Semiboolean SQS-skeins

ANDREAS J. GUELZOW

Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada

Received May 29, 1992

Abstract. We will present a counter example to the conjecture that the class of boolean SQS-skeins is defined by the equation q(x, u, q(y, u, z)) = q(q(x, u, y), u, z). The SQS-skeins satisfying this equation will be seen to be exactly those SQS-skeins that correspond to Steiner quadruple systems whose derived Steiner triple systems are all projective geometries.

Keywords: Steiner quadruple system, Steiner triple system, SQS-skein, semiboolean, derived Steiner triple system, projective geometry

1. Introduction

An SQS-skein, which is also called Steiner Ternar, idempotent totally symmetric 3-quasigroup, or Steiner 3-quasigroup, is an algebra $\langle S; q \rangle$ of type (3) satisfying the equations:

$$q(x, x, y) = y$$

$$q(x, y, z) = q(x, z, y)$$

$$q(x, y, z) = q(y, z, x) \text{ and}$$

$$q(x, y, q(x, y, z)) = z$$

SQS-skeins arise as a coordinatization of Steiner quadruple systems (see [5]) and have been extensively studied by Armanious in [1]. It is known that the smallest nontrivial subvariety is the class of all boolean SQS-skeins. An SQS-skein $\langle S; q \rangle$ is called *boolean* if there exists a boolean group $\langle S; +, 0 \rangle$ such that q(x, y, z) = x + y + z.

In [7], [8], and [9] it is stated without proof that the class of all boolean SQS-skeins is characterized by the equation

$$q(x, u, q(y, u, z)) = q(q(x, u, y), u, z).$$
(1)

We will show that this is incorrect. Obviously, an SQS-skein is boolean if and only if it satisfies

$$q(x, u, q(y, u, z)) = q(x, y, z).$$
⁽²⁾

(Equation (2) corresponds to the associative law in the boolean group.) Every boolean SQS-skein must therefore also satisfy (1). In none of the three papers

[7], [8], and [9] has the converse been shown; in fact, in [1] Armanious used (2) to define boolean SQS-skeins instead of (1) and stated that he was unable to prove or disprove the existence of a nonboolean SQS-skein satisfying (1).

We will now construct an SQS-skein $\mathfrak{H}_{16} = \langle H; q \rangle$ that satisfies (1), but not (2).

2. An example

-

Let H be a four-dimensional vector space over GF(2) and let q be the ternary operation on H given by:

$$q\left(\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{pmatrix},\begin{pmatrix}y_{1}\\y_{2}\\y_{3}\\y_{4}\end{pmatrix},\begin{pmatrix}z_{1}\\z_{2}\\z_{3}\\z_{4}\end{pmatrix}\right) = \begin{pmatrix}x_{1}+y_{1}+z_{1}\\x_{2}+y_{2}+z_{2}\\x_{3}+y_{3}+z_{3}\\x_{4}+y_{4}+z_{4}+\begin{vmatrix}x_{1}&y_{1}&z_{1}\\x_{2}&y_{2}&z_{2}\\x_{3}&y_{3}&z_{3}\end{vmatrix}\right)$$

It is straightforward to verify that $\langle H; q \rangle$ is indeed an SQS-skein. (Note that only one of the defining equations requires some work.) It does not satisfy (2) since:

$$q\left(\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, q\left(\begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix} \end{pmatrix}\right) = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$
$$\neq \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} = q\left(\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix} \right)$$

It is also easy to check that (1) holds. We have (omitting a few steps):

$$q(x, u, q(y, u, z)) = \begin{pmatrix} x_1 + y_1 + z_1 \\ x_2 + y_2 + z_2 \\ x_3 + y_3 + z_3 \\ x_4 + y_4 + z_4 + \begin{vmatrix} x_1 + z_1 & y_1 & u_1 \\ x_2 + z_2 & y_2 & u_2 \\ x_3 + z_3 & y_3 & u_3 \end{vmatrix} + \begin{vmatrix} x_1 & u_1 & z_1 \\ x_2 & u_2 & z_2 \\ x_3 & u_3 & z_3 \end{vmatrix} = q(q(x, u, y), u, z))$$

This example, which we will in future refer to as \mathfrak{H}_{16} , justifies the introduction of a new term.

Definition. An SQS-skein (S; q) is called semiboolean if it satisfies the equation:

$$q(x, u, q(y, u, z)) = q(q(x, u, y), u, z)$$

We will see in the next section that the term semiboolean is appropriate.

3. Properties

The following lemma is a straightforward consequence of the defining equations. It justifies the choice of the term *semiboolean*.

LEMMA 1. If $\langle S; q \rangle$ is a semiboolean SQS-skein, then for every $0 \in S$ the algebra $\langle S; +, 0 \rangle$ with x + y = q(x, y, 0) is a boolean group.

An immediate consequence is:

COROLLARY 2. If $\langle S; q \rangle$ is a finite semiboolean SQS-skein then $|S| = 2^r$ for some nonnegative integer r.

It is well known that an SQS-skeins is boolean if and only if it is of nilpotence class 1. (A general definition of the concept of nilpotence can be found in [4].) Since \mathfrak{H}_{16} is not boolean, it can therefore not be of nilpotence class 1. We will show that it is of nilpotence class 2. For this purpose we require the following fact (for a proof of a more general statement see [4]):

LEMMA 3. Let \mathfrak{V} be a permutable variety with Mal'cev term p(x, y, z), let $\langle A, \Omega \rangle = \mathfrak{U}$ be an algebra in \mathfrak{V} and let $\zeta(\mathfrak{U})$ denote the center of \mathfrak{U} . Then $a\zeta(\mathfrak{U})$ b if and only if

$$f(p(r_1(a, b), r_1(b, b), c_1), \dots, p(r_n(a, b), r_n(b, b), c_n))$$

= $p(f(r_1(a, b), \dots, r_n(a, b)), f(r_1(b, b), \dots, r_n(b, b)), f(\mathbf{c}))$

for all $f \in \Omega$, all $\mathbf{c} = (c_1, \ldots, c_n) \in A^n$ (n being the arity of f) and all binary term functions $r_1(x, y), \ldots, r_n(x, y)$.

For SQS-skeins this lemma becomes:

COROLLARY 4. Let $\mathfrak{G} = \langle S; q \rangle$ be an SQS-skein. Then $a \zeta(\mathfrak{G}) b$ if and only if for all $c_1, c_2, c_3 \in S$:

 $q(q(a, b, c_1), c_2, c_3) = q(a, b, q(c_1, c_2, c_3))$

Proof. Since SQS-skeins have only the two term binary functions $r_1(x, y) = x$ and $r_2(x, y) = y$ and the ternary operation q itself is a Mal'cev polynomial, Lemma 3 implies that $a\zeta(\mathfrak{G})b$ if and only if the following three statements hold:

 $q(q(a, b, c_1), c_2, c_3) = q(a, b, q(c_1, c_2, c_3)) \text{ for all } c_1, c_2, c_3 \in S$ (3)

 $q(q(a, b, c_1), q(a, b, c_2), c_3) = q(c_1, c_2, c_3)$ for all $c_1, c_2, c_3 \in S$ (4)

$$q(q(a, b, c_1), q(a, b, c_2), q(a, b, c_3) = q(a, b, q(c_1, c_2, c_3)) \text{ for all } c_1, c_2, c_3 \in S$$
 (5)

It is straightforward to verify that (3) implies (4) and (5).

Let us now consider the center of \mathfrak{H}_{16} . By Corollary 4 it is easy to verify that

$$\begin{pmatrix} w_1\\ \vdots\\ w_4 \end{pmatrix} \in \left[\begin{pmatrix} 0\\ \vdots\\ 0 \end{pmatrix} \right] \zeta(\mathfrak{H}_{16})$$

if and only if $w_1 = w_2 = w_3 = 0$, i.e., the center of \mathfrak{H}_{16} is the kernel of the projection onto the first three components. Since the image of this projection is obviously boolean, we have shown that \mathfrak{H}_{16} is nilpotent of class 2.

Since our example is semiboolean and nilpotent (of class 2), we are faced with the two questions:

(1) Is every semiboolean SQS-skein nilpotent?

(2) Is every SQS-skein of nilpotence class 2 also semiboolean?

While the first question is still open, the answer to the second question is negative. We can construct a 16-element SQS-skein $\mathfrak{U}_{16} = \langle A; q \rangle$ that is nilpotent of class 2 but not semiboolean:

Let $A = GF(2)^4$ and q be a ternary operation A defined by:

$$q\left(\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{pmatrix},\begin{pmatrix}y_{1}\\y_{2}\\y_{3}\\y_{4}\end{pmatrix},\begin{pmatrix}z_{1}\\z_{2}\\z_{3}\\z_{4}\end{pmatrix}\right) = \begin{pmatrix}x_{1}+y_{1}+z_{1}\\x_{2}+y_{2}+z_{2}\\x_{3}+y_{3}+z_{3}\\\\x_{4}+y_{4}+z_{4}+x_{1}y_{1}z_{1}\begin{vmatrix}x_{2}&y_{2}&z_{2}\\x_{3}&y_{3}&z_{3}\\1&1&1\end{vmatrix}\right)$$

It is again easy to verify that $\mathfrak{U}_{16} = \langle A; q \rangle$ is an SQS-skein and of nilpotent class at most 2. \mathfrak{U}_{16} is not semiboolean (and therefore not boolean) since:

01	23	0	4	9	D	1	2	9	Ά	1	A	D	Е	2	7	A	F		3	Α	Е	F		5	9	в	F
01	45	0	4	A	Е	1	3	4	Е	1	В	С	E	2	9	С	F		4	5	6	F		5	Α	в	С
01	67	0	4	в	F	1	3	5	F	1	в	D	F	2	9	D	Е		4	5	7	Έ	9	5	С	Е	F
01	8 9	Ō	5	8	D	ĩ	-		Ĉ					2	_	ē	_		4	-	8	_			7		9
	AB	Ő	-	-	c	1		7		2	-	5	-	-		E			4		č			-	7	-	F
010		ŏ	-	À	-	-	3	•	-		3	-	-	3	_	5	-		4	-	7	-		-		A	-
		-						-			-			-	-				-					-	-		-
011	EF	0	-	В	Е	1	3	9	в	2	3	7	E	3	4	6	9		4	6	8	A		5	9	В	С
02	46	0	6	8	Е	1	4	6	В	2	3	8	9	3	4	8	F		4	6	С	Е	•	5	A	В	F
02	57	0		9	F	1	4	7	A	2	3	A	В	3	4	В	С		4	7	8	В	6	5	С	D	F
02	8 A	0	6	A	С	1	4	8	מ	2	4	5	в	3	5	7	9		4	7	С	F				Ā	
02		ŏ	-	В	-	î	-	ğ		_	4	_	-	3	_	8	-		4	-	Ă	-	-		-	B	-
		-	-	_	-	-		-	-	_	_		-	-	-	-	_		-						-		
020		0	7	8	F	1	5	6	A	2	4	8	Е	3	5	В	D		4	9	В	Е	- 7		A	В	E
021	DF	0	7	9	Е	1	5	7	В	2	4	A	С	3	6	7	Α		4	A	В	D	7		С	D	Е
034	47	0	7	Α	D	1	5	8	С	2	5	6	9	3	6	8	D		4	D	Е	F	8	}	9	A	в
03	56	0	7	в	С	3	5	9	Ď	2	5	8	F	3	6	в	Е		5	6	7	С	8		9	С	D
	В В	ī		4	-	ī	6	8	-	_	5	_	-	-	7		_			-	8	-	ē		-	Ĕ	-
		-				_	-	-	-		-					-	-		-	-	-	-	-		-		
	9 A	1	_	5			-		-	2	-	7		-		в	_			-	D	_	8	5	A	С	E
030	C F	1	2	6	D	1	7	8	Е	2	6	8	С	3	9	С	Е	:	5	7	8	A	8	Ι.	A	D	F
031	DE	1	2	7	С	1	7	9	F	2	6	A	Е	3	9	D	F	9	5	7	D	F	8		В	С	F
048	8 C	1	2	8	в	1	A	Ċ	F	2	7	8	D	3	Å	C	n	ĺ	5	9	A	Е	8		B	D	E
		-	-	~	2	-	••	~	•	~		-	-	5		~	-	•		-	**				~	0	~

Figure 1. The Steiner quadruple system corresponding to the SQS-skein \mathfrak{H}_{16} .

i.e., there are non-semiboolean SQS-skeins of nilpotence class 2. Note that the Steiner quadruple system corresponding to \mathfrak{U}_{16} has already been described in [2] and it can easily be obtained from the affine eight-element Steiner quadruple system using a recursive construction given in [3]. In none of these papers has the algebraic importance of \mathfrak{U}_{16} been recognized.

4. Steiner quadruple systems

Given a Steiner quadruple system (P, B), we can define a ternary operation qon P by: q(y, x, x) = q(x, y, x) = q(x, x, y) = y and q(x, y, z) = fourth point on the block through x, y and z for all $x \neq y \neq z \neq x$ in P. The algebra $\langle P; q \rangle$ is then an SQS-skein. Vice versa, if $\langle P; q \rangle$ is an SQS-skein and B is the set of all four-element subalgebras of $\langle P; q \rangle$ then (P, B) is a Steiner quadruple system. This describes a one-to-one correspondence between Steiner quadruple systems and SQS-skeins. The system corresponding to \mathfrak{H}_{16} is given in Figure 1.

It is possible to characterize the semiboolean SQS-skeins by a design-theoretic property of the corresponding Steiner quadruple system. If (P, B) is any Steiner quadruple system, $u \in P$ and $C = \{\{x, y, z\} \mid x, y, z \in P \setminus \{u\} \text{ and } \{x, y, z, u\} \in B\}$, then $(P \setminus \{u\}, C)$ is a Steiner triple system and it is called a *derived Steiner triple system of* (P, B). With this concept, we obtain the following theorem:

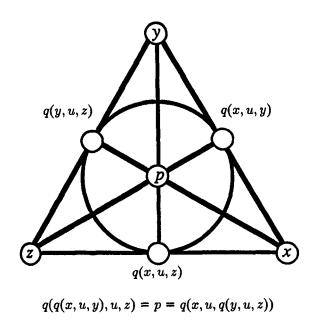


Figure 2. A subplane in a projective geometry over GF(2).

THEOREM 5. Let $\mathfrak{G} = \langle S; q \rangle$ be an SQS-skein with the corresponding Steiner quadruple system (S, B). \mathfrak{G} is semiboolean if and only if all derived Steiner triple systems of (S, B) are projective geometries over GF(2).

Proof. Suppose all derived Steiner triple systems of (S, B) are projective geometries over GF(2). Let $u, x, y, z \in S$. If $|\{u, x, y, z\}| < 4$ or $\{u, x, y, z\}$ forms a subalgebra of \mathfrak{G} then q(x, u, q(y, u, z)) = q(q(x, u, y), u, z) since every four-element SQS-skein is boolean. Otherwise, in the derived triple system $(S \setminus \{u\}, C) x, y$, and z are noncollinear. The subplane generated by x, y, and z has seven elements and is shown in Figure 2. It is straightforward to verify that in fact:

$$q(x, u, q(y, u, z)) = q(q(x, u, y), u, z),$$

i.e., & is semiboolean.

If \mathfrak{G} is semiboolean, consider the sloop corresponding to the derived Steiner triple system $(S \setminus \{u\}, C)$. The semiboolean law implies immediately that the sloop satisfies the associative law and it is well known that the Steiner triple system corresponding to such a sloop is a projective geometry over GF(2) (see [5]).

Note that the existence of nonboolean Steiner quadruple systems whose derived

Steiner triple systems are projective geometries over GF(2) was already known (see [10, p. 294]).

The results presented in this paper are also included in the Ph.D. thesis [6] of the author.

References

- 1. M.H. Armanious, "Algebraische Theorie der Quadrupelsysteme," Dissertation, Technische Hochschule Darmstadt, Federal Republic of Germany, 1980.
- 2. M.H. Armanious, "Existence of nilpotent SQS-skeins of class n," Ars Combin. 29 (1990), 97-105.
- 3. J. Doyen and M. Vandensavel, "Nonisomorphic Steiner quadruple systems," Bull Soc. Math. Belg. 23 (1971), 393-410.
- 4. R.S. Freese and R.N. McKenzie, Commutator Theory for Congruence Modular Varieties. Cambridge University Press, Cambridge, MA, 1987.
- 5. B. Ganter and H. Werner, "Co-ordinatizing Steiner systems," Ann. Discrete Math. 7 (1980), 3-24.
- 6. A.J. Guelzow, "Some classes of E-minimal algebras of affine type: Nilpotent squags, p-groups and nilpotent SQS-skeins," Ph.D. Thesis, University of Manitoba, 1991.
- 7. C.C. Lindner and A. Rosa, "Steiner quadruple systems A survey," Discrete Math. 21 (1978), 147-181.
- 8. E. Mendelsohn, "On the groups of automorphisms of Steiner triple and quadruple systems," Conference on Algebraic Aspects of Combinatorics, Congressus Numerantium XIII, 1975, 255-264.
- 9. R.W. Quackenbush, "Algebraic aspects of Steiner quadruple systems," Conference on Algebraic Aspects of Combinatorics, Congressus Numerantium XIII, 1975, 265-268.
- 10. L. Teirlinck, "Combinatorial properties of planar spaces and embeddability," J. Combin. Theory Ser. A 43 (1986), 291-302.