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Abstract McMullen’s proof of the Hard Lefschetz Theorem for simple polytopes is
studied, and a new proof of this theorem that uses conewise polynomial functions on
a simplicial fan is provided.
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1 Introduction

Let K be a simple convex polytope corresponding to a projective toric variety XK

with an ample line bundle L on it. Then the linear map in the cohomology of XK de-
fined by multiplication with the first Chern class of L satisfies the Hard Lefschetz the-
orem. Peter McMullen [7] gave a combinatorial proof of this theorem using the poly-
tope algebra to represent cohomology. Since the publication of McMullen’s proof,
a simpler description of the cohomology ring of a toric variety has been found, us-
ing conewise polynomial functions on a fan. In this article we give another proof of
McMullen’s result using conewise polynomial functions.

Theorem 1.1 (Hard Lefschetz) Let l be a strictly convex conewise linear function on
a complete simplicial fan Σ . Let A(Σ) be the ring of continuous conewise polyno-
mial functions on Σ , and let H(Σ) be its quotient by the ideal generated by global
linear functions, graded by degree. Then l defines a Lefschetz operation on H(Σ);
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that is, multiplication by

ln−2k : Hk(Σ) → Hn−k(Σ)

is an isomorphism for each k.

The Hard Lefschetz theorem for simple polytopes was proved previously by Stan-
ley [9] by applying the geometric Hard Lefschetz theorem to the associated toric
varieties. This theorem forms the necessity part of the conjecture of McMullen [6]
about the possible face numbers of simple polytopes. The sufficiency was proved by
Billera and Lee [2].

The proof we give here is elementary and essentially self-contained. We follow the
main steps of McMullen’s proof, but we hope that the proof using conewise polyno-
mial functions simplifies several steps and makes the main ideas more visible. There
have already appeared several simplifications to McMullen’s original proof. In [8]
McMullen studies the algebra of weight spaces on polytopes and shows that this is an
equivalent replacement for the polytope algebra. In [10] Timorin replaces the poly-
tope algebra with an algebra of differential operators. One advantage of the ring of
conewise polynomial functions over the polytope algebra and its variants is that it
can be defined for a nonprojective fan that does not come from a polytope, and one
may even hope to use the same steps to prove the Hard Lefschetz theorem for such
fans. However, since the conewise linear function l is then not convex, the Hodge–
Riemann–Minkowski bilinear relations (see below) that are essential for McMullen’s
proof do not usually hold in this situation, and one needs an appropriate replacement
for these.

Let us describe the main ideas of the proof. The first step is to replace Theo-
rem 1.1 by a stronger statement, that of the Hodge–Riemann–Minkowski bilinear

relations. Let 〈·〉 : Hn(Σ)
�→ R be the “evaluation map” and consider the quadratic

form Ql(h) = 〈ln−2kh · h〉 on Hk(Σ). Define the primitive cohomology

PHk(Σ) = ker
(
ln−2k+1 : Hk(Σ) → Hn−k+1(Σ)

)
.

Theorem 1.2 (Hodge–Riemann–Minkowski bilinear relations) Let l be a strictly
convex conewise linear function on a complete simplicial fan Σ . Then for each
k ≤ 1

2n, the quadratic form (−1)kQl is positive definite on PHk(Σ).

An equivalent statement of the Hodge–Riemann–Minkowski relations is that the
quadratic form Ql on Hk(Σ) is nondegenerate and has the signature

∑

0≤i≤k

(−1)igi,

where gi = dimHi(Σ) − dimHi−1(Σ), which is (if Ql is nondegenerate) the di-
mension of PHi(Σ).

The next step in McMullen’s proof is to show that in fact the Hodge–Riemann–
Minkowski relations for all pairs of complete simplicial fans and convex functions
in dimension n − 1 imply the Hard Lefschetz theorem for the same in dimension n.
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Thus, by induction we may assume that a convex function l defines a Lefschetz op-
eration on H(Σ) or, equivalently, that the form Ql is nondegenerate. This implies
that for a continuous family of convex functions lt on Σ , the signature of Qlt is the
same for all t , and therefore if the Hodge–Riemann–Minkowski relations hold for
one function, they hold for every function in the family. The last step of McMullen’s
proof is to study the change in the signature as a fan undergoes an “elementary flip.”
Any complete simplicial Σ with convex function l can be transformed to the nor-
mal fan of a simplex (for which direct calculation is possible) by a sequence of such
flips, with continuous deformations of associated convex functions. So the proof is
finished by showing that the Hodge–Riemann–Minkowski relations hold on one side
of the flip if and only if they hold on the other side. This is done by explicitly relating
the signatures of the forms Qlt .

2 Preliminaries

We give here the necessary background for the definition of cohomology using
conewise polynomial functions. Further details and more advanced results about the
space of conewise polynomial functions on a fan may be found in [1, 3, 4].

2.1 Fans and polytopes

We use the notation from [5] for fans and polytopes, except that we do not consider
lattices. Fans and polytopes are not assumed to be rational. We briefly recall some of
this notation.

By a cone σ we mean a pointed polyhedral cone in a real vector space V of
dimension dimV = n; that is, σ is the set of nonnegative linear combinations of
vectors in some generating set, and 0 is the largest subspace contained in σ . The
dimension of σ is the dimension of the subspace of V which it generates. A face of σ

is its intersection with the kernel of a support function, meaning a linear function on
V which is nonnegative on σ . A ray is a face of dimension one, and a facet is a face of
codimension one. A cone is simplicial if it has a generating set of linearly independent
vectors or, equivalently, if its rays are equal in number to its dimension. If v1, . . . , vr

are linearly independent vectors in V , we write 〈v1, . . . , vr 〉 for the simplicial cone
they generate.

A fan Σ is a collection of cones in V satisfying the following conditions: first, if
σ is a cone in Σ , then so is every face of σ ; and second, if σ and σ ′ are cones in Σ ,
then their intersection is a face of each. The support |Σ | of Σ is the union of its cones
in V . The fan Σ is called simplicial if every cone of Σ is simplicial, and complete if
its support is equal to V .

We write

star(τ ) = {σ ∈ Σ | τ is a face of σ }
and

star(τ ) = {γ ∈ Σ | γ is a face of σ for some σ containing τ }
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for the open and closed stars of a cone τ . Thus star(τ ) is the smallest subfan of Σ

containing star(τ ) in V , consisting of the maximal cones which contain τ and the
faces of these cones, and its support is the closure in V of the support of star(τ ).

Denote by A the ring of all polynomial functions on V . A (continuous) conewise
polynomial function on Σ is a continuous function on |Σ | which restricts to a poly-
nomial on each cone of Σ . The set of all such functions is denoted A(Σ). This is
an A-module, graded by degree. For a function f ∈ A(Σ) and cone σ of dimension
n, write f σ for the global polynomial which agrees with f on σ . A convex func-
tion l on Σ is a function l ∈ A1(Σ) such that lσ (x) < l(x) for each maximal cone
σ and every x /∈ σ . (That is, the lσ are distinct, and the region above the graph of l

in V × R is convex. Such an l is more commonly called a strictly convex conewise
linear function.) A concave function is the negative of a convex function.

A polytope K is the convex hull of a finite number of points in V ∗. The faces of K

are again its intersections with supporting hyperplanes. To K we associate its normal
fan together with a convex function. Define a function on V by

l(x) = maxv(x),

where the maximum is taken over vertices v of K . The maximal sets on which the
restriction of l is the restriction of a global linear function are taken as the maximal
cones of Σ . It is immediate that l is convex on Σ . Equivalently, Σ is the fan over a
polytope dual to K , and the function l is given on maximal cones by the dual vertices.
Conversely, a fan Σ and convex function determine a polytope K for which Σ is the
normal fan.

Not all fans are normal fans of polytopes and hence may have no convex functions.
Those which do are called projective, and we assume everywhere hereafter that Σ is
projective.

2.2 Conewise polynomial functions

Let Σ be a complete simplicial projective fan in V . Recall that A denotes the ring
of polynomial functions on V and A(Σ) denotes the ring of conewise polynomial
functions on Σ .

For a cone σ of Σ , a characteristic function (also known as a Courant function
[4]) is a conewise polynomial χσ , homogeneous of degree equal to the number of
rays of σ , which is positive on the relative interior of σ and which is supported on
star(σ ). For a ray ρ, a characteristic function χ is conewise linear, zero on every other
ray of Σ , and determined by a choice of scale on ρ. For a cone σ , a characteristic
function is a product of characteristic functions of the rays of σ .

We can show that A(Σ) is a free A-module by shelling the fan. Let K be a poly-
tope with normal fan Σ , and let h be a linear function on V ∗ which takes different
values at the vertices of K . The vertices, and hence the maximal cones of Σ , are
then ordered by the values of h. For each maximal cone σ , we take a function gσ of
minimal degree which is nonzero on σ but vanishes on each earlier cone. For con-
creteness, the characteristic function of the face of σ generated by the rays of σ which
do not lie in any earlier cones will do. Given a function g ∈ A(Σ), we can succes-
sively subtract multiples of the gσ in the same ordering to arrive at the zero function.
This expresses g as a combination of the gσ with coefficients in A.
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Denote by m the ideal of A generated by degree-one functions. We define

H(Σ) = A(Σ)/mA(Σ).

This inherits a grading from A(Σ). Using the generators gσ constructed in the last
paragraph, which give a basis for H(Σ) as a vector space, we can establish a few
basic facts. First, Hk(Σ) = 0 for k > n. Next,

dimHk(Σ) = dimHn−k(Σ)

for all k. We can see this by constructing another basis of functions g′
σ through the

ordering function −h. For then gσ is of degree k exactly when g′
σ is of degree n − k,

as gσ g′
σ is a characteristic function for σ . Finally,

dimH 0(Σ) = dimHn(Σ) = 1.

In the next subsection we describe an explicit isomorphism Hn(Σ) → R.
We note that l ∈ A1(Σ) is convex if and only if l + f is convex for each f ∈ A1,

so that it makes sense to say a class in H 1(Σ) is convex or not.

2.3 Poincaré pairing

Let Σ be a complete simplicial projective fan in V . We recall from [4] an isomor-
phism

〈·〉Σ : Hn(Σ) → R

called the evaluation map. We will omit the subscript where it is clear from the con-
text.

This map is constructed as follows. Fix a metric on
∧n

V ∗. For each maximal
cone σ ∈ Σ , choose support functions for the various facets of σ , scaled so that
their wedge product has length 1, and let Φσ be their ordinary product in A. Thus
Φσ is a global polynomial function restricting to a characteristic function on σ , with
scale determined by the chosen metric. For f ∈ A(Σ), recall that f σ is the global
polynomial which restricts to f on σ . Set

〈f 〉 =
∑

σ∈Σ

dimσ=n

f σ

Φσ

.

In [4] it is shown that this defines a degree −n map A(Σ) → A. (It suffices to check
that the right side has no poles along facets in Σ . Such a facet is the intersection of
two maximal cones, and by choosing coordinates one can check that the poles of the
corresponding terms cancel.)

Since 〈·〉 is a map of A-modules, it descends to a map of cohomology H(Σ) →
A/m = R. The evaluation map is then the restriction Hn(Σ) → R to degree n. This
is not the zero map, as 〈χσ 〉 > 0 for each maximal cone σ , so is an isomorphism, as
dimHn(Σ) = 1.
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Proposition 2.1 The bilinear pairing

Hk(Σ) × Hn−k(Σ) → R,
([f ], [g]) 
→ 〈f · g〉

is nondegenerate for each k.

We call this pairing the Poincaré pairing for H(Σ). In the notation of the previous
section, the matrix with entries 〈gσ g′

τ 〉, where the g′
τ are listed in reverse order, is

upper-triangular, with diagonal entries 〈gσ g′
σ 〉 = 〈χσ 〉 �= 0. This proves the proposi-

tion.

2.4 Fans with boundary

Let τ ∈ Σ be a cone and consider the subfan Δ = star(τ ). Let π be the linear projec-
tion from the span of τ . The image of Δ under π is a complete fan Λ. Pullback of
conewise linear functions gives a linear map

A(Λ) → A(Δ).

We claim that the induced map in cohomology is an isomorphism. This can be seen
by choosing a shelling of Σ that starts with maximal cones in Δ and hence gives a
shelling of Δ. The same argument as for complete fans gives generators for the free
A-module A(Δ). Since maximal cones of Δ correspond with maximal cones in Λ,
the shelling of A(Δ) induces a shelling of Λ. The generators of A(Λ) that one gets
from this shelling pull back to generators of A(Δ).

Let A(Δ, ∂Δ) ⊂ A(Δ) be the space of functions vanishing on the boundary. This
is again a free A-module. A set of generators can be found by choosing a shelling
of Σ that ends with maximal cones in Δ. The last generators then form a set of
generators for A(Δ, ∂Δ). One can also see either from these generators, or directly
from the definition, that

A(Δ, ∂Δ) = χτ A(Δ).

In particular, if we define H(Δ,∂Δ) = A(Δ, ∂Δ)/mA(Δ, ∂Δ), then

Hk(Δ,∂Δ) = χτH
k−dim τ (Δ).

Let Γ = Σ \ star(τ ). This is again a fan with boundary, and we can consider
conewise polynomial functions on Γ and functions vanishing on the boundary ∂Γ .
The same shelling argument as for Δ proves that these spaces are free A-modules.
Restrictions of functions give exact sequences

0 → A(Γ, ∂Γ ) → A(Σ) → A(Δ) → 0,

0 → A(Δ, ∂Δ) → A(Σ) → A(Γ ) → 0,

inducing exact sequences in cohomology.
Finally, let us discuss the evaluation maps in H(Δ,∂Δ) and H(Λ). If σ is a max-

imal cone in Δ, then χσ = χτπ
∗(χλ) for some maximal cone λ ∈ Λ. It now follows
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from the definition of the evaluation maps, constructed with measures of volume
compatible with π , that for f ∈ A(Λ),

〈
χτπ

∗(f )
〉
Σ

= 〈f 〉Λ.

3 Flips

We explain here how to transform a complete simplicial projective fan to the normal
fan of a simplex by elementary operations called flips.

Let K be a simple convex polytope, and let h(x) be a linear function on the poly-
tope that takes different values on the vertices. Consider the family of polytopes

Kt = K ∩ {
x | h(x) ≥ t

}
.

When varying t , the polytope Kt undergoes a combinatorial change at the values ti
for which a vertex of K lies in the hyperplane h(x) = ti . The change from Kti−ε to
Kti+ε is called a flip. Note that both Kti−ε and Kti+ε are simple polytopes, while Kti

may not be simple. This construction gives a sequence of flips that transforms any
polytope K to the simplex and then to the empty polytope.

The family Kt of polytopes defines a family of fans Σt with convex functions lt .
As t varies between ti and ti+1, the fans Σt do not change; only lt changes. But
as t crosses ti , the fans also change by a flip. To describe a flip of a fan, let σ =
〈v1, . . . , vn+1〉 be the simplicial (n+1)-dimensional cone in R

n+1 generated by some
linearly independent vectors v1, . . . , vn+1. Fix 1 ≤ m ≤ n and write the boundary of σ

as

∂σ = star〈v1, . . . , vm〉 ∪ star〈vm+1, . . . , vn+1〉,
where the closed stars are taken in ∂σ . There exists a projection π : R

n+1 → V that is
injective on both star〈v1, . . . , vm〉 and star〈vm+1, . . . , vn+1〉. A flip replaces the sub-
fan π(star〈v1, . . . , vm〉) in Σti−ε with π(star〈vm+1, . . . , vn+1〉) in Σti+ε . To indicate
the choice of m, this flip is called an m-flip.

Note that an m-flip and an (n + 1 − m)-flip are inverse operations. The definition
makes sense also for m = 0 and m = n + 1—these flips pass between the empty fan
and the normal fan of a simplex—but we will not have need of these cases. The cases
m = 1 and m = n pass between a simplicial cone and a star subdivision thereof. These
are the only flips which change the number of rays of the fan.

In the following sections we consider a single flip only. To simplify notation, let
us say that this flip occurs at t = 0, changing a fan Σ−1 to Σ1. We also assume that
1 ≤ m ≤ 1

2 (n + 1) (otherwise, exchange the roles of Σ−1 and Σ1). The goal then is
to prove that Ql−1 satisfies the Hodge–Riemann–Minkowski relations on Σ−1 if and
only if Ql1 satisfies the relations on Σ1. The sequence of flips constructed above then
reduces proving the Hodge–Riemann–Minkowski relations for an arbitrary Σ to the
case of the normal fan of a simplex. This can be proved directly.

Lemma 3.1 Let Π be the normal fan of a simplex, and let l be any convex function
on Π . Then Theorem 1.2 holds for (Π, l).



234 J Algebr Comb (2010) 32: 227–239

Proof By shelling Π we see that dimHk(Π) = 1 for each 0 ≤ k ≤ n. It suffices to
show that 〈ln〉 > 0, as this implies that l generates H(Π), so that PH(Π) = H 0(Π),
and asserts that Ql is positive definite on H 0(Π). Now in H 1(Π) the positive multi-
ples of l are the convex classes (and the negative multiples are the concave classes).
Since a characteristic function of any ray ρ of Π is convex, there is a choice of scale
so that l = χρ in H 1(Π). Choosing n distinct rays of Π , we find ln = χσ for the
cone σ of dimension n they generate. Therefore 〈ln〉 = 〈χσ 〉 > 0, as required. �

In [4] it is shown that in fact 〈ln〉Σ = n!vol(K) for any convex polytope K with
corresponding (Σ, l), with the volume on V ∗ agreeing with the choice made in the
construction of the evaluation map.

4 Flips and cohomology

Consider one m-flip that changes Σ−1 to Σ1 by replacing star(τ ) = Δ−1 with
star(τ ′) = Δ1.

4.1 Cohomology of Δ±1

Note that, combinatorially,

Δ−1 � [τ ] × Πn−m,

where [τ ] is the fan consisting of τ and all its faces, and Πn−m is the normal fan of
an (n − m)-dimensional simplex. Then

H(Δ−1) � H
(
Πn−m

)
,

which has dimension 1 in degrees k = 0, . . . , n − m. Also

Hk(Δ−1, ∂Δ−1) � Hk−m
(
Πn−m

)
,

and this has dimension 1 in degrees k = m, . . . , n.
Similarly,

H(Δ1) � H
(
Πm−1),

which has dimension 1 in degrees k = 0, . . . ,m − 1, and

Hk(Δ1, ∂Δ1) � Hk−(n−m+1)
(
Πm−1)

with dimension 1 in degrees k = n − m + 1, . . . , n.

4.2 Decomposition of cohomology

Let Γ = Σ−1 \ star(τ ) = Σ1 \ star(τ ′), and consider the exact sequences

0 → H(Δ±1, ∂Δ±1) → H(Σ±1) → H(Γ ) → 0 (1)
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and

0 → H(Γ, ∂Γ ) → H(Σ±1) → H(Δ±1) → 0. (2)

We construct an inclusion

H(Σ1) ↪→ H(Σ−1)

using maps from the exact sequences. In degrees k = 0, . . . ,m − 1, sequences (1)
give isomorphisms

Hk(Σ1)
�→ Hk(Γ )

�← Hk(Σ−1).

In degrees k = m, . . . , n, sequences (2) give maps

Hk(Σ1)
�← Hk(Γ, ∂Γ ) ↪→ Hk(Σ−1).

These two compositions define the required inclusion H(Σ1) ↪→ H(Σ−1). This in-
clusion can also be viewed as the unique linear map that commutes with projections
to H(Γ ) and with inclusions from H(Γ, ∂Γ ).

From the construction we can identify the cokernel of the inclusion, which lies in
degrees k = m, . . . , n − m. For k ≥ m, we have an exact sequence

0 → Hk(Σ1) → Hk(Σ−1) → Hk(Δ−1) → 0.

We can find a splitting of this sequence by noticing that the composition

Hk(Δ−1, ∂Δ−1) → Hk(Σ−1) → Hk(Δ−1)

is an isomorphism in degrees k = m, . . . , n − m. Define

K =
n−m⊕

k=m

Hk(Δ−1, ∂Δ−1).

Then

H(Σ−1) = H(Σ1) ⊕ K.

Lemma 4.1 The decomposition

H(Σ−1) = H(Σ1) ⊕ K

is orthogonal with respect to the Poincaré pairing.

Proof Since K vanishes for degrees k > n − m, it suffices to consider pairings with
elements of Hk(Σ1) for k ≥ m. Now, as

H(Γ, ∂Γ ) · H(Δ−1, ∂Δ−1) = 0

as subspaces of H(Σ−1), the claim follows by the construction of the decomposi-
tion. �
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For t = 0, the function l0 is conewise linear on both of Σ±1; hence the quadratic
form Ql0 is defined on both of H(Σ±1). Moreover, l0 lies in the kernel of the restric-
tion H(Σ0) → H(Δ0), since H(Δ0) is nonzero only in degree 0, so l0 determines a
class in H 1(Γ, ∂Γ ).

We note that, while the inclusion H(Σ1) ↪→ H(Σ−1) is not a homomorphism of
rings in general (i.e., for m ≥ 2), by construction it does commute with multiplication
by elements of H(Γ, ∂Γ ).

Lemma 4.2 The form Ql0 on H(Σ±1) commutes with the inclusion H(Σ1) ↪→
H(Σ−1).

Proof Note that we have the same isomorphism 〈·〉Σ±1 : Hn(Γ, ∂Γ )
�→ R from the

two evaluation maps. So it suffices to see that, for f ∈ Hk(Σ1), multiplication by
ln−2k
0 f commutes with the inclusion. If n − 2k > 0, this is clear, as l0 ∈ H(Γ, ∂Γ ),

while if k = 1
2n, then again f ∈ Hk(Σ1) = Hk(Γ, ∂Γ ). �

Lemma 4.3 The decomposition

H(Σ−1) = H(Σ1) ⊕ K

is orthogonal with respect to the quadratic form Qlt for every t ≤ 0.

Proof Fix any t ≤ 0 and let k ≤ 1
2n. Note that ln−2k

t maps Kk into Kn−k , vacu-
ously for k < m and otherwise because H(Δ−1, ∂Δ−1) is an ideal of H(Σ−1). So,
for f ∈ Hk(Σ1) and g ∈ Kk , by Lemma 4.1 we have 〈ln−2k

t g · f 〉 = 0. Therefore
Qlt (f + g) = Qlt (f ) + Qlt (g). �

Lemma 4.4 The form (−1)mQlt is positive definite on Km for every t < 0.

Proof Fix t < 0. Our goal is to evaluate Qlt on the subspace

Km = Hm(Δ−1, ∂Δ−1) = χτH
0(Δ−1)

through the projection Δ−1 → Π = Πn−m along the face τ onto the normal fan of a
simplex of dimension n − m.

Let ρ be a ray of τ , with characteristic function χ . We show that χ is concave on
Δ−1. Pick also a ray ρ′ of τ ′. The remaining rays of Δ−1 generate a facet γ in ∂Δ±1
(because they generate such a face in the simplicial cone that projects to Δ±1). Let h

be a support function of γ (and hence of the convex set Δ±1) which equals χ on ρ.
Then h − χ is a characteristic function of ρ′. These are pullbacks of characteristic
functions of a ray of Π , so are convex. So χ is concave.

It follows that for each such ρ, there is a choice of characteristic function χρ so that
lt |Δ−1 = −χρ in H 1(Δ−1), for as dimH 1(Δ−1) = 1, the convex classes are exactly
the positive multiples of the restriction of lt to Δ−1. So we may write (−lt )

m = χτ .

We therefore have an isomorphism H(Π) → H(Δ−1)
(−lt )

m

−→ H(Δ−1, ∂Δ−1). Let
the restriction of lt to Δ−1 be the pullback of a convex function l on Π . Under this
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isomorphism, the form (−1)mQlt on Km corresponds to the form Ql on H 0(Π),
since, for f ∈ Hn−m(Π),

(−1)m
〈
lmt π∗(f )

〉
Σ−1

= 〈
χτπ

∗(f )
〉
Σ−1

= 〈f 〉Π.

The Hodge–Riemann–Minkowski relations for Π now imply that (−1)mQlt is posi-
tive definite on Km. �

5 Proof of the main theorem

We keep the notation set as in the last two sections. To establish Theorem 1.2 we
track the rank and signature of the form Qlt across an m-flip. The rank is easy to
give: induction on dimension establishes that Qlt is nondegenerate in most cases
because the Hodge–Riemann–Minkowski relations in one dimension imply the Hard
Lefschetz theorem in the next. This next lemma is the main tool for the induction.

Lemma 5.1 Let Σ be a complete simplicial fan with a conewise linear function lΣ
such that lΣ > 0 on V \0. For a ray ρ of Σ , write Δ = star(ρ), let π be the projection
along ρ, and write Λ = π(Δ). The class of lΣ |Δ ∈ H 1(Δ) is the pullback of some
l ∈ H 1(Λ). Assume for every ray ρ of Σ that the Λ and l so obtained satisfy the
Hodge–Riemann–Minkowski relations. Then H(Σ) and lΣ satisfy the Hard Lefschetz
theorem.

Proof By Poincaré duality it suffices to show that multiplication by ln−2k
Σ : Hk(Σ) →

Hn−k(Σ) is injective. Suppose that f ∈ Hk(Σ) is such that ln−2k
Σ f = 0; we need to

show that f = 0.
By assumption we can write lΣ = ∑

ρ χρ by scaling the characteristic functions

to agree with lΣ on ρ. For each ρ, f |Δ is the pullback of some g ∈ Hk(Λ) which is
primitive with respect to l, for l(n−1)−2k+1g = ln−2kg maps to zero under the corre-
spondence H(Λ) � H(Δ). Consequently, applying the Hodge–Riemann–Minkowski
relations for each Λ,

0 = (−1)k
〈
ln−2k
Σ f 2〉

Σ
=

∑

ρ

(−1)k
〈
χρln−1−2k

Σ f 2〉
Σ

=
∑

ρ

(−1)k
〈
l(n−1)−2kg2〉

Λ
≥ 0,

with equality at the last stage if and only if each g = 0. Therefore each f |Δ ∈ H(Δ)

is zero.
This implies that χρf = 0 in H(Σ) for every ray ρ. Since the characteristic func-

tions generate Hn−k(Σ), the nondegeneracy of the Poincaré pairing now implies that
in fact f = 0 in H(Σ), as required. �

The class of a convex function on Σ has a representative which satisfies the first
hypothesis of this lemma, as does the class of l0 on both of Σ±1.

Parts (a) of the next two results are the main theorems; the other parts are auxiliary
results used in the induction.
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Theorem 5.2 The conewise linear function l defines a Lefschetz operation on H(Σ)

in the following cases:

(a) l is a convex function on a complete simplicial fan Σ ,
(b) l = l0 on Σ1, and
(c) l = l0 on Σ−1 when m = 1

2n.

Theorem 5.3 The conewise linear function l satisfies the Hodge–Riemann–
Minkowski relations on H(Σ) in the following cases:

(a) l is a convex function on a complete simplicial fan Σ ,
(b) l = l0 on Σ1, and
(c) l = l0 on Σ−1 when m = 1

2n.

Proof We first show that Theorem 5.2 in dimension n follows from Theorem 5.3 in
dimension n − 1. We consider the parts in turn. Theorem 5.2(a) is immediate from
Theorem 5.3(a) by application of Lemma 5.1.

For Theorem 5.2(b), we will again invoke Lemma 5.1, this time using all three
parts of Theorem 5.3. First, the star of a ray not in Δ1 is simplicial, and for these,
Theorem 5.3(a) applies.

Next we consider a ray in Δ1. Note that restriction to the star of a ray in Δt

and projection yields a family of fans Λt and convex functions so that the fan Λ1
is obtained from Λ−1 by a flip, which is either an m-flip or an (m − 1)-flip, if the
ray belongs to τ ′ or to τ , respectively. Indeed, the projection of a simplicial cone of
dimension n + 1 to a star in Λ±1 so described, through a projection onto Δ±1 and
then along a ray of Δ±1, is the same as the projection along one of its rays onto a
simplicial cone of dimension n and then onto the star in Λ±1.

Now for m < 1
2 (n + 1), and for m = 1

2 (n + 1) when the ray of Δ1 is in τ , we
may therefore use Theorem 5.3(b). In the case m = 1 note that τ consists of a single
ray and does not appear in Σ1, as the flip from Σ1 to Σ−1 is the star subdivision
at this ray, so that the case m = 0 does not occur in the induction. Last is the case
where m = 1

2 (n + 1) and we consider the star of a ray in τ ′. Here the family Λt has
Λ1 obtained from Λ−1 by an m-flip with m = 1

2 ((n − 1) + 2) > 1
2 ((n − 1) + 1),

contrary to our convention on labelling fans Σ±1. This flip, however, is the inverse
of a flip with m′ = (n − 1) − m + 1 = 1

2 (n − 1), and with this reversed labelling
Theorem 5.3(c) applies. This establishes Theorem 5.2(b).

Finally, Theorem 5.2(c) is immediate from Theorem 5.2(a–b) through the decom-
position H(Σ−1) = H(Σ1) ⊕ K. Multiplication by l0 ∈ H(Γ, ∂Γ ) commutes with
the inclusion H(Σ1) ↪→ H(Σ−1), so Theorem 5.2(b) applies to the first summand.
The second is nonzero only in the middle degree m = 1

2n where the claim is vacuous.
It remains now to establish Theorem 5.3 in dimension n, assuming that Theo-

rem 5.2 holds in dimension n. We again consider each part in turn.
Theorem 5.2(a–b) imply that Qlt is nondegenerate on H(Σ1) for t ≥ 0. Therefore

its signature is constant for t ≥ 0 as well. By Lemma 4.2 the form Ql0 is the same
on H(Σ1) as on the first summand of the decomposition H(Σ−1) = H(Σ1) ⊕ K, so
that Ql0 has the same rank and signature on this summand as on H(Σ1). By Theo-
rem 5.2(a) Qlt is nondegenerate on the first summand for t > 0, so that by continuity
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Ql−1 has this same rank and signature on the first summand as well. Lemma 4.4 gives
the signature of Qlt on K for t < 0. Adding these up and using the orthogonality of
Lemma 4.3, we see that the Hodge–Riemann–Minkowski relations hold for Σ1 and
l1 if and only if they hold for Σ−1 and l−1.

For an arbitrary fan Σ and convex function l, choosing a sequence of flips to
deform Σ to the normal fan of a simplex and invoking Lemma 3.1 now gives Theo-
rem 5.3(a).

We have already observed that the rank and signature of Qlt on H(Σ1) are con-
stant for t ≥ 0. Therefore Theorem 5.3(a) implies Theorem 5.3(b).

Finally, Theorem 5.3(c) follows from Theorem 5.3(b) and Lemma 4.4 through the
decomposition H(Σ−1) = H(Σ1) ⊕ K. This completes the proof. �
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