this computation with the one in Example 3.9.
A satisfactory formula for g u v ( p ) not only should be simple, but also should

make evident the symmetry g^v(p) = guv(p), which follows from Pontryagin duality
for finite abelian groups. Moreover, in cases where g^v(p) has nonnegative
coefficients, this nonnegativity should be evident from the formula. We achieve
both of these objectives for partitions A whose parts differ by at most one.

In Section 3 we show that if no two parts of A differ by more than one, then the
Hall polynomials g^v(p) have nonnegative coefficients. The proof is elementary
and yields a satisfactory formula for these Hall polynomials. In Section 2 we show
that if two parts of A differ by more than one, then some Hall polynomial g^v(p)
has a negative coefficient. The proof employs machinery from the theory of Hall-
Littlewood symmetric functions. Together these lemmas yield our main result.

THEOREM 1.2. The Hall polynomial g^v(p) has nonnegative coefficients for all n
and v if and only if no two parts of A differ by more than one.

Proof. Necessity follows from Lemma 2.5 below. Sufficiency follows from Lemma
3.7 below. D

Finally, in Section 4 we provide an order-theoretic characterization of those
isomorphism types of finite abelian p-groups all of whose Hall polynomials have
nonnegative coefficients.

2. Proof of necessity

Definition 2.3. For any partitions z, v, and A let g*v be the number of elements
a in the chain product [0, A1] x • • • x [0, Al] such that the nonzero components of
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a are the parts of n and the nonzero components of A - a are the parts of v.

PROPOSITION 2.4. The Hall polynomial g*v(p) evaluates, at p = 1, to g*v.

Proof. Hall-Littlewood symmetric functions (see [8] and [10]) have the property
that

where n(A) = £(i - 1)Ai. Hall-Littlewood symmetric functions P\(x;t) reduce
to monomial symmetric functions m\(x) when t = 1. So, evaluating the above
identity at t = 1, we find

Since monomial symmetric functions are a basis for the ring of symmetric
functions, it suffices to check

Define the type of a vector a = (a1,a2,...) with nonnegative components only
finitely many of which are nonzero to be the partition whose parts are the
nonzero components of a.

Since #{(a,/3)|type a = ji, type/3 = v, and a + /3 = 7} depends only on the type
of 7,

LEMMA 2.5. If <i > Ai+1, Ai > Aj+i, and Ai -1 > \j, then g^v(p) has a negative
coefficient, where n = (A 1 , . . . , Ai-1, Ai- 1, Ai + 1,. . . , Aj_1, Xj - 1, AJ+1,...) and
v = (2).

Proof. The Littlewood-Richardson coefficient cuv, which is the leading coefficient
of guv(p), is one. We show that the sum of the coefficients of g*v(p) is zero. By
Proposition 2.4, this sum is g*v. By Definition 2.3, g*v counts placements of the
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rows of p into distinct rows of A that leave vacant exactly two squares in the
same row of A. The number of parts of (j greater than or equal to A i - 1 equals
the number of parts of A greater than or equal to Ai - 1. So, if r = Ai - 1, the
first Ar rows of \i must be placed into the first A'r rows of A, leaving exactly one
square vacant so far. Since the two squares left vacant are never in the same
row of A, g^v is zero. D

3. Proof of sufficiency

Our proof of sufficiency relies on properties of certain order-preserving surjections
[4] that associate to each subgroup a vector dominated componentwise by A.
Thereby, for each p, we define a map tp from the lattice L\(p) of subgroups of
Z/pA1Z x • • • x Z/pAlZ onto the chain product [0, A]. This map is illustrated, for
p = 2 and A = 221, in Figure 1.

Definition 3.6. Let A = (A1, ..., Al) be a partition. Let H be a subgroup of type
H = (*1,..., ik) in Z/pA1Z x ••• x Z/pAlZ . An ordered set {h(1),.... h(k)} of
elements of H is called a set of Hall generators for H if it satisfies the following
four conditions.

(1) . H = ( h ( 1 ) , . . . , h ( k ) ) .
(2) The order of h(i) = (h( i), ..., h(i)) is p"i.

Define a map i-» I so that I is largest with pmi = order(h(i)).
(3) If j > i, then h(j) = 0.
(4) If j > i and Mj = mi, then J <I.

Define p : L\(p) —> [0, A1] x • • • x [0, \l] by p(H) = Vi^ieI, where eI has
a 1 in the Ith component.

For example, the elements h(1) = (2,0,1) and h(2) = (2,2,0) are Hall generators
for a subgroup H of type ^ = (1,1) in Z/4Z x Z/4Z x Z/2Z. The rightmost
component of h(1) that has order 2 is the third component and the rightmost
component of h(2) that has order 2 is the second component, so p(H) =
(0,0,1)V (0,1,0) =(0,1,1).

Since the unit vectors eI are distinct, the nonzero components of p(H) are the
parts of p. Using ideas in [2], it is easy to see that every subgroup H has a set of
Hall generators and that (p(H) does not depend on the choice of Hall generators
for H. In [3, Chapter 2, Section 7], we provide a simple way of calculating the
cardinality of y-1 (a). The surjections are compatible for different values of p
in that ^yr-1 (a) = pinv, where inv is calculated from a and A as described in
Definition 3.8.

Finally, in [4], we show that y is order-preserving, a fact we exploit in the
proof of Theorem 4.11. From Lemma 3.7 below, it follows that if no two parts



NONNEGATIVE HALL POLYNOMIALS 129

Figure 1. The order-preserving surjection p : L221(2) —»[0,221].

of A differ by more than one, then g^v(p) is the sum of # f - 1 ( a ) over certain
elements a of the chain product, namely those such that a is a rearrangement
of ft and A - a is a rearrangement of v.

LEMMA 3.7. Let H be a subgroup of Z/pAiZ x • • • x Z/pAlZ. If no two parts of the
partition X differ by more than one, the nonzero components of \ — p(H) are the
parts of the cotype of H.

Proof. Let G = Z/pA1Z x ••• x Z/P
AlZ. Fix a sequence h (1),...,h (k) of Hall

generators of a subgroup H of type p. It suffices to construct a direct sum
decomposition (g(1)) ® • • • ® (g(l)) of G such that for i < k,

(1) The generator h(i) is a multiple of g(i); and
(2) The order of g(i) is p\I, where I is largest with pmi = order(h(i)).

For i < k, we construct the element g(i) from h(i) as follows. Suppose

where no ar is divisible by p. (However, for a 0 in the rth component we write
OpAr.) We have dr > Xr - /i for r = 1, . . . , l, with equality for r = I and for no
larger r. Since no two parts of A differ by more than one, dI = min{d1, ..., d l}.
(This is the key point; it depends on the Ith component of h(i) being the rightmost
of order p^i.) Define



130 BUTLER AND HALES

We have h(i) = pdIg(i), and the order of g(i) is pdI+^i = pAI. Property 3 of Hall
generators guarantees that the sum of the cyclic subgroups ( g ( 1 ) ) , . . . , { g ( k ) ) is
direct. To complete the direct sum decomposition of G, define the generators
g( k + 1 ) , . . . , g(l) to be the vectors er where r lies outside the image of the map
i-> I.

Since p - 1 ( a ) has cardinality a power of p, Lemma 3.7 shows that g^v(p) has
nonnegative coefficients if no two parts of A differ by more than one. Below
we use a combinatorial formula for # ~ - 1 ( a ) to find an expression for each of
these Hall polynomials as a product of p-binomial coefficients times a power of p.
The p-binomial coefficient |n1 gives the number of subgroups of order pk in the

elementary abelian p-group (Z/pZ)n. It may be computed as [n]!/([k]![n - k]!),
where [n] = 1 + p + • • • + pn-1 and [n]! = [n][n - 1 ] • • • [1]-. It is a polynomial
in p with nonnegative coefficients. Hence, the formula in Corollary 3.10 makes
evident the fact that g^v(p) has nonnegative coefficients if no two parts of A
differ by more than one. This nonnegativity is not evident from the method of
computing Hall polynomials given in [9] or [10].

Definition 3.8. A tabloid of shape A is a filling of the Ferrers diagram of A such
that entries weakly increase along rows. The inversion number of a tabloid is the
sum, over entries x in the tabloid, of the number of smaller entries below x in
the same column or above x one column farther right. We write inv(T) for the
inversion number of a tabloid T.

In [3] we show that # p - 1 ( a ) is pinv(T), where T is the tabloid that has on 1's
and Ai - oi 2's in row i.

Example 3.9. Since

g11,21(p) = p + p2. The p subgroups in ( p - 1 ( 1 0 1 ) and the p2 subgroups in ̂ -1(011)
are heavily marked in Figure 1. The subgroups in ^-1(110) have cotype 111, so
they are not counted in S11,21(p)-

In [3], we show how, from the combinatorial method of computing # < - 1 ( a ) ,
to easily recover the following well-known expression (see [6] and [11]) for the
number of subgroups of type n in a finite abelian p-group of type A.

If A = n8, every subgroup of type p has cotype v = (n - ns , . . . , n - f 1 ) ; so the
above gives a product formula for Hall polynomials when the Ferrers diagram
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of A is a rectangle. It is only a little harder to obtain a product formula for
Hall polynomials when A is almost a rectangle. In particular, since p-binomial
coefficients are symmetric and unimodal (see, e.g., [1]), the corollary below shows
that each of these Hall polynomials not only is nonnegative, but also is symmetric
and unimodal.

COROLLARY 3.10. A finite abelian p-group of type A = ns(n — 1)t has a subgroup
of type fj, and cotype v if and only if g*v is nonzero. In that case, the number of
subgroups is

where the partitions a and r are obtained as follows: By Definition 2.3, there is a
vector a with type a = // and type (A — a) = v. Let a = type(a 1 , . . . , as) and r =
type(a s + 1 , ••• , as+t).

Proof. A combinatorial formula for the number of subgroups of type fj and cotype
v in a finite abelian p-group of type A = ns(n - 1)t is obtained by p-counting
certain tabloids of shape A and entries 1 and 2. For a tabloid with ci 1's in
row i to contribute a monomial to the Hall polynomial, the nonzero components
of a must be the parts of n, and, by Lemma 3.7, the nonzero components
of A - a must be the parts of v. Since A has at most two parts, we observe
that contributing tabloids are unique up to permutation of the top s rows and
permutation of the bottom t rows. (So the partitions a and T do not depend
on the choice of a in the statement of this corollary.) Observe further that
the inversion number of such a tabloid is easily calculated from the tabloid S
composed of the top s rows and the tabloid T composed of the bottom t rows.
It is inv(S) plus inv(T) plus, for each 2 in S, the number of 1's in T in the same
column, plus, for each 2 in T, the number of 1's in 5 one column farther right.
The product formula above is easily deduced from these two observations. D

In the above formula, the first product is the number of subgroups of type a
in a finite abelian p-group of rectangular type ns, and the second product is the
number of subgroups of type r in a finite abelian p-group of rectangular type
(n-1)t.

From the combinatorial version of the formula in Corollary 3.10, the symmetry
gu v(p) - g v u ( p ) is evident, for A = ns(n - 1)t. Suppose the tabloid T contributes
a term to guv(p). (So T has ai entries equal to 1 and Ai - a1 entries equal to
2 in row i. The nonzero components of a are the parts of i, and the nonzero
components of A - a are the parts of v.} Construct a tabloid T' that contributes
a term to guv(p) as follows: For 1 < i < s, let row s + 1 - i of T' have Ai - ai

entries equal to 1 and ai entries equal to 2. For 1 < i < t, let row s + t + 1-i of
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T' have Xs+i — as+i entries equal to 1 and <s+i entries equal to 2. Since T -» T'
is a bijection and inv(T) = inv(T'), it is evident that g*v(p) = guv(p).

4. An order-theoretic characterization

The argument used to prove Lemma 3.7 may be strengthened to prove the
following theorem.

THEOREM 4.11. If no two parts of X differ by more than one, then there are
antiautomorphisms, F and f, of L\(p) and [0, A], respectively, such that (p o F =
f o p, where <f: L\(p) —»[0, A] is the order-preserving surjection in Definition 3.6.

Proof. Let A = k s(k - 1)t. (So Ar = k for 1 < r < s, and Ar = k - 1 for
s < r < s + t.) For such a partition we modify well-known antiautomorphisms
of L\(p) and [0, A], so that y o F = f o if.

First we define F and f. The classical inner product on (Z /p k Z) s x (Z/pk-1Z)t

yields the Pontryagin antiautomorphism H -> HL = {x |h -x = 0 (mod pk) for all
h € H}. However p(H^) = \-y(H). Study of the example L221(2) suggests that
we define f(a) = (A - a)rev where /?rev = ( / s , . . . , f1, 3s+t,..., / s + 1 ) , and that
we use this operation of reversing within blocks of equal parts of A to modify
the Pontryagin antiautomorphism. That is, define F(H) = {xrev|x e HL}.

To show that v(F(H)) = f ( < f ( H ) ) , we need only show that (p((y)) < f(v(H))
for any 0 = y € F(H). Suppose y = xrev and that xI is the rightmost component
of y whose order is the order of y. We must show that the order of xI is less
than or equal to pAI-aI, where a - p(H). As in Lemma 3.7, write

We must show fI > aI. Without loss of generality, aI > 0. Hence, by Definition
3.6, there is a Hall generator of H

such that aIp
dI is the rightmost component of h(i) whose order is the order of

h(i). (That is, dI = AI - aI.) The claim below shows that h(i) • x = 0 (mod pk)
implies fI > aI.

CLAIM. The power of p in the Ith term of h(i) • x is strictly less than the power of p
in any other term of h(i) • x.
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The proof below uses the following fact: Suppose aIp
dI is the rightmost com-

ponent whose order is the order of (o1pd1,..., as+tp
ds+t) e (Z/pkZ)s x ( Z / p k - 1 Z ) t .

Then, not only is dI the minimum of the exponents dr (as noted in the proof of
Lemma 3.7) but also equality holds only if

(a) The 7th and rth components are in the same block (AI = Ar = k or AI =
Ar = k - 1) and the Ith component is to the right of the rth component, or

(b) The Ith component is in the first block (AI = k) and the rth component is in
the second block (Ar = k - 1).

Proof of Claim. Consider the rth term of h(i) • x, where r = I.
Suppose I < s and r < s. The power of p in the Ith term is p A I - ° + f I ; the power

of p in the rth term is pdr+fr. Since the 7th component of h(i) is the rightmost
whose order is the order of h(i), we have AI - aI < dr with equality only if r < I.
Since the component bIp

fI of xrev is the rightmost whose order is the order of
zrev, we have fI < fr with equality only if r > I. Hence, AI - aI + fI < dr + fr

for r = I.
Suppose 7 > s and r > s. The power of p in the 7th term is pA1-° I+f I;

the power of p in the rth term is p1+dr+fr. As above, we have AI — aI < dr

with equality only if r < I, and fi < fr with equality only if r > I. Hence,
1 + AI - aI + fI < 1 + dr + fr for r = I.

Suppose I < s and r > s. The power of p in the Ith term is pA1-f1+fI; the
power of p in the rth term is p1+dr+fr. Since the Ith component of H(i) is the
rightmost whose order is the order of h(i), we have AI - aI < dr. Since the
component bIP

fI of xrev is the rightmost whose order is the order of xrev, we
have fI < fr. Hence, AI - aI + fI < 1 + dr + fr.

Suppose 7 > s and r < s. The power of p in the Ith term is p1+A1-° I+f I; the
power of p in the rth term is pdr+fr. Since the order of the Ith component of h(i)

is the order of h(i), we have AI - aI < dr. Since the order of the component bIP
fI

of xrev is the order of zrev, we have fI < fr. Hence, 1 + AI - aI + fI < dr + fr.
D

Together with Lemma 2.5, this theorem permits us to view the existence of
negative coefficients in a Hall polynomial g u v ( p ) as obstructing the existence
of certain antiautomorphisms of the lattice L\(p). After all, the type of H is
determined by the partial order on the subgroups contained in H. (A subgroup
is cyclic if its subgroups form a chain. H is the direct sum of certain cyclic
subgroups if their join is H and each meets the join of the rest in the identity.)
Similarly, the cotype of 77 is determined by the partial order on the subgroups
containing 77.

Example 4.12. For A = 31, there is no way of clustering the 1 + p subgroups
of order p2 into two clusters, of cardinality 1 and p, so that the subgroups
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within each cluster have the same type and cotype. The lattice of subgroups of
Z/8Z x Z/2Z is shown below.

The subgroup (21) has the same type as (20) but the same cotype as (01, 40).

COROLLARY 4.13. Let \ be a partition. The Hall polynomial gu v(p) has nonnegative
coefficients, for all n and v, if and only if, for all p, there is a triple (v, F, f), where <p
is an order-preserving surjection from L\(p) onto [0, \\], F is an antiautomorphism
of L\(p), and f is an antiautomorphism of [0, A], satisfying the following conditions.

(1) The type of H is the partition whose parts are the nonzero components of f ( H ) .
(2) The cardinality of i p - 1 (a ) , as a function of p, is a power of p.
(3) f o F = f o p.

Proof. If such triples exist, then the subgroups in y-1(a) not only have the
same type, they also have the same cotype. (Since F is an antiautomorphism,
the cotype of H is the type of F(H).) In fact, by conditions (1) and (3), the
nonzero components of f ( y ( H ) ) are the parts of the cotype of H. Hence, if
we define the type of a e [0, A] to be the partition whose parts are the nonzero
components of a, then

Condition (2) now implies that gtv(p) is a polynomial in p with nonnegative
coefficients.

If g^v(p) has nonnegative coefficients, for all n and v, then Lemma 2.5
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guarantees that no two parts of A differ by more than one. This corollary is
thereby a consequence of Theorem 4.11. D

We say informally that there are antiautomorphisms of L\(p) and [0, A] that
commute with the collapse /> of the subgroup lattice onto the chain product if
and only if all Hall polynomials g^(p) have nonnegative coefficients.

In a subsequent paper [5] we show that finite abelian p-groups whose types
are almost rectangles are precisely those which admit "homogeneous flags," i.e.,
maximal chains of subgroups in which any two quotients of the same size are
isomorphic. This result is used to study the question of whether the subgroup
lattice LH(P) embeds as a poset in L\(p), where n and A are partitions of the
same integer.
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