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Abstract. Let (P, L, *) be a near polygon having 8 + 1 points per line, s > 1, and suppose k is a
field. Let Vk be the k-vector space with basis {vp | p € P}. Then the subspace generated by the
vectors v1 = Lp*l vp, where l 6 L, has codimension at least 2 in Vk.

This observation is used in two ways. First we derive the existence of certain diagram geometries
with flag transitive automorphism group, and secondly, we show that any finite near polygon with 3
points per line can be embedded in an affine GF(3)-space.
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1. Introduction

Let G = (P, L, *) be a finite point-line geometry and k a field, then consider
the vector space Vk over k with basis {vp | p e P}, and in it the subspace
Wk generated by the vectors vl = £p*l vp, where I € L. Denote by Vk the
space Vk/Wk.

For some geometries Q, some eigenvalue techniques will provide us with a
nontrivial lower bound for the dimension of Vk', in particular, if Q is a near
polygon with constant line size s + 1, where s > 1, we obtain that dim V k > 2.

We apply this information in two different ways. First, using methods developed
by the second author in [4, 5] we will derive the existence of certain diagram
geometries which are flag transitive extensions of buildings of type Cn and of
some generalized polygons over the field with 2 or 3 elements. Secondly we find
that finite near polygons with line size 3 embed into an affine GF(3)-space.

2. On the dimension of V

Let Q = (P, L, *) be a finite geometry, k a field and Vk the k-vector space with
basis {vp | p e P}. Suppose N is the incidence matrix of Q, i.e., the matrix whose
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rows and columns are indexed by P respectively L, and with coordinates ATp,l

equal to 1 if p and I are incident and 0 otherwise. Let Wk be the subspace of
Vk generated by the vectors vl = £p*l vp, l € L. Then Wk is the subspace of Vk

generated by the column vectors of N. So with Vk = Vk/Wk we have

Thus to obtain a lower bound for the dimension of Vk we can look for an
upper bound for the (Q-rank of N. The following proposition will be helpful for
finding such an upper bound for some geometries Q. See [7].

PROPOSITION 2.1. (Smith [7]). Let Q = (P, L, *) be a finite geometry with constant
line size a + 1, s > 0. Suppose there exists an integer evaluation e : P —» Z satisfying:

Each line has a unique point q with e(q) minimal
and the other s points have value e(q) + 1.

Then the vector e := Lp€p(-l/s)e(p)vp e VQ is a null vector for N, i.e., Ne = 0.

The standard examples of geometries Q admitting such an evaluation e are
the near polygons with constant line size s + 1, s > 0. The evaluation e can be
chosen to be the distance function from some fixed point p of Q. This leads
us to the following. (Here d denotes the distance function on the point graph
of a.)

COROLLARY 2.1. Let Q be a finite near polygon with constant line size s + 1, s> 1.
Then dimVk > 2.

Proof. By the above proposition we see that for each point p the vector
ep = Lqep ( - l / s ) d ( p , q ) v q € VQ is a null vector for N. Since s > 1 it is easy to see
that for p < q the vectors ep and eq are linearly independent. Thus the Q-rank
of N is at most |P| - 2. So dimVk > 2 for all fields k. D

In [7] one can find some other examples of geometries admitting an integer
evaluation as in the hypothesis of the above proposition. For these examples
one can use the same arguments as above to find that the dimension of Vk is at
least 2.

Of course the lower bound given in the above corollary is not the best possible.
However, for our purposes it is good enough. In [1], one can find more results on
the dimension of Vk in the case where Q is a generalized polygon. Furthermore,
in [2] the multiplicities of the eigenvalues of the adjacency matrices of the
collinearity graph of the regular near polygons are given. From this information
one can deduce the dimension of VQ.
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3. Extensions of diagram geometries

In [4, 5] the second author has described some methods to construct diagram
geometries by extending some known geometries. For example the following
Lemmas 3.1 and 3.2 can be found in [4, 5]. For the convenience of the reader,
we comment on their proofs. (We use the notation of [5].)

LEMMA 3.1. Let G be a group, { X 1 , . . . , Xn} a system of minimal parabolic
subgroups of G with diagram A = (Aij)i,j<n and Borel-subgroup B = n 1 < i < n Xi
in G. Suppose V is a G-module, and v e V such that:

(1) [v, Xi] = 1 for all i + n;
(2) CXn(v] = B and |[v , Xn]| = |Xn : B|.

Then { X 1 , . . . , Xn, Xn} is a system of minimal parabolic subgroups in the semidirect
product [V, G].G with Borel-subgroup B and diagram A* = (A i j) i j<n+1, where
A*i,j = Ai,j for i,j<n, Ai,n+1 = Ai,n for all i < n and An+1,n+l = 2.

For a proof of the lemma we have to verify that the chamber systems
C((Xi, Xn>;Xi, Xn) and C( (X i , X n ) ;X i , Xn) are isomorphic for i < n - 1, and
that C((Xn, Xn) ;X n , Xn) is a generalized digon. This follows easily from the
hypothesis 1, respectively, 2.

We can apply the results of the previous sections to find the module V needed
in the above lemma.

PROPOSITION 3.1. Let G be one of the following groups:

where q = 2 or 3. Then there is a nontrivial G-module V such that the standard
geometry associated to G with diagram

extends to a geometry with diagram
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with group the semidirect product [V, G].G.

Proof. Let G be a group as in the hypothesis of the lemma, with Borel subgroup
B. Let X1, . . . , Xn be the minimal parabolic subgroups of G containing B,
corresponding to the diagram A, such that |Xn : B| = q + 1. Set Gn =
(X 1 , . . . , Xn_1) and Gn_1 = (X1, ..., Xn_2, Xn). Then the dual polar space
(respectively, generalized polygon) Q associated to G with q + 1 points per line
can be identified with the cosets of Gn (the points) and Gn_1 (the lines) in G,
such that a point and a line are incident precisely when corresponding cosets
have nonempty intersection.

Let the point Gn be called p and the line Gn_1 be called l. Clearly p and l
are incident.

Consider the vector spaces V = 14 and its subspace W = Wk constructed from
g, where k = GF(3) if q = 2 and k = GF(2) if q = 3. Let v = v,, + W. Then
v is centralized by X1, ..., Xn_1, since they are contained in Gn, while it is not
Xn-invariant, since V has dimension at least 2. As B is maximal in Xn, we
find CXn(v) = B.

Now consider the submodule (vxn) of V. Clearly this is the permutation
module for PGL2(q) of dimension q + 1, and its intersection with W contains the
vector vi. Hence we get | [v , X n] | = q + 1 in all cases considered. Application of
Lemma 3.1 yields the result. D

A second construction is given in the following lemma.

LEMMA 3.2. Let G be a finite group with minimal parabolic system, Borel-subgroup
B and diagram A as in Lemma 3.1. Suppose Kn < B is a normal subgroup of
Xn such that Xn/Kn ~ £3 and CXn(Kn) < Kn. If V is an irreducible faithful
CG-module satisfying:

(1) CV(B) = C v ( ( X 1 , ..., Xn_1}) is 1-dimensional;
(2) Cv(Xn) = 0.

Then there exists an r e GL(V), such that in {G, Gr) the system X1, ..., Xn, Xn+1 =
Xn has diagram A* as in Lemma 3.1.
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We may assume that V is equipped with a positive definite G-invariant hermitian
form. Then r can be chosen to be the unitary reflection with reflection hyperplane
VL for some nonzero vector v in Cv((X1 , ..., X n _ 1 ) ) . Then [r, Xn] is a group
of order 3 and the hypothesis can be replaced by

(*) there is a 1-dimensional subspace U of Cv((X 1 , ..., Xn_1)) such that dim
(Uxn) = 2.

The following application of the results of Section 2 to find the module V can
also be found in [3].

PROPOSITION 3.2. Let G be one of the groups P5p2n(2), U2n(2), G2(2) or 2F4(2).
Then the standard geometry of minimal parabolic subgroups in G with diagram

extends to a geometry with diagram

Proof. Let Q be the dual polar space or generalized polygon associated to G
with 3 points per line. Then V = VQ is a nontrivial G-module and G and V
satisfy the condition (*), see also [5]. So we can apply Lemma 3.2. D

In the determination of all locally finite classical Tits chamber systems with
transitive group of automorphisms and finite chamber stabilizer, the types of
diagrams as occuring in the above propositions cannot be ruled out. Existence of
such geometries can be proved by showing that the corresponding 'assemblage'
exists and then applying [8]. This method is rather abstract and does not give
information on finite examples, while our construction in Proposition 3.1 describes
some explicit finite examples.

The examples of diagram geometries described above are also described in [5],
however, there the modules V needed for the construction, were found by ad
hoc methods, while here, they are found in a uniform way.
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4. Affine embeddings

Let Q = (P, L, *) be a point-line geometry and A an affine space. Then an
embedding of Q into A is an injective map j from P into the point set of A such
for that every line I € L the set {j(p) | p * l} is the point set of a line in A.

PROPOSITION 4.1. A finite near polygon with 3 points per line can be embedded in
some affine space over the field GF(3).

Proof. Let Q be a finite near polygon with 3 points per line. Consider the vector
space V = VGF(3) and in it the subspace W = WGF(3). Then the hyperplane
H = {CPepapVp | Lpep ap = 0} contains W properly by Corollary 2.1, and
hence the points (vp) of Q lie in the affine space V/W - H/W. By construction,
the three points of a line in Q are just an affine line of this affine space.

The following argument proving injectivity of the map is due to Andries
Brouwer. Suppose p and q are two distinct points of P, and I is a line on p in a
geodesic from p to q. For each point r of Q let 7l(r) be the unique point on l
at minimal distance from r. If m is a line of S, then either all points of m have
the same distance to l, and TTJ maps m onto l, or there is a unique point on /
that is closest to all the 3 points on m. Hence the subspace U of V generated
by the vectors vr - v71(r) and vl contains W. But vp + U # vq + U. This proves
the proposition. D

For generalized quadrangles a complete answer about embeddings into affine
spaces is known, see [6, Chapter 7]. Apart from trivial embeddings and em-
beddings of generalized quadrangles with 3 points per line the only examples
of generalized quadrangles that embed in some affine space are the generalized
quadrangles T2(O), cf. [6].

If we allow also 'embeddings' for which lines are represented by i-subspaces
for some i > 2, then with the same arguments near polygons with 4 points per
line 'embed' in some affine space over GF(2). And considering the modules
described in Meixner [5] there are also such affine 'embeddings' of the dual polar
spaces related to the groups PSp2n(7).

As noted before, one can find other geometries, see [7], that satisfy the
hypothesis of Proposition 2.1. If such a geometry has constant line size 3, then
the above construction may yield an embedding into some affine GF(3)-space.
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