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Abstract We show that Schützenberger’s promotion on two and three row rectangu-
lar Young tableaux can be realized as cyclic rotation of certain planar graphs intro-
duced by Kuperberg. Moreover, following work of the third author, we show that this
action admits the cyclic sieving phenomenon.
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1 Introduction

Let us briefly recall some definitions; refer to [16] for more details. A partition λ =
(λ1, . . . , λk) of an integer n, written λ � n, is multiset of positive integers whose sum
is n, which by convention is written in weakly decreasing order. For every partition
of n we can draw an arrangement of n boxes into left-justified rows of lengths λ1 ≥
λ2 ≥ · · · ≥ λk , called a Young diagram. A semistandard Young tableau is a way of
filling the boxes in a Young diagram with positive integers so that the entries weakly
increase in rows, strictly increase down columns. The type of a semistandard Young
tableau is the multiset of entries. A standard Young tableau is a semistandard tableau
of type {1,2, . . . , n}, where n is the number of boxes. Given a partition λ, let SSYT(λ)

denote the set of semistandard Young tableaux of shape λ, and similarly let SYT(λ)

denote the set of standard Young tableaux of shape λ. For example,

∈ SSYT((4,3,1)), ∈ SYT((4,3,1)).
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We denote the entry in row a, column b of a tableau T , by Ta,b . Another way
to describe a standard Young tableau is to write its Yamanouchi word. The Ya-
manouchi word for a tableau T ∈ SYT(λ), with λ = (λ1, λ2, . . . , λk) � n, is a word
w = w1 · · ·wn on a multiset

{1λ1,2λ2 , . . . , kλk } := {1, . . . ,1
︸ ︷︷ ︸

λ1

,2, . . . ,2
︸ ︷︷ ︸

λ2

, . . . , k, . . . , k
︸ ︷︷ ︸

λk

},

such that wi is the row in which i is placed in T . For example,

↔ 11213221.

Notice that Yamanouchi words are characterized by the fact that in reading w from
left to right, there are never fewer letters i than letters (i + 1). Given such a word w

we can associate a tableau T (w) in a straightforward way. We say w is balanced if
all distinct letters appear the same number of times. Balanced Yamanouchi words are
in bijection with standard Young tableaux of rectangular shapes.

In this paper we will study the action of jeu-de-taquin promotion on certain classes
of tableaux. Promotion was defined by Schützenberger as an action on posets [13],
and has since appeared in a number of contexts, usually applied to tableaux, c.f.
[3, 14]. For our purposes, promotion is a bijection p : SYT(λ) → SYT(λ) defined as
follows.

Definition 1.1 (Jeu-de-taquin promotion) Given a tableau T in SYT(λ) with λ � n,
form p(T ) with the following algorithm.

(1) Remove the entry 1 in the upper left corner and decrease every other entry by 1.
The empty box is initialized in position (a, b) = (1,1).

(2) Perform jeu de taquin:
(a) If there is no box to the right of the empty box and no box below the empty

box, then go to 3).
(b) If there is a box to the right or below the empty box, then swap the empty

box with the box containing the smaller entry, i.e., p(T )a,b := min{Ta,b+1 −
1, Ta+1,b −1}. Set (a, b) := (a′, b′), where (a′, b′) are the coordinates of box
swapped, and go to 2a).

(3) Fill the empty box with n.

For example,

T = �→ = p(T ).

Remark 1.2 We take care to point out that promotion should not be confused with
the similarly defined, and more widely studied, action called evacuation (or the
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“Schützenberger involution,” or, more confusingly, “evacuation and promotion”),
also defined in [13].

As a permutation, promotion naturally splits SYT(λ) into disjoint orbits. For a gen-
eral shape λ there seems to be no obvious pattern to the sizes of the orbits. However,
for certain shapes, notably Haiman’s “generalized staircases” more can be said [3]
(see also Edelman and Greene [1, Cor. 7.23]). In particular, rectangles fall into this
category, with the following result.

Theorem 1.3 ([3], Theorem 4.4)
If λ = (n, . . . , n) � N = bn is a rectangle, then pN(T ) = T for all T ∈ SYT(λ).

In this paper we will reinterpret the action of promotion on rectangular standard
tableaux having two or three rows as a more elementary action on different sets of
combinatorial objects. These alternative descriptions of the action of promotion will
render Theorem 1.3 transparent for the cases b = 2 and b = 3. In the case of b = 2
this interpretation was discovered by White [20] and takes the form of a bijection
from the set of standard tableaux of shape 2 by n and the set of noncrossing matchings
on [2n] under which promotion on tableaux maps to rotation on matchings. As we
will show (Theorem 2.5), the case of b = 3 involves a bijection from the set of three
row rectangular standard tableaux to a collection of combinatorial objects called A2

webs under which promotion maps to a combinatorial action called web rotation.
Let us now review the result for b = 2 rows. Given a balanced Yamanouchi word

w = w1 · · ·w2n on {1n,2n}, draw 2n vertices around the boundary of a disk, label
them 1, . . . ,2n counterclockwise, and place wi at vertex i. Read the word and for
every 2 we encounter, draw a line between that vertex and the clockwise nearest 1
that is not already matched with a 2. To recover a Yamanouchi word from a noncross-
ing matching, traverse the disk counterclockwise, starting at the first vertex. On first
encountering an edge, label the endpoint with a 1, the second time label the endpoint
with a 2. Below are the five noncrossing matchings on six vertices labeled with the
corresponding Yamanouchi words (w1 is at 11 o’clock).

Notice that the top three matchings are obtained from one another by rotation,
as are the two matchings in the second row. On the other hand, the corresponding
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standard tableaux are related by promotion:

p→ p→ p→ ,

and

p→ p→ .

In fact, by examining Yamanouchi words, the following theorem is easy to verify.

Theorem 1.4 Let M denote a noncrossing matching on 2n vertices, and let T be the
corresponding standard Young tableau of shape (n,n). Let M ′ denote the noncross-
ing matching obtained by rotating M clockwise by π/n. Then p(T ) is the tableau
for M ′.

This allows one in particular to deduce, or rather to see with one’s own eyes, that
promotion on a 2 by n rectangle has order dividing 2n. It is natural to ask if such
an elegant visualization of promotion is possible for other rectangles. We answer
affirmatively for the three row case.

In [4] Kuperberg introduced combinatorial rank 2 spiders. These are planar cat-
egories describing the invariant space Inv(V1 ⊗ V2 ⊗ · · · ⊗ Vn) of a tensor product
of irreducible representations Vi of a rank 2 Lie algebra g. Spiders generalize the
Temperley-Lieb category that gives a similar basis for invariants of sl2, see [2]. Spi-
ders are defined on a web space: a vector space whose basis is a collection of planar
graphs called webs. These are the graphs we are interested in. In fact, the noncross-
ing matchings used above are exactly the A1 webs, cf. [4]. The question of describing
spiders in arbitrary rank remains open. In this paper we restrict ourselvs to A1 and
A2 spiders, and correspondingly to the two and three row cases.

The final part of our work deals with the cyclic sieving phenomenon (CSP), a gen-
eralization of Stembridge’s “q = −1 phenomenon”; see [17]. Suppose we are given a
finite set X, a finite cyclic group C = 〈c〉 acting on X, and a polynomial X(q) ∈ Z[q]
with integer coefficients. Following Reiner, Stanton, and White, [11] we say that the
triple (X,C,X(q)) exhibits the cyclic sieving phenomenon if for every integer d ≥ 0,
we have that |Xcd | = X(ζd) where ζ ∈ C is a root of unity of multiplicative order |C|
and Xcd

is the fixed point set of the action of the power cd . In particular, since the
identity element fixes everything in any group action, we have that |X| = X(1) when-
ever (X,C,X(q)) exhibits the CSP.

If the triple (X,C,X(q)) exhibits the CSP and ζ is a primitive |C|th root of
unity, we can determine the cardinalities of the fixed point sets X1 = X, Xc,
Xc2

, . . . ,Xc|C|−1
via the polynomial evaluations X(1),X(ζ ),X(ζ 2), . . . ,X(ζ |C|−1).

These fixed point set sizes determine the cycle structure of the canonical image of c

in the group of permutations of X, SX . Therefore, to find the cycle structure of the
image of any bijection c : X → X, it is enough to determine the order of the action of
c on X and find a polynomial X(q) such that (X, 〈c〉,X(q)) exhibits the CSP.
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In [12] the third author proved an instance of the CSP related to the action of
promotion on rectangular tableaux. Recall that for any partition λ � n, we have that
the standard tableaux of shape λ are enumerated by the Frame-Robinson-Thrall hook
length formula:

|SYT(λ)| = n!
�(i,j)∈λhij

,

where the product is over the boxes (i, j) in λ and hij is the hook length at the
box (i, j), i.e., the number of boxes directly east or south of the box (i, j) in λ,
counting itself exactly once. To obtain the polynomial used for cyclic sieving, we
replace the hook length formula with a natural q-analogue. First, recall that for any
n ∈ N, [n]q := 1 + q + · · · + qn−1 and [n]q ! := [n]q [n − 1]q · · · [1]q .

Theorem 1.5 ([12], Theorem 3.9) Let λ � n be a rectangular shape and let X =
SYT(λ). Let C := Z/nZ act on X via promotion. Then, the triple (X,C,X(q)) ex-
hibits the cyclic sieving phenomenon, where

X(q) = [n]q !
�(i,j)∈λ[hij ]q

is the q-analogue of the hook length formula.

The proof in [12] involves showing that the image of the long cycle (n,n −
1, . . . ,1) ∈ Sn in the Kazhdan-Lusztig cellular representation of shape λ is, up to a
predictable sign, the permutation matrix corresponding to the action of promotion on
SYT(λ), hence reducing the problem to a character evaluation. This approach, while
conceptually clean, has the drawback that it involves an object which is somewhat
difficult to compute with and visualize—the KL cellular representation for rectan-
gular shapes. Here we use webs as a basis for irreducible representations to give a
simpler representation theoretic proof for the special cases of Theorem 1.5 in which
λ has 2 or 3 rows.

The paper is structured as follows. In Section 2 we present A2 webs along with
some of their important known properties. We also state our first main result (Theo-
rem 2.5), that rotation of A2 webs is equivalent to promotion of rectangular tableaux
with three rows. Because of its length, the proof of Theorem 2.5 is relegated to Sec-
tion 3. In Section 4 we give a self-contained proof of the cyclic sieving phenomenon
for webs and derive some enumerative corollaries about rotational symmetry of webs.
Section 5 provides some ideas for future study.

2 A2 webs

Following Kuperberg [4], let us now define A2 webs.

Definition 2.1 A planar directed graph D with no multiple edges embedded in a disk
is an A2 web if it satisfies the following conditions:
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Fig. 1 Two irreducible A2 webs

(1) D is bipartite, with each edge of D oriented from one of the negative vertices to
one of the positive vertices, and

(2) all the boundary vertices have degree 1 while all internal vertices have degree 3.

If, in addition, D is non-elliptic, i.e.,

(3) all internal faces of D have at least 6 sides,

then we say D is an irreducible A2 web.

When speaking of webs, we will omit the word irreducible when it is implied by
the context. Note that webs are planar embeddings of graphs viewed up to a homeo-
morphism on the interior of the disk, with boundary vertices placed canonically.

Let W(3) denote the C-vector space with basis the set of all irreducible A2 webs.
Kuperberg [4] introduced the following set of linear relations for A2 webs, called
spider reduction rules:

These local graph transformations, when iterated, allow for the expression of an
arbitrary A2 web as a linear combination of irreducible A2 webs. Moreover, it can
be shown [5] that any application of these rules to a fixed A2 web yields the same
linear combination of irreducible A2 webs. In other words the spider reduction rules
are confluent.

Figure 1 shows two examples of irreducible webs; the signs of boundary vertices
are marked. Let γ denote a cyclically ordered arrangement of signs (i.e., + or −). We
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Fig. 2 Depths of faces and edge labelings

write |γ | = n if the total number of boundary vertices is n. Let Mγ denote the set of
all irreducible webs with boundary γ . The following is a special case of a theorem of
Kuperberg.

Theorem 2.2 ([4], Theorem 6.1) Let γ be a fixed boundary with k “+”s and
3n − 2k “−”s. The number of semistandard Young tableaux of shape (3, . . . ,3) and
type {12, . . . , k2, k + 1, . . . ,3n − k} is equal to the cardinality of Mγ .

In particular, if γ has 3n “−”s, i.e., k = 0, then the set Mn := Mγ and
SYT((n,n,n)) are equinumerous. Kuperberg and Khovanov [6] give an explicit bi-
jection between these two sets. We now describe this bijection.

Place the boundary vertices of a web D ∈ Mn on a line so that the web is drawn
on the lower half-plane. We need to make a choice here where to cut the circular
boundary. Next, consider the set of faces F(D) created by the web and the line.
Distinguish the infinite outer face f0. For each f ∈ F(D) we let the depth of f ,
d(f ), be the minimal number of edges in D one needs to cross to reach f0 starting
in f . In particular, d(f0) = 0. For an edge e of D let f l

e and f r
e denote the faces to

the left and to the right of e looking in the direction of e’s orientation. Label each
edge e of D with the label l(e) = d(f l

e ) − d(f r
e ).

Using the web on the left of Figure 1 as an example, we see it stretched out and
labeled in Figure 2. Note that the depth of two adjacent faces differs by at most 1,
which implies that each edge label is either −1, 0 or 1. In particular, one can read
off the sequence of labels assigned to boundary edges. The web on Figure 2 thus
produces the sequence (1,1,1,0,0,−1,0,−1 − 1), which we can also write as a
word w = w(D) = 111001̄01̄1̄ (with 1̄ for −1). Any such resulting word w(D) is
dominant in the language of [6], see [6, Proposition 1] and the preceding discussion.
In our terminology, this means it is a balanced Yamanouchi word on the multiset
{1n,0n, 1̄n}. As mentioned earlier, such words are in bijection with standard Young
tableaux of shape (n,n,n), (here 1 corresponds to row 1, 0 corresponds to row 2, and
1̄ to row 3).

In order to define the inverse map, that is, how to assign a unique web D(w) to
every dominant word w, we need the growth rules given in Figure 3. These pictures
describe local moves for joining together dangling “strands” according to their ori-
entation and labeling, and can be used to generate any irreducible web. Given a sign
sequence γ and a word w with three distinct letters 1 < 0 < 1̄, we first draw vertices
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Fig. 3 Growth rules for labeled A2 webs

on a line, labeled from left to right by w. Then we draw a directed edge downward
from each vertex. To form the web, we choose a pair of neighboring strands (i.e., with
no strands dangling between) and apply the local rules in Figure 3 to join the strands
together. We continue until there are no neighboring strands to which we can apply
the growth rules.

Remark 2.3 The growth rules here are a slight modification of growth rules in [6],
but are nonetheless equivalent. We have defined our rules so that the induced edge
labelings are consistent with the depths of the faces of D. See Lemma 3.3. To obtain
the Khovanov-Kuperberg rules from ours, ignore all horizontal labels and negate the
labels for upward pointing arrows. It is straightforward (if tedious) to verify that our
modified rules give rise to the same claims asserted in Lemmas 1–3, and Proposition 1
of [6], summarized in Theorem 2.4 below.

The following is the compilation of several statements proved by Khovanov and
Kuperberg.

Theorem 2.4 ([6], Lemmas 1–3, Proposition 1) The web produced by the growth
algorithm does not depend on the choices made in applying the growth rules. Fur-
thermore, if one starts with a dominant word w and a sign sequence of all “+”s or all
“−”s, the growth algorithm does not terminate until there are no dangling strands,
and when it terminates the resulting web is non-elliptic. In fact, the maps w and D are
inverses in this case and provide a bijection between irreducible webs and dominant
(i.e., balanced Yamanouchi) words.

Finally, we are ready to state and prove the result relating webs with promotion.
Let p(D) be the web obtained by rotating a web D by 2π

3n
, so that if we cut the
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Fig. 4 Rotation of an A2 web

boundary in the same place, the first vertex on the boundary of D becomes the last
vertex on the boundary of p(D).

Theorem 2.5 For D ∈ Mn, we have

T (w(p(D))) = p(T (w(D))).

That is, the tableau associated with the rotation of D is given by promotion of the
tableau associated with D itself.

Example 2.6 Figure 4 shows an example of cyclic rotation of a web. The correspond-
ing map on standard Young tableaux is:

p→ .

3 Proof of Theorem 2.5

Throughout this section we assume D is irreducible.
The main idea for the proof of Theorem 2.5 is as follows. Given a web D with

word w, we describe a way to cut it into three regions: L(D), M(D), and R(D);
see Figure 7. Upon moving the leftmost vertex of D to the right, the depths of faces
in L(D) decrease by 1, the depths of faces in R(D) increase by 1, and the depths
of faces in M(D) remain unchanged. In terms of the word obtained after rotation,
w′ = w(p(D)), this means that we have

w′ = w2 · · ·wa−11wa+1 · · ·wb−10wb+1 · · ·w3n1̄,

where a is the position of the boundary vertex on the border between L(D) and
M(D) and the boundary vertex in position b lies between M(D) and R(D). We
want to show that w′ = p(w), which is to say that a is the first position where letters
1 and 0 balance in w, and b is the first position after a in w where letters 0 and 1̄
balance.
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We start with proving some lemmas. For a web in Mn let us say that two con-
secutive boundary vertices are neighbors if they are connected to a common internal
vertex. For example, the web in Figure 2 has four pairs of neighbors.

Lemma 3.1 Every web in Mn has at least three pairs of neighbors.

Proof Let D ∈ Mn be a web and let w = w(D) be the associated dominant word.
We are looking for occurrences of · · ·10 · · ·, · · ·11̄ · · · and · · ·01̄ · · · in w. It is clear
that there are at least two such pairs: at the first appearance of a 0, which is preceded
immediately by a 1, and at the final appearance of a 0, immediately followed by a 1̄.
Thus, the lemma follows if there are two or more connected components.

If

w = 1 · · ·1
︸ ︷︷ ︸

n

0 · · ·0
︸ ︷︷ ︸

n

1̄ · · · 1̄
︸ ︷︷ ︸

n

,

then the first 1 and the final 1̄ also form a pair of neighbors. (An easy induction
argument using the growth rules shows that the word

1 · · ·1
︸ ︷︷ ︸

n

0 · · ·0
︸ ︷︷ ︸

n

has n upward-pointing strands dangling, each labeled with 1̄, and the leftmost of
these is adjacent to the edge from w1. These pair off with the remaining letters 1̄ in
w without intersecting, forcing the edges from w1 and wn to be adjacent.)

If w is not of this form, then either

(1) the last 1 occurs after the first 0, in which case there is an extra occurrence of
· · ·10 · · · or a · · ·11̄ · · ·, or

(2) the first 1̄ occurs before the last 0, in which case there is an occurrence of a
· · ·11̄ · · · or an extra occurrence of · · ·01̄ · · ·. �

Let us now take an edge e adjacent to a vertex v of an irreducible web D, and
define a left cut

Cl
e,v : e→ v

el
1→ vl

1

el
2→ ·· · el

i→ vl
i

el
i+1→ ·· ·

and a right cut

Cr
e,v : e→ v

er
1→ vr

1

er
2→ ·· · er

j→ vr
j

er
j+1→ ·· ·

starting at v as follows. We move along e towards v (the orientation of e does not
matter here) and turn left at v onto edge el

1. Traversing el
1 we reach the next vertex

vl
1 where we turn right onto edge el

2. This takes us to vertex vl
2, and so on. We keep

alternating left and right turns until we reach a boundary vertex, at which point the
process stops. The left cut Cl

e,v is the resulting sequence of edges and vertices. Sim-
ilarly we define the right cut with edges er

j and vertices vr
j , with the only difference

being that the first turn at v is to the right.
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Fig. 5 Intersection of left and
right cuts

Lemma 3.2 For any e and v the left and right cuts do not intersect each other and
do not self-intersect. In other words, all vertices v, vl

i , v
r
j are distinct.

Proof Recall that all internal faces of an irreducible web must have at least 6 sides.
We will show that if the left and right cuts intersect (or self-intersect) then the web
must have a 4-cycle, a contradiction.

Let D be a web, and consider the left and right cut for a given pair (e, v). Assume
that the left cut intersects the right cut, and take the first point of intersection, w.
There are several possible scenarios to consider, based on the sign of w and v and
on whether the third edge at w points inward or outward with respect to the enclosed
region. One of the cases is shown in Figure 5. In fact, this scenario is in some sense
the “worst” one. The key observation is that the part of the original web contained
inside the cycle formed by left and right cuts is also a web, say D′, with all the
boundary edges of the same orientation.

If the web D′ is empty then the left and right cut form a 4-cycle and we are done.
Assume that D′ is nonempty. Then by the final claim of Theorem 2.4 there are

at least 3 boundary vertices in D′. By Lemma 3.1, D′ must have at least 3 pairs of
neighboring vertices. One of these pairs might be placed next to vertex v and another
pair may sit next to vertex w, but the third one must occur somewhere in between,
and as seen in Figure 5, it unavoidably creates a 4-cycle.

Other cases to consider are very similar, as well as the non-self-intersection
claim. �

Lemma 3.3 Given a dominant word w, the edge labels given in the growth rules are
consistent with the depths of the faces of the resulting web D(w).

Proof The proof is by induction on the maximal depth of a face. Clearly if the maxi-
mal depth is 1, then w consists of copies of 101̄, and the labeling is consistent.

Let D be a web of depth at least 2 corresponding to a dominant word. Since it
is dominant, Theorem 2.4 tells us there are no dangling strands. Further notice that
the growth algorithm must finish with two 1s of opposite parity connecting up or
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Fig. 6 The outer strip of a web

two 1̄s connecting up. In either of these situations the labeling is appropriate since
we are creating a face of depth 1. Moreover, since the confluence property allows
us to perform the growth operations in any order, we see that the boundary between
the inner faces and the outer face f0(D) consists of edges alternately labeled with 1
and 1̄.

Remove from D all of these edges and the 0-labeled edges attached to them, which
we call the outer strip of D. Since these 0-labeled edges separate faces of depth 1,
these labelings are also consistent with measurement of depth. In Figure 6, the outer
strip is indicated with dashed lines.

What remains, D′, is not necessarily a web, but it is a planar edge-labeled graph
with the faces of D of depth at least 2. The graph D′ will have one or more connected
components which we must examine individually.

Let D′′ be one of these connected components. If it forms a web by itself, we are
done by the induction hypothesis. Suppose D′′ is a connected component which is not
a proper web by itself, i.e., at least one of the 0-labeled edges on the outer strip we
removed from D was connected to D′′. We claim that its boundary with the outer face
of D′′ consists of edges labeled alternately 1 and 1̄, at which point the proof again
follows by induction, the base cases being of the form w(D′′) = 10 · · ·01̄, where all
closed regions have depth 1 and the labeling is easily verified.

Let us consider approaching D′′ along one of the 0-labeled edges on the outer strip
of D. By looking at the local growth rules, we see there are six possibilities for the
neighborhood of the point where the 0-labeled edge meets D′′. In each case, the 1-
and 1̄-labeled edges separate regions inside and outside of D′′, e.g.,

f0(D
′′)

D′′

The other cases are similar and the lemma follows. �

Let D be a web, and let e∗ be the initial edge of D, namely the edge adjacent to
the leftmost boundary vertex of D. Let v∗ be the other end of e∗. Construct the left
cut Cl := Cl

e∗,v∗ and right cut Cr := Cr
e∗,v∗ , labeling their boundary endpoints vl and

vr , respectively. (We know these paths are disjoint after leaving vertex v∗ and that
they ultimately reach boundary vertices by Lemma 3.2.)
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Fig. 7

We want to know the labelings of the edges on Cl and Cr . Since e∗ is labeled with
a 1 and pointing toward v∗, we see that there are only two possibilities for the neigh-
borhood of v∗. But by Lemma 3.3, we know edge labelings are consistent with depth,
and the edge to the left of v∗ separates two faces of depth 1. Hence it is a 0-labeled
edge. Now by examination of the growth rules in Figure 3, we see that any right turn
from a downward-pointing 0-edge takes us on an upward-pointing 1-labeled edge.
Any left turn from an upward-pointing 1-edge leads to another downward-pointing
0-edge and so on, as shown in Figure 7. Because the path must have even length in
order to end up on the boundary, we know that the final edge traversed is labeled with
a 0. Similarly, by examination of the local moves we have that Cr alternates 1̄01̄0 · · ·
upon leaving v∗, terminating at vr , which, by parity considerations, must be labeled
with 1̄.

We define L(D) to be the collection of faces to the left of Cl (when moving from
v∗ to vl). Similarly, R(D) denotes the faces to the right of Cr (notice that this includes
the outer face f0). Let M(D) denote the faces to the right of Cl and to the left of Cr .
See Figure 7.

Lemma 3.4 Let D be a web. After moving the leftmost boundary vertex to the right,

(1) the depth of every face in L(D) decreases by 1,
(2) the depth of every face in R(D) increases by 1, and
(3) the depth of every face in M(D) remains unchanged.

Proof Let L1 denote the face separated from the outer face by e∗. This face will be
the outer face once the leftmost boundary vertex moves to the right. Let L2, . . . ,Lk

denote the other faces of L(D) that border the left cut. By examining the edge labels
(which by Lemma 3.3 are consistent with depth) every face Li has a minimal path to
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f0 that passes through L1. Thus, any face in L(D) has a minimal path to f0 that goes
through L1. Claim (1) then follows.

By examining the faces on the boundary of M(D), we see that no face in M(D)

has a minimal length path through L1, but they all have such a path through M1.
Since M1 is a neighbor to both f0 and L1, this implies (3). A similar argument shows
that any face in R(D) is closer to R1 than to M1, and (2) follows. �

According to Lemma 3.4, we have now established that all the vertices to the left
of vl keep their labels when we move the leftmost vertex to the right, while vl’s label
changes to a 1. Likewise all the labels between vl and vr are the same, but vr has
changed to a 0. If a is the position of vl in the word w = w(D), and b is the position
of vr , then we have w′ = w(p(D)) given by:

w′ = w2 · · ·wa−11wa+1 · · ·wb−10wb+1 · · ·w3n1̄.

All that remains is to verify that a is the first position where letters 1 and 0 balance in
w, and b is the first position after a where letters 0 and 1̄ balance. This is the content
of Lemma 3.6.

But first, we need one more tool. Let a (directed) curved line � intersect a web
D so that it does not pass through any vertices. To each point ρ ∈ � that intersects
an edge of D we assign weights ω1(ρ) and ω2(ρ) according to the rules shown in
Figure 8. Here the dashed line denotes � and the numbers next to it denote the values
of ω1(ρ) and ω2(ρ), respectively. Finally, we let ωi(�) = ∑

ρ ωi(ρ) where the sum is
taken over all intersections of � with D.

The following lemma shows that for fixed starting and ending points, these statis-
tics are independent of the path chosen.

Lemma 3.5 The values of ω1(�) and ω2(�) depend only on the endpoints of � and
not on the exact path it takes.

Proof The statement follows from verification of the local moves as shown on Fig-
ure 9, where {i, j, k} = {1,0, 1̄}. Note that according to growth rules edges adjacent
to any internal vertex are labelled this way. For example, take i = 1, j = 0, k = 1̄, the

Fig. 8 Definition of weights ω1 and ω2
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Fig. 9 Weight-preserving moves

arrows oriented towards the central vertex and the dashed line l directed eastward.
Then by the rules on Figure 8 we see ω1(�) = 1 and ω2(�) = 0, regardless of the path
we take. All other cases are similar.

Clearly any route � might take between any two fixed endpoints can be trans-
formed into any other route by a sequence of such moves. This proves the lemma. �

Now we are ready to show that vl and vr are located at the proper positions in the
word w(D), establishing Theorem 2.5.

Lemma 3.6 Let vl and vr be vertices in D defined as before.

(1) Among the labels of vertices preceding vl (inclusively) there are as many letters
1 as 0, i.e., any path � from f0 to the face to the left of vl has ω1(�) = 1. Further,
vl is the leftmost vertex with this property.

(2) Among the labels of vertices preceding vr (inclusively) there are as many letters
0 as 1̄, i.e., any path � from f0 to the face to the left of vr has ω2(�) = 1. Further,
vr is the leftmost vertex to the right of vl with this property.

Proof Using Lemma 3.5, we see that the ω1(�) = 1 for any path � from f0 to the
boundary face to the left of the vl (Lk in Figure 7). This value is easily computed by
taking a path just to the left of Cl .

Now for any face f in L(D), define ω1(f ) as the value of ω1(�) for any path �

from f0 to f . Similarly, let ω′
1(f ) denote the weight ω1(�

′) of any path �′ from L1
to f . Then we have ω′

1(f ) = ω1(f ) − 1.
To see that vl is the leftmost vertex with the desired property, consider the web DL

formed by taking L(D) − L1 (enclosed by a dashed line in Figure 7). This is a web
with all inward pointing edges, and so by Theorem 2.4 it must be dominant, i.e., the
word w(DL) is Yamanouchi. In particular, ω′

1(f ) ≥ 0 for any face f on the boundary
of L′.

If there was a position to the left of vl where letters 1 and 0 balance in w(D), then
there would be a face f on the boundary of both D and DL where ω1(f ) = 0. But
then ω′

1(f ) = −1, a contradiction.
For vr , the reasoning is similar. Walking along the left side of the right cut allows

us to compute ω2(�) = 1 for any path from f0 to the boundary face to the left of vr .
Now for a face f in M(D), we let ω2(f ) denote the value of ω2(�) for any path �

from f0 to f ; ω′
2(f ) denotes the weight ω2(�

′) of any path �′ from M1 to f . Clearly,
ω′

2(f ) = ω2(f ) − 1.
Consider the web DM formed by starting in M1, cutting along the right side of Cl ,

zig-zagging along the boundary of D to collect edges of the same parity, then pass-
ing down the left side of Cr (outlined in Figure 7). To be more precise, along the
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boundary of D we “zig-zag” in two ways. In type I, two consecutive edges join up,
in which case we take the third edge connected to them. In type II, one edge has two
non-boundary branches that we pass through. Along the left and right cuts, all moves
are type I.

Since all the boundary edges have the same orientation, we can apply Theorem 2.4
to conclude that the word w(DM) is Yamanouchi; in particular, ω′

2(f ) ≥ 0 for any
boundary face f of M ′.

If there is a boundary vertex strictly between vl and vr where letters 0 and 1̄
balance, this means there is a face f on the boundary of both D and DM where
ω2(f ) = 0, but then this implies that ω′

2(f ) = −1, a contradiction. (Such a face can-
not occur in D − DM since we cannot have i = 1̄ in a type I crossing.)

This completes the proof of the lemma. �

We have now proved Theorem 2.5 as well.

4 Application to cyclic sieving

Let W
(2)
n denote the C-vector space of irreducible A1 webs with 2n boundary ver-

tices, that is, noncrossing matchings on [2n]. Similarly, let W
(3)
n denote the C-vector

space spanned by the set Mn of irreducible A2 webs with 3n “−”s on the boundary.
We define actions of S2n on W

(2)
n and S3n on W

(3)
n as follows. For an A1 web

E and an index i ∈ [2n − 1], define t
(2)
i · E to be the element of W

(2)
n obtained by

attaching an uncrossing “ ) ( ” at vertices i and i + 1 to the diagram of E. Here we
apply the A1 spider reduction rule if necessary. That is, we replace any resulting loop
with a factor of −2. Define the action of the Coxeter generator si = (i, i + 1) ∈ S2n

on W
(2)
n by si · E := E + t

(2)
i · E for all noncrossing matchings E, extended linearly.

Similarly, for any irredicible A2 web D ∈ Mn and an index i ∈ [3n−1], set t
(3)
i ·D

equal to the element of W
(3)
n obtained by attaching an uncrossing “ >–< ” at indices

i and i + 1. Proceed expressing the resulting A2 web t
(3)
i · D as a linear combination

Fig. 10
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Fig. 11

of irreducible A2 webs via the spider reduction rules. We define the action of the
Coxeter generator si = (i, i + 1) on W

(3)
n by si · D := D + t

(3)
i D.

Lemma 4.1 The actions of the Coxeter generators on W
(2)
n and W

(3)
n defined above

extend to actions of the appropriate symmetric groups to make W
(2)
n and W

(3)
n mod-

ules over S2n and S3n, respectively.

Proof We must verify that the Coxeter relations are satisfied. This is an easy exer-
cise involving the spider reduction rules in the case of W

(3)
n and an easier exercise

involving the relation that a closed loop yields a factor of −2 in the case of W
(2)
n . �

In fact, the resulting action is the action of certain quotients of the group algebra of
the symmetric group. Namely, the Temperley-Lieb algebra for A1, and a Temperley-
Lieb-Martin algebra [8] for A2, c.f. [10].

Next, we identify W
(2)
n and W

(3)
n as irreducible modules over S2n and S3n, respec-

tively.

Lemma 4.2 (1) W
(2)
n is an irreducible S2n-module of shape (n,n).

(2) W
(3)
n is an irreducible S3n-module of shape (n,n,n).

Proof Let ρ(2) : C[S2n] → End(W
(2)
n ) and ρ(3) : C[S3n] → End(W

(3)
n ) denote the

algebra homomorphisms which define the module structure for W
(2)
n and W

(3)
n . For

any subset X ⊆ Sn, define [X]− to be the group algebra element given by

[X]− =
∑

x∈X

sgn(x)x.

For any partition λ � n, define Sλ to be the Young subgroup of Sn indexed by λ. That
is, Sλ is the subgroup of Sn which fixes setwise the sets {1,2, . . . , λ1}, {λ1 + 1, λ1 +
2, . . . , λ1 + λ2}, . . . .

Since the action of the symmetric group on W
(2)
n and W

(3)
n factors through the

Temperley-Lieb algebra and the Temperley-Lieb-Martin algebra, one concludes that
the irreducible components cannot have more than 2 and 3 rows correspondingly. On
the other hand, it is easy to show that [S(n2)]− and [S(n3)]− do indeed act nontrivially

on W
(2)
n and W

(3)
n . Since

[Sλ]−CSn = Ind ↑Sn

Sλ
(1′)



36 J Algebr Comb (2009) 30: 19–41

as a left CSn-module, where 1′ is the alternating representation, we can use the fact
that the Kostka matrix is upper triangular with respect to dominance order. We con-
clude that W

(2)
n and W

(3)
n contain irreducible components smaller than or equal to

the corresponding rectangular shapes. The only shape that is not larger than a k by n

rectangle in dominance order but has at most k rows is the rectangle itself. Finally,
dimension count shows that this irreducible occurs in W

(k)
n exactly once for k = 2,3

correspondingly, while others do not occur. �

We are almost ready to give a proof of the desired CSP, but first we want to have a
more compact way of realizing the action of the Coxeter generators on webs.

To do so, we extend the notion of webs to allow crossings as follows. In A1, a
crossing should be understood as the state sum

and for A2 webs as the state sum

Now we see that a simple transposition si simply introduces a crossing between
boundary vertices i and i + 1.

With this viewpoint, it is straightforward to check that the following Reidemester-
type moves can be performed for A1 and A2 webs correspondingly. In the A2 case
one should interpret unoriented edges as either of the two possible orientations.

Let N = bn, b = 2,3. We will now relate the action of web rotation to the action
of the long cycle c = (12 · · ·N) in SN .

Lemma 4.3 For b = 2,3, the action of rotation of an Ab−1 web D is, up to sign, the
action of the long cycle, i.e.,

p(D) = (−1)b−1c · D.



J Algebr Comb (2009) 30: 19–41 37

Proof By iterating the crossings corresponding to the Coxeter generators, we see the
long cycle c = (12 · · ·N) = sN−1 · · · s2s1 acts as the “whirl” shown below.

We want to use Reidemeister moves to pull the long string that wraps around into the
position shown by dashed line, forming the diagram for rotation. This can clearly be
done. Furthermore, in the A1 case one needs to apply the sign changing transforma-
tion exactly once, while in A2 one needs to apply the sign-changing transformation
exactly twice. (The endpoints of the strings are fixed.) �

Proposition 4.4 Let λ � N = bn be a rectangle with b = 2 or 3 rows and let C =
Z/NZ act on X = SYT(λ) by promotion. Then the triple (X,C,X(q)) exhibits the
cyclic sieving phenomenon, where X(q) is as in Theorem 1.5.

Proof By Lemma 4.3, for any d ≥ 0, the number of webs on N vertices fixed by
d rotations is equal to the value of the irreducible character χ(n,n) or χ(n,n,n) of
SN evaluated on the permutation cd

N . In order to get our cyclic sieving result, we
need to relate this character evaluation to a polynomial evaluation. To do this, we
use Springer’s theory of regular elements [15]. For W a finite complex reflection
group, an element w ∈ W is called regular if there exists an eigenvector v for w in
the reflection representation of W such that v does not lie on any of the reflecting
hyperplanes for the reflections in W .

Keeping the notation of the previous paragraph, let χλ be an irreducible character
of W . We can associate to χλ a polynomial called the fake degree polynomial as fol-
lows. Letting V denote the reflection representation of W , let C[V ] denote the ring of
polynomial valued functions on V and let C[V ]W+ denote the subring of those func-
tions which are invariant under the action of W . The quotient C[V ]/C[V ]W+ carries an
action of W which is graded. Define the fake degree polynomial f λ(q) = ∑

i≥0 aiq
i

by letting ai be the multiplicity of χλ in the i-th graded piece of this representation.
Springer showed that if w is a regular element of W and v is an associated eigenvector
and w · v = ωv, we have that χλ(w) = f λ(ω).

We apply Springer’s result to the case of W = SN to get our desired cyclic sieving
phenomenon. It is easy to see that cd

N is a regular element of SN for all d . Moreover,
it is possible to show that for any partition λ � N the fake degree polynomial for the
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irreducible representation of SN with shape λ has the following form:

f λ(q) = q−κ(λ) [N ]q !
�(i,j)∈λ[hij ]q ,

where κ(λ) = 0λ1 + 1λ2 + 2λ3 + · · ·. For the A1 case, assume λ = (n,n) has two
rows. Then, κ(λ) = n and if ζ is a primitive Nth root of unity with 2n = N , then
(ζ )−nd = (−1)d for all d ≥ 0. On the other hand, by Lemma 4.3 we also have that
χ(n,n)(cd

N) is equal to (−1)d times the number of elements of SYT((n,n)) fixed under
d iterations of promotion. The desired CSP follows. For the A2 case, notice that if
λ = (n,n,n) has three rows and 3n = N and ζ is a primitive Nth root of unity, we
have that κ(λ) = 3n and (ζ )−3nd = 1 for all d ≥ 0. On the other hand, in this case
χλ(cd

N) is equal to the number of elements of SYT((n,n,n)) fixed by d iterations of
promotion, completing the proof. �

4.1 Enumeration of web orbits

We can now extract the number of A2 webs fixed by any given number of rotations,
d|3n, by taking q → e2πi/d in

f (n,n,n)(q) = [3n]q ![2]q
[n]q ![n + 1]q ![n + 2]q ! .

These numbers are something that we have no way to compute other than via the
CSP, though formula (1) suggests that a more direct argument may exist.

Proposition 4.5 For n ≥ 3, the number of webs fixed by 3n/d rotations is the
multinomial coefficient

(

3n/d

�n/d�, �(n + 1)/d�, �(n + 2)/d�
)

= (3n/d)!
�n/d�!�(n + 1)/d�!�(n + 2)/d�! , (1)

if d = 3 or d|n, zero otherwise.

Remark 4.6 The similar exercise for noncrossing matchings is, under a bijection with
triangulations of polygons, handled in [11, Theorem 7.1].

Remark 4.7 The condition that d = 3 or d|n means that many proper divisors of 3n

will not fix any webs. For instance, there are no webs with 24 vertices fixed by four
rotations since d = 6 does not divide n = 8.

Remark 4.8 With d = 2, n = 2k, equation (1) gives (3k)!
k!k!(k+1)! , which is not strictly

speaking a multinomial coefficient since k + k + (k + 1) �= 3k. For d > 2, the number
is a true multinomial.

Corollary 4.9 For n ≥ 3, there are six webs on 3n vertices fixed by three rotations;
those in the orbit of w = (123)n, and those in the orbit of w′ = 11122(132)n−32333.
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Proof Taking d = n in (1) we get
( 3

1,1,1

) = 6 webs fixed by 3n/d = 3 rotations. By
considering how promotion acts on Yamanouchi words, it is not difficult to verify that
the webs w and w′ have the desired orbits of size three. �

Proof of Proposition 4.5 We proceed by evaluation of the hook length formula at
appropriate roots of unity, i.e., primitive d th roots of unity, where d|3n.

Let ζ = e2πi/d . We now apply the following rules (throughout this proof we ab-
breviate [m]q by [m]):

lim
q→ζ

[m1]
[m2] =

{

m1
m2

if m1 ≡ m2 ≡ 0 modd,

1 if m1 ≡ m2 �≡ 0 modd,

and

lim
q→ζ

[m] = 0 if and only if d|m.

For any d|3n we have

lim
q→ζ

f (n,n,n)(q) = [3n]![2]
[n]![n + 1]![n + 2]!

= lim
q→ζ

[3n] · · · [n + 3]
[n] · · · [2][n + 1][n] · · · [3]

[n + 2][n + 1] · · · [2][2]
[2][n + 2] · · · [2]

= lim
q→ζ

[3n] · · · [n + 3]
[n] · · · [2][n + 1][n] · · · [3] .

If 3 < d|3n but d does not divide n, then there are always more terms [m] in the
numerator for which d|m than in the denominator, forcing limq→ζ f (n,n,n)(q) = 0 in
this case.

For d|n = dk, 3 ≤ d ≤ n, we have

lim
q→ζ

f (n,n,n)(q) = lim
q→ζ

[3n]
[n] · · · [2n + 2]

[2]
[2n + 1]
[n + 1] · · · [n + 3]

[3]

= 3n

n

(3n − d)

(n − d)
· · · (2n + d)

d

2n

n

(2n − d)

(n − d)
· · · (n + d)

d

= d((3k)(3k − 1) · · · (2k + 1)(2k)(2k − 1) · · · (k + 1))

d(k(k − 1) · · ·1k(k − 1) · · ·1)
= (3k)!

k!k!k! .

The case for d = 2|n is similar, as are the cases when d = 3 does not divide n. �

Example 4.10 For n = 4, with ζ = eπi/6, we have

f (4,4,4)(1) = 462, f (4,4,4)(ζ ) = 0, f (4,4,4)(ζ 2) = 0, f (4,4,4)(ζ 3) = 6,

f (4,4,4)(ζ 4) = 12, f (4,4,4)(ζ 5) = 0, f (4,4,4)(ζ 6) = 30, f (4,4,4)(ζ 7) = 0,

f (4,4,4)(ζ 8) = 12, f (4,4,4)(ζ 9) = 6, f (4,4,4)(ζ 10) = 0, f (4,4,4)(ζ 11) = 0.
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Further, we can deduce the sizes of the orbits of promotion/rotation. Let ok denote the
number of k-orbits. Since six webs are fixed by three rotations, o3 = 2. Since twelve
webs are fixed by four rotations (and none are fixed by two rotations), we get o4 = 3.
We get o6 = 4 because six of the thirty webs fixed by six rotations live in 3-orbits.
Proceeding, we see that the remaining 462 − 42 = 420 webs must live in 12-orbits,
and o12 = 35.

Such an enumeration of k-orbits is possible whenever the CSP is present. See [11].

5 Concluding remarks

There are several potential avenues for further study of the questions raised in this
paper. Perhaps the most obvious of these is whether our approach can be used to
prove Theorems 1.3 and 1.5 for arbitrary rectangles. The biggest roadblock here is
that a robust theory of An spiders has yet to be generalized beyond the rank 2 case,
though Morrison [9] has defined a tensor category of graphs with certain relations
that are conjectured to have the desired properties. Promisingly, Westbury [19] has
explicit growth rules for such graphs, but many details remain unproved.

Another idea for generalization is to examine the other spiders that are well-
understood; namely the B2 and G2 spiders found in [4], as well as the B3 case con-
sidered in [18]. For these we can ask two questions: does their rotation correspond to
some known generalization of promotion? and, do these webs admit a cyclic sieving
phenomenon? Lusztig [7, 28.2.9] has defined an isomorphism of the space of coin-
variants of a Lie algebra that acts as cyclic rotation of tensor powers, up to sign. More-
over, for an n-fold tensor, n iterates of Lusztig’s map is the identity. Stembridge [17]
has shown that an involution of Lusztig (which in type A is Schützenberger’s evacu-
ation) exhibits the “q = −1 phenomenon”, so it seems natural to investigate whether
Lusztig’s cyclic action exhibits the cyclic sieving phenomenon. A first “exercise”
(though it may be highly nontrivial) would be to show that there is a bijection from
the canonical basis for the coinvariant space of sln to standard Young tableaux under
which Lusztig’s cyclic action maps to promotion.

Acknowledgements We thank Bruce Westbury for helpful comments regarding generalizations of A2
webs.
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