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Abstract Based on the third author’s thesis (arXiv:0805.2403) in this article we
complete the local recognition of commuting reflection graphs of spherical Coxeter
groups arising from irreducible crystallographic root systems.

Keywords Local recognition of graphs · Coxeter groups

1 Introduction

Given a connected graph one may ask to which extent it is determined by its local
graphs, that is, by the induced subgraphs on the vertices adjacent to a particular ver-
tex. This local recognition of graphs has been studied extensively in the literature, for
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instance in [4, 9, 18, 22, 30, 31] to mention a few; see also [3, 6, 15]. A particularly
guiding example for the topic of the present article is the local recognition of the
Kneser graphs studied in [14] and [16].

We are interested in the local recognition of Weyl graphs, i.e., graphs on the reflec-
tions of Coxeter groups with the commutation relation as adjacency. A combination
of our findings with results from [4, 16, 18] yields the following recognition result.

Main Theorem The following are true up to isomorphism.

• A Weyl graph of type An (n � 8), type Bn,Cn (n = 3 or n � 5), type Dn (n � 9),
or type E7 is uniquely determined, as a connected graph, by its local graphs.

• A Weyl graph of type A6, A7, D7, D8, E6, E8 is uniquely determined by its local
graphs and its size.

• The Weyl graph W of type F4 and its twisted copy (defined at the end of section
4.1) are the only bichromatic graphs of size 24 with local graphs like W .

The remaining small Weyl graphs of type An as well as those of types I2(m), G2,
H3, H4 are locally a disjoint union of complete graphs. The graphs of type Dn are
obtained as doubles of those of type An−1, so that local recognition results for type
An transfer to Dn. Finally, types B4 and C4 are treated in Remark 12.

The local recognition of the Weyl graphs of type A7, E6 and E8 has been estab-
lished in the fundamental work [4]. The case of A6, for which the Weyl graph is
locally the Petersen graph, has been studied in [14]. Weyl graphs of types An and
En which are locally cotriangular have been treated in [18]. The local recognition of
types Bn and Cn is proved in Theorem 5. The Weyl graph of type F4 is not uniquely
determined by its local graphs (Corollary 11). We nevertheless characterize this Weyl
graph as one of two tightest graphs with the prescribed local structure (Theorem 16).
In the last section we turn to group theoretical applications of local recognition results
for Weyl graphs.

2 Local recognition of graphs

All graphs considered in this text are simple and undirected. We use ⊥ to denote
adjacency, and our notation for operations on graphs like the Cartesian product or
joins follows [17]. Let � be a graph, and x ∈ � a vertex. We write x⊥ to denote the
set of neighbors of x, that is, the set of vertices adjacent to x. Likewise, for X ⊆ � we
write X⊥ = ⋂

x∈X x⊥. The induced subgraph on x⊥ is called the local graph at x.
A graph � is said to be locally homogeneous, if there exists a graph � such that each
local graph of � is isomorphic to �. In this case, � is said to be locally �, and � is
referred to as the local graph of �. If � is locally homogeneous, then we denote its
local graph by �(�).

In this article we are interested in the problem of characterizing a connected lo-
cally homogeneous graph in terms of its local graph. We say that a connected locally
homogeneous graph � is locally recognizable, if up to isomorphism � is the only con-
nected graph that is locally �(�). In case � is another locally homogeneous graph
such that �(�) ∼= �(�) we say that � is locally like �.



J Algebr Comb (2010) 32: 1–14 3

The above terminology naturally extends to bichromatic graphs. For reasons that
become clear later, we distinguish the vertices of a bichromatic graph as short versus
long. All morphisms between bichromatic graphs are understood to preserve this dis-
tinction. We say that a bichromatic graph is locally homogeneous, if the local graphs
at short vertices are all isomorphic to some bichromatic graph �s and the local graphs
at long vertices are all isomorphic to some bichromatic graph ��. In this case we say
that �s is the short local graph of � and that �� is the long local graph of �. If �

is a bichromatic locally homogeneous graph, then we denote its short local graph by
�s(�) and its long local graph by ��(�). If � is another bichromatic locally homo-
geneous graph such that the short as well as the long local graphs of � and � are
isomorphic as bichromatic graphs, then we say that � is locally like �. Finally, given
a graph � we denote with �s and �� the bichromatic graphs obtained from � with
all vertices treated as short respectively long.

One easily verifies that the Kneser graph K(n, k) is locally homogeneous with
local graph K(n − k, k). The second author proved in [16] that for n sufficiently
large compared to k the Kneser graphs are locally recognizable; for k = 2, it sufficies
to require n ≥ 7. In [14] he classified the three connected graphs which are locally
the Petersen graph K(5,2). The classification of graphs that are locally K(6,2) is
contained in [4].

Theorem 1 ([4, 14, 16]) Let k � 1, and � be a connected graph that is locally
K(n, k).

• If n � 3k + 1 then � ∼= K(n + k, k).
• If (n, k) = (5,2) then � is isomorphic to one of the graphs K(7,2), 3 · K(7,2), or

�L2,25. In particular, |�| ∈ {21,63,65}.
• If (n, k) = (6,2) then � is isomorphic to one of the graphs K(8,2), Sp6(2) minus

{x} ∪ x⊥ for some x, or N −
6 (2). In particular, |�| ∈ {28,32,36}.

Here, the graph 3 · K(7,2) is the 3-fold cover of K(7,2), and �L2,25 is the graph
on the conjugates of the unique non-trivial field automorphism of F25 in the special
semilinear group �L(2,25) with two elements adjacent whenever they commute.
More details can be found in [14]. Further, the graph Sp2n(2) is the graph on the non-
zero vectors of V = F

2n
2 with two vectors adjacent whenever they are perpendicular

with respect to a non-degenerate symplectic form B on V . Up to isomorphism there
are only two quadratic forms Q+ and Q−, corresponding to maximal or minimal Witt
index, on V that B is associated to, and the graph N ε

2n(2) is the induced subgraph of
Sp2n(2) on the vectors that are non-singular under Qε . For more details about these
graphs we refer to [18].

Ernest E. Shult and the second author actually proved a lot more in [18]. They
characterize the graphs that are locally cotriangular in the following sense. A graph
is said to be cotriangular, if every pair x, y of non-adjacent vertices is contained in
a cotriangle, that is, a 3-coclique {x, y, z} such that every other vertex is adjacent to
either all or exactly one of the vertices x, y, z. Observe that a join � + � is cotrian-
gular if and only if both � and � are. Denote with �∗ the reduced graph of �, that is,
the graph on the equivalence classes of vertices of � with the same closed neighbor-
hood and two classes adjacent whenever some representatives are adjacent. Then � is



4 J Algebr Comb (2010) 32: 1–14

cotriangular if and only if �∗ is. A graph � is called completely reduced in this con-
text whenever �∗ = � and � can not be decomposed into �1 + �2 with non-empty
�1,�2. A classification of all cotriangular graphs is given by the following theorem
due to Ernest E. Shult.

Theorem 2 ([27]) A finite completely reduced graph is cotriangular if and only if it
is isomorphic to one of the graphs

K(n,2), n � 2; Sp2n(2), n � 2; N ε
2n(2), ε = ±1, n � 3.

The graphs K(2,2) ∼= K1 and K(3,2) ∼= K3 are considered degenerate. Let D
denote the set of graphs � such that �∗ is a finite completely reduced cotriangular
graph. If G is a collection of graphs, then we say that a graph � is locally G if for
each x ∈ � the local graph at x is isomorphic to some graph of G .

Theorem 3 ([18], Main Theorem) Let � be connected and locally D. Then either �

is locally {K1,K3} or � is isomorphic to one of the following graphs

• K(n,2) where n � 7,
• Sp2n(2) possibly with a polar subspace deleted,
• Hε

2n(T ), Gε
2n,

• 3 · K(7,2), �L2,25, or N +
6 (3).

The graphs Hε
2n(T ), Gε

2n are derived from the graph Sp2n(2); see [18]. Note that
the case k = 2 of Theorem 1 can be regarded as a special case of the classification in
Theorem 3. The following special case of Theorem 3 has already been established in
[4] by Francis Buekenhout and Xavier Hubaut.

Theorem 4 ([4], Theorem 2 (3)) Let � be connected and locally Sp2n(2) for some
n � 2. Then � is isomorphic to one of the following graphs N +

2n+2(2), N −
2n+2(2), or

Sp2n+2(2) minus {x} ∪ x⊥ for some x.

The preceding theorem has been generalized in [8, 9].

3 Local recognition of Weyl graphs

We assume that the reader is familiar with Coxeter groups and root systems as treated
in [20] or [5]. The commuting graph of a group G on X ⊆ G is the graph with
vertex set X in which two vertices g,h ∈ X are adjacent whenever g and h commute.
We will study the commuting graphs of finite Coxeter groups on their reflections.
Since we are interested in local recognition results we will focus on finite irreducible
Coxeter groups for which the reflection graph is locally homogeneous. The graphs
arising from the cases H3, H4 and I2(m) are locally disjoint unions of complete
graphs and therefore not interesting for the purpose of local recognition. Hence, we
further restrict to Coxeter groups which arise from irreducible crystallographic root
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systems. These are those with Dynkin diagram equal to one of An (n � 1), Bn or Cn

(n � 2), Dn (n � 4), E6, E7, E8, F4, or G2.
Recall that each root of an irreducible crystallographic root system � is consid-

ered either short or long (with the convention that in the absence of two distinct root
lengths every root is long). If M is the Dynkin diagram of � then we denote with
W(M) the Weyl group of �, i.e., the group generated by the reflections through the
roots of �, together with the notion of a short (respectively long) root reflection by
W(M). The Weyl graph W(M) is the commuting graph of W(M) on its reflections.
If M is simply laced then all reflections in W(M) are conjugate, which implies that
the Weyl graph W(M) is locally homogeneous. On the other hand, if M is not simply
laced then there are two conjugacy classes of reflections in W(M), namely short and
long root reflections, and we regard W(M) as a bichromatic graph. Instead of assign-
ing arbitrary colors we accordingly refer to the vertices of W(M) corresponding to
short (respectively long) root reflections as short (respectively long) vertices. As a
bichromatic graph, the Weyl graph W(M) is locally homogeneous.

W(An) is the graph with vertices yi,j , 1 � i < j � n + 1, such that yi,j ⊥ yk,l if
and only if {i, j} ∩ {k, l} = ∅. Consequently, the Weyl graph W(An) is isomorphic
to the Kneser graph K(n + 1,2). Likewise, W(Dn) is the graph with vertices yi,j ,
1 � i �= j � n, such that yi,j ⊥ yk,l if and only if {i, j} ∩ {k, l} = ∅ or (k, l) = (j, i).
W(Dn) is therefore isomorphic to the composition graph K(n,2)[K2], that is, the
graph arising from the Kneser graph K(n,2) by replacing each vertex by an adjacent
pair of vertices. Accordingly, Theorem 1 applies and yields the recognition results of
the Main Theorem for types An and Dn. By [4] we have W(E6) ∼= N −

6 (2), W(E7) ∼=
Sp6(2) and W(E8) ∼= N +

8 (2). The corresponding recognition results of the Main
Theorem follow from Theorems 1, 3 and 4.

W(Bn) is the bichromatic graph with vertices yi,j , 1 � i, j � n, where the yi,i

are short and the yi,j with i �= j are long vertices, and yi,j ⊥ yk,l if and only if
{i, j} ∩ {k, l} = ∅ or (k, l) = (j, i). The Weyl graph W(Cn) is obtained from W(Bn)

by exchanging the role of short and long vertices. The recognition results of the Main
Theorem for types Bn and Cn are therefore contained in the following theorem.

Theorem 5 Let n = 3 or n � 5, and let � be a connected bichromatic graph which
is locally like W(Bn). Then � ∼= W(Bn).

Proof It is straightforward to check the case n = 3.
Next, let n � 6. Let X be a short component of � and x ∈ X a short vertex. The

short induced subgraph on x⊥ is a clique on n− 1 elements which implies that X is a
clique on n elements. By assumption, the long neighbors of x induce a subgraph iso-
morphic to the long induced subgraph of W(Bn−1). This subgraph is isomorphic to
W(Dn−1) and, in particular, is connected for n � 6. This implies that all long neigh-
bors of x are contained in a single long component Y of �. Consider a short vertex
x1 ∈ X adjacent to x. Again, all long neighbors of x1 lie in one long component of �.
But looking at {x, x1}⊥ ⊂ x⊥ we see that x and x1 share long neighbors whence this
component has to be Y as well. Since X is connected this shows that all long ver-
tices adjacent to some vertex of X are contained in Y . Likewise, let y ∈ Y . The short
induced subgraph of y⊥ is a clique on n vertices and thus in particular connected.
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Again, we see that for a long vertex y1 adjacent to y the common neighbors {y, y1}⊥
contain a short vertex. Therefore the same argument as before shows that all short
vertices adjacent to some vertex of Y are contained in X. Since � is connected this
proves that X and Y are the only short respectively long components of �.

We count the number of long vertices by counting the long neighbors of the n

short vertices of �. By assumption, a short vertex has (n − 1)(n − 2) long neighbors.
Further, two short vertices have (n−2)(n−3) long neighbors in common, three short
vertices have (n − 3)(n − 4) long neighbors in common, and so on. Thus there are

(
n

1

)

(n − 1)(n − 2) −
(

n

2

)

(n − 2)(n − 3) + . . . + (−1)n−1
(

n

n − 2

)

2 = n(n − 1)

long vertices in �. Note that for the above equation we exploited that the alternating
sum of the binomial coefficients equals zero, that is,

∑n
k=0(−1)k

(
n
k

) = 0.
Let x1, x2, . . . , xn be the short vertices of �. � is locally W(Bn−1) at short vertices

which implies that for 1 � i �= j � n the common neighborhood {xr : r /∈ {i, j}}⊥
contains exactly two long vertices which we denote by yi,j and yj,i . Since a long ver-
tex is adjacent to exactly n − 2 short vertices the yi,j thus defined are all distinct. By
construction, yi,j ⊥ yj,i . Further, the yi,j exhaust Y because � contains exactly n(n−
1) long vertices. Given two vertices yi,j and yk,l , we find m ∈ {1,2, . . . , n}\{i, j, k, l}
whence yi,j and yk,l are both contained in x⊥

m
∼= W(Bn−1). yi,j is characterized in

x⊥
m as one of the two long vertices contained in {xr : r /∈ {i, j,m}}⊥. Likewise, yk,l is

characterized in x⊥
m as one of the two long vertices contained in {xr : r /∈ {k, l,m}}⊥.

Consequently, for {i, j} �= {k, l}, yi,j ⊥ yk,l if and only if {i, j} ∩ {k, l} = ∅. Hence,
� ∼= W(Bn).

Finally, consider the case n = 5. We still find that each short component is a clique
on 5 vertices. Let X be one such short component. We count that there are 20 long
vertices neighbored to one of the vertices of X. On the other hand, we see again that
each long component has short neighbors in only one short component. Accordingly,
the 20 long neighbors of X constitute a union of long components. However, a long
component is locally K1  3 · K2 and therefore has at least 12 vertices. We conclude
that there is only one long component Y with vertices neighbored to X. Now, the re-
mainder of the preceding argument applies and shows that � ∼= W(B5) as claimed. �

The case n = 4 of Theorem 5 is discussed in Remark 12 where it is shown that
there are infinitely many finite connected bichromatic graphs that are locally like
W(B4). The case of type F4 is discussed in detail in the next section. Note that the
Weyl graph W(G2) is isomorphic to three disjoint edges of mixed type.

4 Local recognition of W(F4)

4.1 Graphs locally like W(F4)

The Weyl graph W(F4) is a connected bichromatic locally homogeneous graph on
24 vertices with short local graph W(B3) and long local graph W(C3). As we will
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see shortly, W(F4) is not locally recognizable. Before we turn to investigating ad-
ditional constraints under which we seek to recognize W(F4) nonetheless, we study
connected bichromatic graphs � which are locally like W(F4). The results we obtain
then guide our way in determining appropriate conditions under which we are able to
recognize W(F4) alongside its twisted copy. An easy but crucial observation to start
with is the following.

Proposition 6 Let � be locally like W(F4). The short (respectively long) induced
subgraph of � is isomorphic to a disjoint union of 4-cliques.

Let � be a bichromatic graph that is locally like W(F4). Observe that the graph
obtained from � by exchanging the roles of short and long vertices is locally like
W(F4) as well. Results that we obtain for short vertices of graphs locally like W(F4)

are therefore also true for long vertices.
Paraphrasing Proposition 6, the vertices of � come in 4-cliques of the same type.

In order to simplify things it is natural to collapse these 4-cliques into single vertices.

Definition 7 Let � be a graph and 	 a partition of its vertices. The contraction �/	

is the graph on 	 such that two sets A,B ∈ 	 are adjacent whenever there is a ∈ A

and b ∈ B which are adjacent in �. If � is bichromatic then 	 is required to partition
into sets of short and long vertices and �/	 is a bichromatic graph in the natural way.

In this language, we thus investigate the collapsed graph �/	 where 	 is the
partition of � into short and long 4-cliques. To this end, we analyze how these 4-
cliques relate to each other.

Proposition 8 Let � be locally like W(F4), and x1, x2, x3, x4 a short 4-clique in �.
Let i �= j and k �= l.

• {xi, xj }⊥ is locally Ks
2  K�

2 . In particular, for any pair xi, xj there exist unique
long vertices yi,j , yj,i contained in {xi, xj }⊥.

• {xi, xj , xk}⊥ contains no long vertex if i, j, k are distinct. In particular, the vertices
yi,j are all distinct.

• There are exactly 12 long vertices adjacent to at least one of the xi , namely the
above vertices yi,j .

• yi,j ⊥ yk,l implies that {k, l} = {i, j} or {k, l} ∩ {i, j} = ∅.

Proof Exploiting the local structure at xi we see that every short adjacent pair xi, xj

has exactly two long neighbors in common which we will (arbitrarily) denote by yi,j

and yj,i . Accordingly, yi,j ⊥ yj,i . Looking at the neighbors of a vertex yi,j reveals
that xi and xj are the only short vertices among x1, x2, x3, x4 which are adjacent to
yi,j . Consequently, the yi,j are 12 distinct vertices. Since three adjacent short vertices
share no long neighbors we count that exactly

(
4

1

)

6 −
(

4

2

)

2 = 12
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long vertices are neighbored to at least one of the vertices x1, x2, x3, x4. Conse-
quently, the long neighbors of the xi are precisely the vertices yi,j . For the last claim,
assume that yi,j ⊥ yk,l and {k, l} ∩ {i, j} = {i0}. A look at the neighbors of xi0 shows
that this is a contradiction. �

If � is locally like W(F4) and 	 is the partition of � into short and long 4-cliques,
then we add the following extra structure to the collapsed graph �/	. Two vertices
X,Y ∈ �/	 are said to be strongly connected if every x ∈ X is at distance 1 from
Y in � and vice versa. In this case, we think of X and Y as being connected by two
edges, the reason of which will be clear from the next proposition. The number of
neighbors of X where we count those neighbors twice that are strongly connected to
X is said to be the bivalency of X.

Proposition 9 Let � be locally like W(F4), and let 	 be the partition of � into short
and long 4-cliques. The contraction �/	 is bipartite of bivalency 6.

Proof Let X ∈ �/	 be a short vertex. By Proposition 6, X has only long neighbors.
X = {x1, x2, x3, x4} is a 4-clique of � and according to Proposition 8 there are 12 long
vertices yi,j at distance 1 from X in �. Each pair of vertices yi,j , yj,i is contained in
exactly one long neighbor Y{i,j} of X. Let k, l be the indices such that {i, j, k, l} =
{1,2,3,4}. Then, by Proposition 8, either Y{k,l} �= Y{i,j}, in which case both long
vertices are connected to X by just one edge, or Y{k,l} = Y{i,j}, in which case both long
vertices are connected to X by two edges. In any case, we count that the bivalency of
X is 6. �

We now do the reverse and prove that every bipartite graph of bivalency 6 is the
contraction of some graph which is locally like W(F4). Note, however, that non-
isomorphic graphs locally like W(F4) can have isomorphic contractions.

Lemma 10 For every connected bipartite graph � of bivalency 6 there is a connected
bichromatic graph � that is locally like W(F4) such that �/	 = � where 	 is the
partition of � into short and long 4-cliques.

Proof Let � be a bipartite graph of bivalency 6. Exploiting that � is 2-colorable, we
may identify � with a bichromatic graph such that no two vertices of the same type
are adjacent. For any vertex x of � choose an injection

x⊥ →
(

4

2

)

, y �→ a(x, y)

from its neighbors to the six 2-subsets of {1,2,3,4} such that for strongly connected
vertices x, y the complement of a(x, y) is not attained. This is always possible since
� has bivalency 6. To every directed edge (x, y) we thus assigned the 2-subset
a(x, y) of {1,2,3,4}. Construct the bichromatic graph � from � as follows. For
every vertex x ∈ � add a 4-clique x1, x2, x3, x4 of the same type as x to �. Then,
for x, y ∈ � let xi and yj be adjacent in � if and only if x and y are adjacent in
� and the following holds: either (i, j) ∈ a(x, y) × a(y, x), or x and y are strongly
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connected and (i, j) ∈ a(x, y) × a(y, x). By construction, contracting the 4-cliques
of � produces �. It is straightforward to check that � is locally like W(F4). �

Corollary 11 There exist infinitely many non-isomorphic finite connected bichro-
matic graphs that are locally like W(F4).

Proof We claim that there are infinitely many finite connected bipartite graphs � that
are locally K6 and hence of bivalency 6 (if no vertices are assumed to be strongly
connected). To this end, note that the graphs Ck ×Cm ×Cn are connected and locally
K6 for k,m,n � 4. Since cycles Cn are 2-colorable whenever n is even, the graphs
Ck ×Cm ×Cn are 2-colorable and hence bipartite whenever k, m, n are all even. The
claim follows from Lemma 10. �

Remark 12 Analogous to Lemma 10 one shows that for every connected bipartite
graph � of bivalency (2,6) (meaning that vertices of one type have valency 2 and
vertices of the other type have valency 6) there is a connected bichromatic graph �

that is locally like W(B4) such that �/	 = � where 	 is again the partition of �

into short and long 4-cliques. This easily implies that there are infinitely many finite
connected bichromatic graphs that are locally like W(B4).

Let � be locally like W(F4) and assume that the collapsed graph �/	 contains
strongly connected vertices X and Y . This means that, say, X = x1, x2, x3, x4 are
short vertices, Y = y1, y2, y3, y4 are long vertices, and we have the adjacencies

x1, x2 ⊥ y1, y2, x3, x4 ⊥ y3, y4.

It is straightforward to check that replacing these by

x1, x2 ⊥ y3, y4, x3, x4 ⊥ y1, y2

produces a graph �′ which is also locally like W(F4). We say that �′ is a twisted
copy of �. In particular, for � = W(F4) these twisted copies are all isomorphic and
we denote the resulting graph by W(F4)

′.

4.2 Recognition results

We now discuss further properties of the Weyl graph W(F4) in order to characterize
W(F4) among the connected bichromatic graphs that are locally like W(F4). For
more details we refer to the thesis [28] of the third author. We start with some easy
observations.

Proposition 13 Let � be a finite bichromatic graph that is locally like W(F4). Then
the numbers of short and long vertices in � are the same, |�| is divisible by 8 and
|�| � 24.

Since |W(F4)| = 24 we see that, in a sense, W(F4) is maximally tight among the
graphs that are locally like W(F4). There are several further properties of a graph,
for instance its diameter, that describe its tightness. The following notion of tight
connectedness is another way to express tightness of a bichromatic graph.
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Definition 14 A bichromatic graph is said to be tightly connected if every long vertex
has a neighbor in every short component and vice versa.

These three notions of tightness, however, are not local in nature (where a local
property is meant to be one which can be expressed in terms of the neighbors of each
vertex). In order to find a more local notion to describe the tightness of W(F4) we
investigate the relation of vertices at distance 2. The following is straightforward to
check.

Proposition 15 Let � be locally like W(F4), and let x, y ∈ � be at distance 2.

• If x, y are both short (respectively long) vertices then {x, y}⊥ ∼= μ(x, y) · K�
1 (re-

spectively Ks
1) for some μ(x, y) ∈ {1,2,3}.

• If x, y are of mixed type then {x, y}⊥ ∼= μs(x, y) · Ks
2  μ�(x, y) · K�

2 for some
μs(x, y) + μ�(x, y) ∈ {1,2}.

For the Weyl graph W(F4) the parameters μ,μs,μ� defined in Proposition 15 are
constant and take the maximum possible values μ = 3 and μs = μ� = 1 which is
another, more local, instantiation of the tightness of W(F4). Notice that the condition
μs = μ� = 1 is equivalent to the contraction �/	, studied in Proposition 9, being

locally homogeneous with �s(�/	) ∼= K3
�

and ��(�/	) ∼= K3
s
.

The following theorem summarizes our recognition results for the Weyl graph
W(F4). Note that all of the provided conditions under which a graph � is almost
recognized as W(F4) are statements which describe the tightness of �.

Theorem 16 Let � be a connected bichromatic graph that is locally like W(F4).
Assume that

• |�| = 24, or
• � is tightly connected, or
• � has diameter 2, or
• μ = 3.

If one of these conditions holds then � is isomorphic to W(F4) or to its twisted copy
W(F4)

′. In particular, Aut(�) ∼= W(F4)/Z where Z denotes the center of W(F4).

We prove Theorem 16 by a series of propositions. The proof of the case μ = 3 is
similar in spirit to the previous ones. It is therefore omitted; the interested reader is
referred to [28] for the details.

Proposition 17 Let � be a connected bichromatic graph that is locally like W(F4).
If |�| = 24 then � ∼= W(F4) or � ∼= W(F4)

′. Further, Aut(�) ∼= W(F4)/Z.

Proof As observed in Proposition 13, every graph that is locally like W(F4) has at
least 12 short and 12 long vertices. � therefore consists of exactly 12 vertices of each
type.

Let x1, x2, x3, x4 be a short 4-clique. Adopting the notation of Proposition 8, let
yi,j and yj,i be the long vertices adjacent to both xi and xj . The yi,j are 12 distinct
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vertices and therefore constitute the long vertices of �. It follows from Proposition 8
that the three long 4-cliques are given by yi,j , yj,i , yk,l, yl,k for disjoint {i, j} and
{k, l}.

Each of the remaining eight short vertices has exactly two long neighbors in each
of the three long 4-cliques. Let x5 be one of remaining short vertices. The two neigh-
bors of x5 in a 4-clique yi,j , yj,i , yk,l, yl,k are one of yi,j , yj,i along with one of
yk,l, yl,k . We ambiguously defined the vertices yi,j , yj,i as the long vertices contained
in {xi, xj }⊥ so we may as well assume that x5 is adjacent to yi,j and yk,l with i < j

and k < l. Let x6 be the unique short vertex also adjacent to y1,2, y3,4. Likewise, let
x7 be the short vertex also adjacent to y1,3, y2,4, and x8 the short vertex also adja-
cent to y1,4, y2,3. By construction, x5, x6, x7, x8 is a 4-clique. Notice that for instance
x5, x6 ∈ {y1,2, y3,4}⊥ implies that x7, x8 ∈ {y2,1, y4,3}⊥. Altogether this determines
the induced subgraph on x1, x2, . . . , x8 along with the vertices yi,j .

Let x9, x10, x11, x12 be the remaining short 4-clique. We may assume that x9, x10
are the short vertices contained in {y1,2, y4,3}⊥. Accordingly, x11, x12 ∈ {y2,1, y3,4}⊥.
We may also assume that x9 is contained in {y1,3, y4,2}⊥ (because if both x9 and x10
were not contained in {y1,3, y4,2}⊥ then both x11, x12 ∈ {y1,3, y4,2}⊥ which contra-
dicts x11, x12 ∈ {y2,1, y3,4}⊥). Further, we may assume that x11 is the second short
vertex contained in {y1,3, y4,2}⊥. Consider the two short vertices in {y1,4, y3,2}⊥.
These can be either x9, x12 or x10, x11, and either choice determines �. Denote with
�1 the graph corresponding to the choice x9, x12 ∈ {y1,4, y3,2}⊥, and with �2 the
graph corresponding to the choice x10, x11 ∈ {y1,4, y3,2}⊥. The following table sum-
marizes adjacency involving the vertices x9, x10, x11, x12.

by construction x9, x10 ⊥ y1,2, y4,3 x11, x12 ⊥ y2,1, y3,4
x9, x11 ⊥ y1,3, y4,2 x10, x12 ⊥ y3,1, y2,4

�1 x9, x12 ⊥ y1,4, y3,2 x10, x11 ⊥ y4,1, y2,3
�2 x9, x12 ⊥ y4,1, y2,3 x10, x11 ⊥ y1,4, y3,2

An implementation in the computer algebra system SAGE, see [26], of the graphs
�1 and �2 can be found in the appendix of [28]. In particular, it is verified that �1 and
�2 are non-isomorphic, that the automorphism group of both graphs is isomorphic to
W(F4)/Z, and that �1 is isomorphic to W(F4). Accordingly, �2 is isomorphic to the
twisted copy W(F4)

′. �

Proposition 18 Let � be a connected bichromatic graph that is locally like W(F4).
If � is tightly connected then � ∼= W(F4) or � ∼= W(F4)

′.

Proof Fix a short 4-clique x1, x2, x3, x4. Because of tightness every long vertex is
adjacent to one of the xi , and by Proposition 8 there are exactly 12 such long vertices.
Thus � consists of 12 long vertices. Likewise, � contains exactly 12 short vertices.
Hence, |�| = 24, and the claim follows from Proposition 17. �

Proposition 19 Let � be a connected bichromatic graph that is locally like W(F4).
If � has diameter 2 then � ∼= W(F4) or � ∼= W(F4)

′.

Proof Let x1, x2, x3, x4 be a short 4-clique. As in Proposition 8 let yi,j , yj,i be the
long vertices adjacent to both xi and xj . Assume that there is a long vertex v which
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is not among the 12 long vertices yi,j . Because v is not adjacent to any of the xi

and since the diameter of � is 2, we find a long vertex that connects x1 and v. With-
out loss of generality let this long vertex be y1,2. This prevents y1,2, y2,1, y3,4, y4,3
from forming a long 4-clique. By Proposition 8 there are thus long vertices v1, v2
not among the yi,j such that y3,4, y4,3, v1, v2 form a long 4-clique. Again, v1 is not
adjacent to any of the xi and hence is connected to x1 by a long vertex. This is a
contradiction since the long vertices adjacent to x1 are the vertices y1,j , yj,1.

Consequently, � contains no further long vertices besides the 12 vertices yi,j , and
hence, by Proposition 13, |�| = 24. Apply Proposition 17. �

5 Group-theoretic applications

Our guiding example for the application of the local recognition of graphs in group
theory is the characterization of the symmetric groups by means of the structure of its
transposition centralizers; cf. [10, Theorem 27.1]. A detailed proof of [10, Theorem
27.1] using local recognition results for the Weyl graphs of type An is contained in the
third author’s thesis [28]; that proof runs along the lines of the proof of [7, Theorem
1.2]. An early example of such results can be found in [21] which along with [4]
has been one of the original motivations for the second author to pursue the local
recognition of Kneser graphs in [16]. Another fundamental example for this theme is
[22].

Likewise, the recognition results for the Weyl graph of type F4 discussed in the
previous section give rise to the following local characterization of the Weyl group
W(F4). Again, we refer to [28] for a proof inspired by [7].

Theorem 20 Let G be a group with non-conjugate involutions x, y such that

• CG(x) = 〈x〉 × J with J ∼= W(B3),
• CG(y) = 〈y〉 × K with K ∼= W(C3),
• x (respectively y) is a short (respectively long) root reflection in K (respectively

J ),
• J ∩ K contains involutions x1, y1 such that x1 (respectively y1) is a short (respec-

tively long) root reflection in K as well as in J , and
• there are a long root reflection y0 �= y, y1 in J and a short root reflection x0 �= x, x1

in K such that x0 and y0 commute.

If G = 〈J,K〉 then G ∼= W(F4).

The interest in group-theoretic local recognition results like Theorem 20 stems
from the classification of finite simple groups (outlined in [10]) and the fact that
the majority of finite simple groups arises from (twisted) Chevalley groups. These
can be defined as groups generated by subgroups isomorphic to SL(2, q) subject to
certain relations by the Curtis–Tits theorem formulated as in [19, 23, 29], by Phan’s
theorems [24, 25], and by the Phan-type theorems [2, 12, 13]. Recently, see [11,
Local recognition theorem 1], Kristina Altmann and the first author proved a local
recognition result for Chevalley groups of (twisted) type A7 and E6 based on results
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and techniques of [1]; this result makes serious use of the local recognition of graphs
that are locally the Weyl graph of type A5 and of the Curtis–Tits theorem and Phan’s
theorems. We hope that our analysis can help to approach a similar recognition result
for Chevalley groups of type F4 based on the Phan-type theorem of type F4 proved
by Hoffman, Mühlherr, Shpectorov and the first author and published in [13]. For
more details we refer to the thesis [28] of the third author and the survey [11] of the
first author.

Acknowledgements The authors thank the referee for several suggestions that helped to improve the
exposition of this article.
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