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Abstract In this paper we use toric geometry to investigate the topology of the totally
non-negative part of the Grassmannian, denoted (Grk,n)≥0. This is a cell complex
whose cells �G can be parameterized in terms of the combinatorics of plane-bipartite
graphs G. To each cell �G we associate a certain polytope P(G). The polytopes
P(G) are analogous to the well-known Birkhoff polytopes, and we describe their face
lattices in terms of matchings and unions of matchings of G. We also demonstrate a
close connection between the polytopes P(G) and matroid polytopes. We use the
data of P(G) to define an associated toric variety XG. We use our technology to
prove that the cell decomposition of (Grk,n)≥0 is a CW complex, and furthermore,
that the Euler characteristic of the closure of each cell of (Grk,n)≥0 is 1.
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1 Introduction

The classical theory of total positivity concerns matrices in which all minors are non-
negative. While this theory was pioneered by Gantmacher, Krein, and Schoenberg
in the 1930’s, the past decade has seen a flurry of research in this area initiated by
Lusztig [9–11]. Motivated by surprising connections he discovered between his the-
ory of canonical bases for quantum groups and the theory of total positivity, Lusztig
extended this subject by introducing the totally non-negative variety G≥0 in an ar-
bitrary reductive group G and the totally non-negative part (G/P )≥0 of a real flag
variety G/P .

Recently Postnikov [13] investigated the combinatorics of the totally non-negative
part of a Grassmannian (Grk,n)≥0: he established a relationship between (Grk,n)≥0

and certain planar bicolored graphs, producing a combinatorially explicit cell de-
composition of (Grk,n)≥0. To each such graph G he constructed a parameterization
MeasG of a corresponding cell of (Grk,n)≥0 by (R>0)

#Faces(G)−1. In fact, this cell
decomposition is a special case of a cell decomposition of (G/P )≥0 which was con-
jectured by Lusztig and proved by Rietsch [14], although that cell decomposition
was described in quite different terms. Other combinatorial aspects of (Grk,n)≥0,
and more generally of (G/P )≥0, were investigated by Marsh and Rietsch [12], Ri-
etsch [15], and the third author [21, 22].

It is known that (G/P )≥0 is contractible [9] and it is conjectured that (G/P )≥0

with its cell decomposition is a regular CW complex homeomorphic to a ball.1

In [22], the third author proved the combinatorial analogue of this conjecture, proving
that the partially ordered set (poset) of cells of (G/P )≥0 is in fact the poset of cells
of a regular CW complex homeomorphic to a ball.

In this paper we give an approach to this conjecture which uses toric geometry
to extend MeasG to a map onto the closure of the corresponding cell of (Grk,n)≥0.
Specifically, given a plane-bipartite graph G, we construct a toric variety XG and
a rational map mG : XG → Grk,n. We show that mG is well-defined on the totally
non-negative part of XG and that its image is the closure of the corresponding cell of
(Grk,n)≥0. The totally non-negative part of XG is homeomorphic to a certain poly-
tope (the moment polytope) which we denote P(G), so we can equally well think of
this result as a parameterization of our cell by P(G). The restriction of mG to the
toric interior of the non-negative part of XG (equivalently, to the interior of P(G)) is
MeasG.

Our technology proves that the cell decomposition of the totally non-negative part
of the Grassmannian is in fact a CW complex. While our map mG is well-defined
on (XG)≥0 (which is a closed ball) and is a homeomorphism on the interior, in gen-
eral mG is not a homeomorphism on the boundary of (XG)≥0; therefore this does
not lead directly to a proof of the conjecture. However, we do obtain more evi-
dence that the conjecture is true: using Williams’ result [22] that the face poset of
(G/P )≥0 is Eulerian, it follows that the Euler characteristic of the closure of each
cell of (Grk,n)≥0 is 1.

1This conjecture is parallel to a conjecture made by Fomin and Shapiro in [3].
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Table 1 How G reflects P(G)

Plane-Bipartite graph G Polytope P(G)

#Faces(G) − 1 Dimension of P(G)

Perfect orientations/almost perfect matchings Vertices of P(G)

Equivalence classes of edges Facets of P(G)

Lattice of elementary subgraphs Lattice of faces of P(G)

The most elegant part of our story is how the combinatorics of the plane-bipartite
graph G reflects the structure of the polytope P(G) and hence the structure of XG.
See Table 1 for some of these connections. The torus fixed points of XG correspond
to perfect orientations of G, equivalently, to almost perfect matchings of G. The
other faces of XG correspond to certain elementary subgraphs of G, that is, to unions
of almost perfect matchings of G. Every face of XG is of the form XG′ for some
plane-bipartite graph G′ obtained by deleting some edges of G, and mG restricted to
XG′ is mG′ . It will follow from this that, for every face Z of XG, the interior of Z is
mapped to the interior of a cell of the totally non-negative Grassmannian with fibers
that are simply affine spaces. We hope that this explicit description of the topology of
the parameterization will be useful in studying the topology of (Grk,n)≥0.

The structure of this paper is as follows. In Section 2 we review the combinatorics
of plane-bipartite graphs and perfect orientations. Next, in Section 3 we review toric
varieties and their non-negative parts, and prove a lemma which is key to our CW
complex result. We then, in Section 4, introduce the polytopes which will give rise
to the toric varieties of interest to us. Using these polytopes, in Section 5 we make
the connection between our polytopes P(G) and matroid polytopes and explain the
relation of our results to problems arising in cluster algebras and tropical geometry. In
Section 6 we use these polytopes to prove that the cell decomposition of (Grk,n)≥0 is
in fact a CW complex. In Section 7 we analyze the combinatorics of our polytopes in
greater detail, giving a combinatorial description of the face lattice of P(G) in terms
of matchings and unions of matchings of G. Finally, in Appendix A, we calculate f -
vectors, Ehrhart series, volumes, and the degrees of the corresponding toric varieties
for a few small plane-bipartite graphs.

2 The totally non-negative Grassmannian and plane-bipartite graphs

In this section we review some material from [13]. We have slightly modified the
notation from [13] to make it more convenient for the present paper.

Recall that the (real) Grassmannian Grk,n is the space of all k-dimensional sub-
spaces of R

n, for 0 ≤ k ≤ n. An element of Grk,n can be viewed as a full-rank k × n

matrix modulo left multiplications by nonsingular k×k matrices. In other words, two
k × n matrices represent the same point in Grk,n if and only if they can be obtained
from each other by row operations.

Let
([n]

k

)
be the set of all k-element subsets of [n] := {1, . . . , n}. For I ∈ ([n]

k

)
, let

�I (A) denote the maximal minor of a k × n matrix A located in the column set I .
The map A �→ (�I (A)), where I ranges over

([n]
k

)
, induces the Plücker embedding

Grk,n ↪→ RP(n
k)−1.
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Definition 2.1 [13, Section 3] The totally non-negative Grassmannian (Grk,n)≥0 is
the subset of the real Grassmannian Grk,n that can be represented by k × n matrices
A with all maximal minors �I (A) non-negative.

For M ⊆ ([n]
k

)
, the positive Grassmann cell CM is the subset of the elements

in (Grk,n)≥0 represented by all k × n matrices A with the prescribed collection of
maximal minors strictly positive �I(A) > 0, for I ∈ M, and the remaining maximal
minors equal to zero �J (A) = 0, for J 	∈ M.

A subset M ⊆ ([n]
k

)
such that CM is nonempty satisfies the base axioms of ma-

troid. These special matroids are called positroids.

Clearly (Grk,n)≥0 is a disjoint union of the positive Grassmann cells CM. It was
shown in [13] that each of these cells CM is really a cell, that is, it is homeomorphic
to an open ball of appropriate dimension d . Moreover, one can explicitly construct a
parametrization R

d
>0

∼→ CM using certain planar graphs, as follows.

Definition 2.2 A plane-bipartite graph is an undirected graph G drawn inside a disk
(considered modulo homotopy) with n boundary vertices on the boundary of the
disk, labeled b1, . . . , bn in clockwise order, as well as some colored internal vertices.
These internal vertices are strictly inside the disk and are colored in black and white
such that:

1. Each edge in G joins two vertices of different colors.
2. Each boundary vertex bi in G is incident to a single edge.

A perfect orientation O of a plane-bipartite graph G is a choice of directions of its
edges such that each black internal vertex u is incident to exactly one edge directed
away from u; and each white internal vertex v is incident to exactly one edge directed
towards v. A plane-bipartite graph is called perfectly orientable if it has a perfect
orientation. Let GO denote the directed graph associated with a perfect orientation
O of G. The source set IO ⊂ [n] of a perfect orientation O is the set of i for which
bi is a source of the directed graph GO . Similarly, if j ∈ ĪO := [n] \ IO , then bj is a
sink of O.

All perfect orientations of a fixed G have source sets of the same size k where
k − (n − k) = ∑

color(v) (deg(v) − 2). Here the sum is over all internal vertices v,
color(v) = 1 for a black vertex v, and color(v) = −1 for a white vertex; see [13]. In
this case we say that G is of type (k, n).

Let us associate a variable xe with each edge of G. Pick a perfect orientation O
of G. For i ∈ IO and j ∈ ĪO , define the boundary measurement Mij as the following
power series in the x±1

e :

Mij :=
∑

P

(−1)wind(P ) xP ,

where the sum is over all directed paths in GO that start at the boundary vertex bi

and end at the boundary vertex bj . The Laurent monomial xP is given by xP :=∏′
xe′/

∏′′
xe′′ , where the product

∏′ is over all edges e′ in P directed from a white
vertex to a black vertex, and the product

∏′′ is over all edges e′′ in P directed from
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a black vertex to a white vertex. For any path P , let σ1,σ2, . . . , σr ∈ R/2πZ be the
directions of the edges of P (in order). Let Q be the path through R/2πZ which
travels from σ1 to σ2 to σ3 and so forth, traveling less then π units of arc from each
σi to the next. The winding index wind(P ) is the number of times Q winds around
the circle R/2πZ, rounded to the nearest integer. The index wind(P ) is congruent to
the number of self-intersections of the path P modulo 2.

Remark 2.3 Let us mention several differences in the notations given above and the
ones from [13]. The construction in [13] was done for plabic graphs, which are
slightly more general than the plane-bipartite graphs defined above. Edges in plabic
graphs are allowed to join vertices of the same color. One can easily transform a
plabic graph into a plane-biparte graph, without much change in the construction, by
contracting edges which join vertices of the same color, or alternatively, by inserting
vertices of different color in the middle of such edges.

Another difference is that we inverted the edge variables from [13] for all edges
directed from a black vertex to a white vertex.

In [13] the boundary measurements Mij were defined for any planar directed graph
drawn inside a disk. It was shown that one can easily transform any such graph into a
plane-bipartite graph with a perfect orientation of edges that has the same boundary
measurements.

Let E(G) denote the edge set of a plane-bipartite graph G, and let R
E(G)
>0 denote

the set of vectors (xe)e∈E(G) with strictly positive real coordinates xe.

Lemma 2.4 [13, Lemma 4.3] The sum in each boundary measurement Mij evaluates
to a subtraction-free rational expression in the xe. Thus it gives a well-defined positive
function on R

E(G)
>0 .

For example, suppose that G has two boundary vertices, 1 and 2 and two internal
vertices u and v, with edges a, b, c and d running connecting 1 → u, u → v, v → u

and v → 2. Then M12 = abd − abcbd + abcbcbd − · · · = abd/(1 + bc). The sum
only converges when |bc| < 1 but, by interpreting it as a rational function, we can see
that it gives a well defined value for any 4-tuple (a, b, c, d) of positive reals.

If the graph GO is acyclic then there are finitely many directed paths P , and
wind(P ) = 0 for any P . In this case the Mij are clearly Laurent polynomials in the
xe with positive integer coefficients, and the above lemma is trivial.

For a plane-biparte graph G of type (k, n) and a perfect orientation O with the
source set IO , let us construct the k × n matrix A = A(G, O) such that

1. The k × k submatrix of A in the column set IO is the identity matrix.
2. For any i ∈ IO and j ∈ ĪO , the minor �(IO \{i})∪{j}(A) equals Mij .

These conditions uniquely define the matrix A. Its entries outside the column set IO
are ±Mij . The matrix A represents an element of the Grassmannian Grk,n. Thus, by
Lemma 2.4, it gives the well-defined boundary measurement map

MeasG : R
E(G)
>0 → Grk,n.
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Clearly, the matrix A(G, O) described above will be different for different perfect
orientations O of G. However, all these different matrices A(G, O) represent the
same point in the Grassmannian Grk,n.

Note that once we have constructed the matrix A, we can determine which cell of
(Grk,n)≥0 we are in by simply noting which maximal minors are nonzero and which
are zero.

Proposition 2.5 [13, Theorem 10.1] For a perfectly orientable plane-bipartite graph
G, the boundary measurement map MeasG does not depend on a choice of perfect
orientation of G.

If we multiply the edge variables xe for all edges incident to an internal vertex
v by the same factor, then the boundary measurement Mij will not change. Let

V (G) denote the set of internal vertices of G. Let R
E(G)/V (G)

>0 be the quotient of

R
E(G)
>0 modulo the action of R

V (G)
>0 given by these rescalings of the xe. If the graph

G does not have isolated connected components without boundary vertices2, then
R

E(G)/V (G)

>0  R
|E(G)|−|V (G)|
>0 . The map MeasG induces the map

M̃easG : R
E(G)/V (G)

>0 → Grk,n,

which (slightly abusing the notation) we also call the boundary measurement map.
Talaska [20] has given an explicit combinatorial formula for the maximal minors

(also called Plücker coordinates) of such matrices A = A(G, O). To state her result,
we need a few definitions. A conservative flow in a perfect orientation O of G is a
(possibly empty) collection of pairwise vertex-disjoint oriented cycles. (Each cycle
is self-avoiding, i.e. it is not allowed to pass through a vertex more than once.) For
|J | = |IO|, a flow from IO to J is a collection of self-avoiding walks and cycles, all
pairwise vertex-disjoint, such that the sources of these walks are IO \ (IO ∩ J ) and
the destinations are J \ (IO ∩ J ). So a conservative flow can also be described as a
flow from IO to IO . The weight weight(F ) of a flow F is the product of the weights
of all its edges directed from the white to the black vertex, divided by the product of
all its edges directed from the black to the white vertex.3 A flow with no edges has
weight 1.

Theorem 2.6 [20, Theorem 1.1] Fix a perfectly orientable G and a perfect orien-
tation O. The minor �J (A) of A = A(G, O), with columns in position J , is given
by

�J =
(

∑

F

weight(F )

)

/

(
∑

F ′
weight(F ′)

)

.

Here the sum in the numerator is over flows F from IO to J and the sum in the
denominator is over all conservative flows F ′.

2Clearly, we can remove all such isolated components without affecting the boundary measurements.
3Note that here we slightly differ from Talaska’s convention in order to be consistent with our previous
convention in defining Mij .
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A point in the Grassmannian only depends on its Plücker coordinates up to multi-
plication by a common scalar. For our purposes, it is best to clear the denominators
in Theorem 2.6, and give a purely (Laurent) polynomial formula:

Corollary 2.7 Using the notation of Theorem 2.6, the point of Grk,n corresponding
to the row span of A has Plücker coordinates

pJ :=
(

∑

F

weight(F )

)

where the sum is over flows F from IO to J .

Theorem 2.6 implies that the image of the boundary measurement map M̃easG lies
in the totally non-negative Grassmannian (Grk,n)≥0. Moreover, the image is equal to
a certain positive cell in (Grk,n)≥0.

Proposition 2.8 [13, Theorem 12.7] Let G be any perfectly orientable plane-
bipartite graph of type (k, n). Then the image of the boundary measurement map
M̃easG is a certain positive Grassmann cell CM in (Grk,n)≥0. For every cell CM in
(Grk,n)≥0, there is a perfectly orientable plane-bipartite graph G such that CM is
the image of M̃easG. The map M̃easG is a fiber bundle with fiber an r-dimensional
affine space, for some non-negative r . For any cell of (Grk,n)≥0, we can always
choose a graph G such that M̃easG is a homeomorphism onto this cell.

Let us say that a plane-bipartite graph G is reduced if M̃easG is a homeomor-
phism, and G has no isolated connected components nor internal vertices incident to
a single edge; see [13].

An almost perfect matching of a plane-bipartite graph G is a subset M of edges
such that each internal vertex is incident to exactly one edge in M (and the boundary
vertices bi are incident to either one or no edges in M). There is a bijection between
perfect orientations of G and almost perfect matchings of G where, for a perfect ori-
entation O of G, an edge e is included in the corresponding matching if e is directed
away from a black vertex or to a white vertex in O.4

For a plane-bipartite graph G and the corresponding cell CM = Image(MeasG)

in (Grk,n)≥0, one can combinatorially construct the matroid M from the graph G, as
follows.

Proposition 2.9 [13, Proposition 11.7, Lemma 11.10] A subset I ∈ ([n]
k

)
is a base of

the matroid M if and only there exists a perfect orientation O of G such that I = IO .
Equivalently, assuming that all boundary vertices bi in G are black, I is a base of

M if and only if there exists an almost perfect matching M of G such that

I = {i | bi belongs to an edge from M}.

4Note that typically e is directed away from a black vertex if and only if it is directed towards a white
vertex. However, we have used the word or to make the bijection well-defined when boundary vertices are
not colored.
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3 Toric varieties and their non-negative parts

We may define a (generalized) projective toric variety as follows [2, 18]. Let S =
{mi | i = 1, . . . , �} be any finite subset of Z

n, where Z
n can be thought of as the

character group of the torus (C∗)n. Here mi = (mi1,mi2, . . . ,min). Then consider
the map φ : (C∗)n → P

�−1 such that x = (x1, . . . , xn) �→ [xm1 , . . . ,xm� ]. Here xmi

denotes x
mi1
1 x

mi2
2 . . . x

min
n . We then define the toric variety XS to be the Zariski closure

of the image of this map. We write φ̃ for the inclusion of XS into P
�−1 The real part

XS(R) of XS is defined to be the intersection of XS with RP
�−1; the positive part

X>0
S is defined to be the image of (R>0)

n under φ; and the non-negative part X
≥0
S

is defined to be the closure of X>0
S in XS(R). We note for future reference that XS ,

XS(R) and X
≥0
S are unaltered by translating the set S by any integer vector.

Note that XS is not necessarily a toric variety in the sense of [5], as it may not be
normal; however, its normalization is a toric variety in that sense. See [2] for more
details.

Let P be the convex hull of S. There is a homeomorphism from X
≥0
S to P , known

as the moment map. (See [5, Section 4.2, page 81] and [18, Theorem 8.4]). In par-
ticular, X

≥0
S is homeomorphic to a closed ball. For convenience, we will also refer to

XS as XP .
We now prove a simple but very important lemma.

Lemma 3.1 Suppose we have a map � : (R>0)
n → P

N−1 given by

(t1, . . . , tn) �→ [h1(t1, . . . , tn), . . . , hN(t1, . . . , tn)],
where the hi ’s are Laurent polynomials with positive coefficients. Let S be the set of
all exponent vectors in Z

n which occur among the (Laurent) monomials of the hi ’s,
and let P be the convex hull of the points of S. Then the map � factors through
the totally positive part (XP )>0, giving a map τ>0 : (XP )>0 → P

N−1. Moreover
τ>0 extends continuously to the closure to give a well-defined map τ≥0 : (XP )≥0 →
τ>0((XP )>0).

Proof Let S = {m1, . . . ,m�}. Clearly the map � factors as the composite map t =
(t1, . . . , tn) �→ [tm1 , . . . , tm� ] �→ [h1(t1, . . . , tn), . . . , hN(t1, . . . , tn)], and the image of
(R>0)

n under the first map is precisely (XP )>0. The second map, which we will
call τ>0, takes a point [x1, . . . , x�] of (XP )>0 to [g1(x1, . . . , x�), . . . , gN(x1, . . . , x�)],
where the gi ’s are homogeneous polynomials of degree 1 with positive coefficients.
By construction, each xi occurs in at least one of the gi ’s.

Since (XP )≥0 is the closure inside XP of (XP )>0, any point [x1, . . . , x�] of
(XP )≥0 has all xi ’s non-negative; furthermore, not all of the xi ’s are equal to 0.
And now since the gi ’s have positive coefficients and they involve all of the xi ’s,
the image of any point [x1, . . . , x�] of (XP )≥0 under τ>0 is well-defined. Therefore
τ>0 extends continuously to the closure to give a well-defined map τ≥0 : (XP )≥0 →
τ>0((XP )>0). �

In Section 6 we will use this lemma to prove that (Grk,n)≥0 is a CW complex.
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4 Matching polytopes for plane-bipartite graphs

In this section we will define a family of polytopes P(G) associated to plane-bipartite
graphs G.

Definition 4.1 Given an almost perfect matching of a plane-bipartite graph G, we
associate to it the 0-1 vector in R

E(G) where the coordinates associated to edges in
the matching are 1 and all other coordinates are 0. We define P(G) to be the convex
hull of these 0-1 vectors.

Remark 4.2 Note that more generally, we could define P(G) for any graph G with a
distinguished subset of “boundary” vertices. Many of our forthcoming results about
P(G) for plane-bipartite graphs G should be extendable to this generality.

Because all of the 0-1 vectors above have the property that
∑

e�v xe = 1 for all
internal vertices v of V (G), the polytope P(G) lies in the subspace of R

E(G) defined
by {∑e�v xe = 1 | v ∈ V (G)}.

We will now see how one can arrive at these polytopes in another way. Recall that
for each G we have the boundary measurement map M̃easG : R

E(G)/V (G)

>0 → Grk,n.
Embedding the image into projective space via the Plücker embedding, we have an
explicit formula for the coordinates given by Talaska (Corollary 2.7).

In the following definition, we use the notation of Theorem 2.6.

Definition 4.3 Fix a perfect orientation O of G. We define P(G, O) to be the convex
hull of the exponent vectors of the weights of all flows starting at IO . A priori this
polytope lies in R

E(G), but we will see that P(G, O) lies in a subspace of R
E(G).

Remark 4.4 Note that what we are doing in Definition 4.3 is taking the convex hull
of all exponent vectors which occur in the pJ (A) from Corollary 2.7, as J ranges
over all subsets of columns of size |IO|.

We now relate P(G) and P(G, O). We continue to use the notion of flows intro-
duced in shortly before Theorem 2.6.

Lemma 4.5 Fix a plane-bipartite graph G and a perfect orientation O1. If we choose
a flow in O1 and switch the direction of all edges in this flow, we obtain another
perfect orientation. Conversely, one can obtain any perfect orientation O2 of G from
O1 by switching all directions of edges in a flow in O1.

Proof The first claim is simple: a perfect orientation is one in which each black vertex
has a unique outcoming edge and each white vertex has a unique incoming edge. If
we switch the orientation of all edges along one of the paths or cycles in the flow,
clearly this property will be preserved.

To see the converse, let E′ denote the set of edges of G in which the orientations
O1 and O2 disagree. It follows from the definition of perfect orientation that every
edge e in E′ incident to some vertex v can be paired uniquely with another edge e′
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in E′ which is also incident to v (note that at each vertex v of G there are either 0 or
2 incident edges which are in E′). This pairing induces a decomposition of E′ into a
union of vertex-disjoint (undirected) cycles and paths. Moreover, each such cycle or
path is directed in both O1 and O2 (but of course in opposite directions). This set of
cycles and paths is the relevant flow. �

Because of the bijection between perfect orientations and almost perfect match-
ings (see Section 2), Lemma 4.5 implies the following.

Corollary 4.6 Fix G and a perfect orientation O. Flows in O are in bijection with
perfect orientations of G (obtained by reversing all edges of the flow in O) which are
in bijection with almost perfect matchings of G.

We can now see the following.

Corollary 4.7 For any perfect orientation O, the polytope P(G, O) is a translation
of P(G) by an integer vector.

Proof Let F denote the empty flow on O, F ′ be some other flow in O, and O′ the
perfect orientation obtained from O by reversing the directions of all edges in F ′. Let
M and M ′ be the almost perfect matchings associated to O and O′. Let x(F ), x(F ′),
x(M), and x(M ′) be the vectors in RE(G) associated to this flow and these perfect
orientations. Of course x(F ) is the all-zero vector. We claim that x(M ′) − x(M) =
x(F ) − x(F ′).

Fix an edge e of G: we will check that the e-coordinates of x(M ′) − x(M)

and x(F ) − x(F ′) are equal. First, suppose that e does not occur in F ′. Then ei-
ther e appears in both M and M ′, or in neither. So x(F )e = x(F ′)e = 0 and either
x(M)e = x(M ′)e = 0 or x(M)e = x(M ′)e = 1. Now, suppose that e occurs in F ′, and
is oriented from its white to its black endpoint in O. So x(F )e = 0 and x(F ′) = 1.
The edge e occurs in the matching M ′ and not in the matching M , so x(M)e = 0
and x(M ′)e = 1. Finally, suppose e occurs in F ′, and is oriented from its black to
its white endpoint in O. Then x(F )e = 0 and x(F ′) = −1. The edge e occurs in the
matching M and not in the matching M ′, so x(M)e = 1 and x(M ′)e = 0. �

In particular, up to translation, P(G, O) does not depend on O. Recall that trans-
lating a polytope does not affect the corresponding toric variety.

In Figure 1, we fix a plane-bipartite graph G corresponding to the cell of (Gr2,4)≥0
such that the Plücker coordinates P12,P13,P14 are positive and all others are 0. We
display the three perfect orientations and the vertices of P(G).

In Figure 2, we fix a plane-bipartite graph G corresponding to the cell of (Gr2,4)≥0
such that the Plücker coordinates P12,P13,P24,P34 are positive while P14 and P23
are 0. We display the four perfect orientations and the vertices of P(G).

In Figure 3 we have fixed a plane-bipartite graph G corresponding to the top-
dimensional cell of (Gr2,4)≥0. G has seven perfect orientations. We have drawn the
edge graph of the four-dimensional polytope P(G). This time we have depicted the
vertices of P(G) using matchings instead of perfect orientations. Next to each match-
ing, we have also listed the source set of the corresponding perfect orientation.
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Fig. 1

Fig. 2

Fig. 3

5 Connections with matroid polytopes and cluster algebras

Every perfectly orientable plane-bipartite graph encodes a realizable positroid, that is,
an oriented matroid in which all orientations are positive. The bases of the positroid
associated to a plane-bipartite graph G of type (k, n) are precisely the k-element
subsets I ⊂ [n] which occur as source sets of perfect orientations of G. This is easy
to see, as each perfect orientation of G gives rise to a parametrization of the cell �G

of (Grk,n)≥0 in which the Plücker coordinate corresponding to the source set I is 1.
Furthermore, if one takes a (directed) path in a perfect orientation O and switches the
orientation of each of its edges, this encodes a basis exchange.

Given this close connection of perfectly orientable plane-bipartite graphs to
positroids, it is natural to ask whether there is a connection between our polytopes
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P(G) and matroid polytopes. We first recall the definition of a matroid polytope. Let
M be a matroid of rank k on the ground set [n]. The matroid polytope Q(M) is the
convex hull of the vectors {e(J ) | J is a basis of M} where e(J ) is the 0 − 1 vector
in R

n whose ith coordinate is 1 if i ∈ J and is 0 otherwise [7]. The vertices are in
one-to-one correspondence with bases of M . This polytope lies in the hyperplane
x1 + · · · + xn = 0 and, if the matroid M is connected, has dimension n − 1.

Proposition 5.1 There is a linear projection 
 from P(G) to Q(MG). The fibers
of this projection over the vertices of Q(MG) are the Newton polytopes for the Lau-
rent polynomials which express the Plücker coordinates on XG in terms of the edge
variables.

Proof If G is a plane-bipartite graph of type (k, n), one can associate to each vertex
vM of P(G) the basis of the corresponding positroid corresponding to the boundary
edges which are matched in G. In terms of the bijection between perfect matchings
and perfect orientations, this is the source set of the corresponding perfect orientation.
This gives the linear projection 
 from P(G) to Q(MG). To see that the statement
about the fibers is true, see Corollary 2.7, and remember the relationship between
matchings and flows. �

The second and third authors, in [19], related the Newton polytopes of Proposition
5.1 to the positive part of the tropical Grassmannian; our results in that paper can be
summarized by saying that the positive part of the tropical Grassmannian is combina-
torially isomorphic to the dual fan of the fiber polytope of the map P(G) → Q(MG).5

The fact that the Plücker coordinates on XG can all be expressed as Laurent poly-
nomials in the edge weights is not simply a fortunate coincidence, but is a conse-
quence6 of the fact that the coordinate ring of XG has the structure of a cluster al-
gebra. (See [4] for the definition of cluster algebras, [17] for the verification that the
largest cell of the Grassmannian has the structure of a cluster algebra and [13] for the
fact that every XG has this structure.) In general, if we had a better understanding of
the Newton polytopes of Laurent polynomials arising from cluster algebras, we could
resolve many of the open questions in that theory.

Example 5.2 Consider the plane-bipartite graph G from Figure 3. This corresponds
to the positroid of rank two on the ground set [4] such that all subsets of size 2 are
independent. The edge graph of the four-dimensional polytope P(G) is shown in
Figure 3, and each vertex is labeled with the basis it corresponds to. The matroid
polytope of this matroid is the (three-dimensional) octahedron with six vertices cor-
responding to the two-element subsets of [4]. Under the map 
 , each vertex of P(G)

corresponding to the two-element subset ij gets mapped to the vertex of the octahe-
dron whose ith and j th coordinates are 1 (all other coordinates being 0).

5We worked with face variables rather than edge variables in [19], but the two corresponding realizations
of P(G) are linearly isomorphic.
6This consequence is not completely straightforward; one must express certain ratios of the edge weights
as Laurent monomials in the variables of a certain cluster, and this involves a nontrivial “chamber Ansatz”.
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6 (Grk,n)≥0 is a CW complex

We now prove that the cell decomposition of (Grk,n)≥0 is a CW complex, and obtain
as a corollary that the Euler characteristic of the closure of each cell is 1.

To review the terminology, a cell complex is a decomposition of a space X into a
disjoint union of cells, that is open balls. A CW complex is a cell complex together
with the extra data of attaching maps. More specifically, each cell in a CW complex
is attached by gluing a closed i-dimensional ball Di to the (i − 1)-skeleton Xi−1, i.e.
the union of all lower dimensional cells. The gluing is specified by a continuous func-
tion f from ∂Di = Si−1 to Xi−1. CW complexes are defined inductively as follows:
Given X0 a discrete space (a discrete union of 0-cells), and inductively constructed
subspaces Xi obtained from Xi−1 by attaching some collection of i-cells, the result-
ing colimit space X is called a CW complex provided it is given the weak topology
and every closed cell is covered by a finite union of open cells.

Although we don’t need this definition here, we note that a regular CW complex
is a CW complex such that the closure of each cell is homeomorphic to a closed ball
and the boundary of each cell is homeomorphic to a sphere. It is not known if the cell
decomposition of (Grk,n)≥0 is regular, although the results of [22] suggest that the
answer is yes.

To prove our main result, we will also use the following lemma, which can be
found in [13, 15].

Lemma 6.1 [13, Theorem 18.3], [15, Proposition 7.2] The closure of a cell � in
(Grk,n)≥0 is the union of � together with lower-dimensional cells.

Theorem 6.2 The cell decomposition of (Grk,n)≥0 is a finite CW complex.

Proof All of these cell complexes contain only finitely many cells; therefore the
closure-finite condition in the definition of a CW complex is automatically satisfied.
What we need to do is define the attaching maps for the cells: we need to prove that
for each i-dimensional cell there is a continuous map f from Di to Xi which maps
∂Di = Si−1 to Xi−1 and extends the parameterization of the cell (a map from the
interior of Di to Xi ).

By Corollary 2.7, if we are given a perfectly orientable plane-bipartite graph G,
the image of the parameterization MeasG of the cell �G under the Plücker embed-
ding can be described as a map (t1, . . . , tn) �→ [h1(t1, . . . , tn), . . . , hN(t1, . . . , tn)]
to projective space, where the hi ’s are Laurent polynomials with positive coeffi-
cients. By Lemma 3.1 and Remark 4.4, the map MeasG gives rise to a rational map
mG : XP(G) → Grk,n which is well-defined on (XP(G))≥0 (a closed ball). Further-
more, it is clear that the image of mG on (XP(G))≥ 0 lies in (Grk,n)≥0.

Since the totally positive part of the toric variety XP(G) is dense in the non-
negative part, and the interior gets mapped to the cell �G, it follows that (XP(G))≥0
gets mapped to the closure of �G. Furthermore, by construction, (XP(G))>0 maps
homeomorphically to the cell �G.

And now by Lemma 6.1, it follows that the boundary of (XP(G))≥0 gets mapped
to the (i − 1)-skeleton of (Grk,n)≥0. This completes the proof that the cell decompo-
sition of (Grk,n)≥0 is a CW complex. �
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It has been conjectured that the cell decomposition of (Grk,n)≥0 is a regular CW
complex which is homeomorphic to a ball. In particular, if a CW complex is regular
then it follows that the Euler characteristic of the closure of each cell is 1.

In [22], the third author proved that the poset of cells of (G/P )≥0 is thin and
lexicographically shellable, hence in particular, Eulerian. In other words, the Mobius
function of the poset of cells takes values μ(0̂, x) = (−1)ρ(x) for any x in the poset.
As the Euler characteristic of a finite CW complex is defined to be the number of
even-dimensional cells minus the number of odd-dimensional cells, we obtain the
following result.

Corollary 6.3 The Euler characteristic of the closure of each cell of (Grk,n)≥0 is 1.

Remark After this work was compleated, Theorem 6.2 was generalized to an arbitary
partial flag variety G/p by Rietsh and the 3th author [16].

7 The face lattice of P(G)

We now consider the lattice of faces of P(G), and give a description in terms of
unions of matchings of G. This description is very similar to the description of the
face lattice of the Birkhoff polytopes, as described by Billera and Sarangarajan [1].
In fact our proofs are very similar to those in [1]; we just need to adapt the proofs of
Billera and Sarangarajan to the setting of plane-bipartite graphs.

We begin by giving an inequality description of the polytope P(G).

Proposition 7.1 For any plane bipartite graph G, the polytope P(G) is given by the
following inequalities and equations: xe ≥ 0 for all edges e, and

∑
e�v xe = 1 for

each internal vertex v. If every edge of G is used in some almost perfect matching,
then the affine linear space defined by the above equations is the affine linear space
spanned by P(G).

Proof Let Q be the polytope defined by these inequalities. Clearly, P(G) is contained
in Q. Note that Q lies in the cube [0,1]E(G) because if e is any edge of G and v an
endpoint of e then everywhere on Q we have xe = 1 − ∑

e′�v,e′ 	=e xe ≤ 1. Let u be
a vertex of Q. We want to show that u is a (0 − 1)-vector. Suppose for the sake of
contradiction that u is not a (0 − 1)-vector; let H be the subgraph of G consisting
of edges e for which 0 < ue < 1. Note that, if v is a vertex of H , then v has degree
at least 2 in H since

∑
e�v ue = 1. Therefore, H contains a cycle or a path from one

boundary vertex of G to another. We consider the case where H contains a cycle, the
other case is similar. Let e1, e2, . . . , e2r be the edges of this cycle; the length of the
cycle is even because G is bipartite. Define the vector w by wei

= (−1)i and we = 0
if e 	∈ {e1, e2, . . . , e2n}. Let ε = mini (min(uei

, u1−ei
)). Then u + εw and u − εw are

both in Q, contradicting that u was assumed to be a vertex of Q.
Now, assume that every edge of G is used in some almost perfect matching. Then

P(G) meets the interior of the orthant (R≥0)
E(G), so the affine linear space spanned

by P(G) is the same as the affine linear space which cuts it out of this orthant. �
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Corollary 7.2 Suppose that every edge of G is used in some almost perfect matching.
Then P(G) has dimension #Faces(G) − 1.

Proof By proposition 7.1, the affine linear space spanned by P(G) is parallel to the
vector space cut out by the equations

∑
e�v xe = 0. This is precisely H1(G, ∂G),

where ∂G is the set of boundary vertices of G. Let G̃ be the graph formed from
G by identifying the vertices of ∂G. We embed G̃ in a sphere by contracting the
boundary of the disc in which G lives to a point. Then H1(G, ∂G) ∼= H1(G̃), which
has dimension #Faces(G̃) − 1 = #Faces(G) − 1. �

Note that Corollary 7.2 is correct even when some components of G are not con-
nected to the boundary, in which case some of the faces of G are not discs.

7.1 The lattice of elementary subgraphs

Following [8], we call a subgraph H of G elementary if it contains every vertex of G

and if every edge of H is used in some almost perfect matching of H . Equivalently,
the edges of H are obtained by taking a union of several almost perfect matchings
of G. (To see the equivalence, if Edges(H) = ⋃

Mi , then each edge of H occurs in
some Mi , which is an almost perfect matching of H . Conversely, if H is elementary,
then let M1, M2, . . . , Mr be the almost perfect matchings of G contained in H then,
by the definition of “elementary”, Edges(H) = ⋃

Mi .)
The main result of this section is the following.

Theorem 7.3 The face lattice of P(G) is isomorphic to the lattice of all elementary
subgraphs of G, ordered by inclusion.

Proof We give the following maps between faces of P(G) and elementary subgraphs.
If F is a face of P(G), let K(F) be the set of edges e of G such that xe is not
identically zero on F , and let γ (F ) be the subgraph of G with edge set K(F). Since
F is a face of a (0 − 1)-polytope, F is the convex hull of the characteristic vectors of
some set of matchings, and γ (F ) is the union of these matchings. Thus, F �→ γ (F ) is
a map from faces of P(G) to elementary subgraphs. Conversely, if H is a subgraph
of G, let φ(H) = P(G) ∩ ⋂

e 	∈H {xe = 0}. Since {xe = 0} defines a face of P(G),
the intersection φ(H) is a face of P(G). From the description in Proposition 7.1,
every face of P(G) is of the form φ(H) for some subgraph H of G. Note also that
φ(H) = P(H).

We need to show that these constructions give mutually inverse bijections between
the faces of P(G) and the elementary subgraphs. For any face F of P(G), it is clear
that φ(γ (F )) ⊇ F . Suppose for the sake of contradiction that F 	= φ(γ (F )). Then F

is contained in some proper face of φ(γ (F )); let this proper face be φ(H) for some
H � γ (F ). Then there is an edge e of γ (F ) which is not in H . By the condition that
e is in γ (F ), the function xe cannot be zero on F , so F is not contained in φ(H)

after all. We deduce that F = φ(γ (F )).
Conversely, let H be an elementary subgraph of G. It is clear that γ (φ(H)) ⊆ H .

Suppose for the sake of contradiction that there is an edge e of H which is not in
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γ (φ(H)). Since H is elementary, there is a matching M of H which contains the
edge e. Let χM be the corresponding vertex of φ(H). Then xe is not zero on φ(H),
so e is in γ (φ(H)) after all and we conclude that H = γ (φ(H)). �

The minimal nonempty elementary subgraphs of G are the matchings, correspond-
ing to vertices of P(G).

Corollary 7.4 Consider a cell �G of (Grk,n)≥0 parameterized by a plane-bipartite
graph G. For any cell �H in the closure of �G, the corresponding polytope P(H) is
a face of P(G).

Proof By [13, Theorem 18.3], every cell in the closure of �G can be parameterized
using a plane-bipartite graph H which is obtained by deleting some edges from G.
H is perfectly orientable and hence is an elementary subgraph of G. Therefore by
Theorem 7.3, the polytope P(H) is a face of P(G). �

7.2 Facets and further combinatorial structure of P(G)

We now give a description of the facets of P(G). Let us say that two edges e and e′
of G are equivalent if they separate the same pair of (distinct) faces f and f ′ with
the same orientation. That is, if we travel across e from face f to f ′, the black vertex
of e will be to our left if and only if when we travel across e′ from f to f ′, the black
vertex of e′ is to our left.

Lemma 7.5 If every edge of G is used in an almost perfect matching then two edges
e and e′ are equivalent if and only if the linear functionals xe and xe′ have the same
restriction to P(G).

Proof By Proposition 7.1, the affine linear space spanned by P(G) is cut out by the
equations

∑
e�v xe = 1, where v runs through the internal vertices of G. Let L be the

linear space cut out by the equations
∑

e�v xe = 0; the polytope P(G) is parallel to
L and thus the functionals xe and xe′ have the same restriction to P(G) if and only
if they have the same restriction to L. In the proof of Corollary 7.2 we identified L

with H1(G, ∂G). So we just want to determine when the restrictions of xe and xe′ to
H1(G, ∂G) are the same.

The restrictions of xe and xe′ to H1(G, ∂G) are elements of the dual vector
space H 1(G, ∂G). We can identify H 1(G, ∂G) with the vector space of functions
on Faces(G) summing to zero as follows: Map R

E(G) to R
Faces(G) by sending an

edge e to the function which is 1 on one of the faces it borders and −1 on the other;
the sign convention is that the sign is positive or negative according to whether F lies
to the right or left of e, when e is oriented from black to white. Then H 1(G, ∂G),
which is defined as a quotient of R

E(G), is the image of this map.
We now see that xe and xe′ restrict to the same functional on L if and only if they

correspond to the same function on the faces of G. This occurs if and only if they
separate the same pair of faces with the same orientation. �
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Theorem 7.6 Suppose that G is elementary. Then the facets of P(G) correspond
to the elementary subgraphs of the form G \ E, where E is an equivalence class as
above.

Proof First, note that if e and e′ are not equivalent then, by Lemma 7.5, xe and xe′
have different restrictions to P(G). Thus, there is no facet of P(G) on which they
both vanish. On the other hand, if e and e′ are equivalent then, again by Lemma 7.5,
on every facet of P(G) where xe vanishes, xe′ also vanishes. So we see that every
facet of P(G) is of the form φ(G \ E), where E is an equivalence class in E(G).
(Here φ is the function introduced in the proof of Theorem 7.3.)

If φ(G \ E) is a facet of P(G) then G \ E is elementary, by Theorem 7.3. Con-
versely, if G \ E is elementary then φ(G \ E) is a face of P(G). Since all the edges
of E separate the same pair of faces, G \ E has one less face than G, so φ(G \ E) is
a facet of P(G), as desired. �

As a special case of the preceding propositions, we get the following.

Remark 7.7 Let N be a face of P(G) and let r be the number of regions into which
the edges of H(N) divide the disk in which G is embedded. Then N is an edge of
P(G) if and only if r = 2. Equivalently, two vertices vO1 and vO2 of P(G) form an
edge if and only if O2 can be obtained from O1 by switching the orientation along a
self-avoiding path or cycle in O1.

Recall that the Birkhoff polytope Bn is the convex hull of the n! points in R
n2

{X(π) : π ∈ Sn} where X(π)ij is equal to 1 if π(i) = j and is equal to 0 otherwise. It
is well-known that Bn is an (n−1)2 dimensional polytope, whose face lattice of Bn is
isomorphic to the lattice of all elementary subgraphs of the complete bipartite graph
Kn,n ordered by inclusion [1]. Our polytopes P(G) can be thought of as analogues
of the Birkhoff polytope for planar graphs embedded in a disk.

Acknowledgements We are grateful to Vic Reiner for pointing out the similarity between our polytopes
P(G) and Birkhoff polytopes, and to Allen Knutson for many helpful conversations.

Appendix A: Numerology of the polytopes P(G)

In this section we give some statistics about a few of the polytopes P(G). Our com-
putations were made with the help of the software polymake [6].

Let G24 denote the plane-bipartite graph from Figure 3, and let G25, G26, and
G36 denote the plane-bipartite graphs shown in Figures 4. These plane-bipartite
graphs give parameterizations of the top cells in (Gr2,4)≥0, (Gr2,5)≥0, (Gr2,6)≥0,
and (Gr3,6)≥0, respectively.

The f -vectors of the matching polytopes P(G24), P(G25), P(G26) and P(G36)

are (7,17,18,8), (14,59,111,106,52,12), (25,158,440,664,590,315,98,16),
and (42,353,1212,2207,2368,1557,627,149,19) respectively. The Ehrhart series
for P(G24), P(G25) and P(G26), which give the Hilbert series of the correspond-

ing toric varieties, are 1+2t+t2

(1−t)5 , 1+7t+12t2+4t3

(1−t)7 , and 1+16t+64t2+68t315t4

(1−t)9 . The volumes



190 J Algebr Comb (2009) 30: 173–191

Fig. 4

Fig. 5

of the four polytopes are 1
6 = 4

4! ,
1
30 = 24

6! , 41
10080 = 164

8! , and 781
181440 = 1562

9! . Thus, the
degrees of the corresponding toric varieties are 4, 24, 164, and 1562.

Proposition A.1 Let G2n (for n ≥ 4) be the family of graphs that extend the first two
graphs shown in Figure 4. Then the number of vertices of G2n is given by f0(G2n) =(
n
3

) + n − 1.

Proof This can be proved by induction on n by removing the leftmost black vertex.
We leave this as an exercise for the reader. �

Note that in general there is more than one plane-bipartite graph giving a parame-
terization of a given cell. But even if two plane-bipartite graphs G and G′ correspond
to the same cell, in general we have P(G) 	= P(G′). For example, the plane-bipartite
graph in Figure 5 gives a parameterization of the top cell of (Gr2,6)≥0. Let us re-
fer to this graph as Ĝ26. However, P(Ĝ26) 	= P(G26): the f -vector of P(Ĝ26) is
(26,165,460,694,615,326,100,16).
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