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Abstract We consider an operator of Bernstein for symmetric functions and give an
explicit formula for its action on an arbitrary Schur function. This formula is given in
a remarkably simple form when written in terms of some notation based on the code
of a partition. As an application, we give a new and very simple proof of a classical
result for the KP hierarchy, which involves the Plücker relations for Schur function
coefficients in a τ -function for the hierarchy. This proof is especially compact be-
cause we are able to restate the Plücker relations in a form that is symmetrical in
terms of partition code notation.

Keywords Symmetric functions · Schur functions · Plücker relations ·
KP hierarchy · Combinatorial bijection · Partition code

1 Introduction

In Macdonald’s fundamental book [10, p. 95] on symmetric functions, he considers
the operators B(t), Bn given by

B(t) :=
∑

n∈Z

Bnt
n := exp

(∑

k≥1

tk

k
pk

)
exp

(
−

∑

k≥1

t−k ∂

∂pk

)
, (1)

which he attributes to Bernstein [16, p. 69]. Here t is an indeterminate, and pk is
the kth power sum symmetric function of a countable set of indeterminates (in which
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the power sums are symmetric). Of course, since the power sum symmetric func-
tions p1,p2, . . . in a countable set of indeterminates are algebraically independent
(see Sect. 3 for this and other basic results about symmetric functions), we can regard
p1,p2, . . . as indeterminates. Hence we consider Bernstein’s operators B(t), Bn ap-
plied to formal power series in p1,p2, . . . . Let the weight of the monomial p

i1
1 p

i2
2 · · ·

be given by i1 + 2i2 +· · · . Then note that as a series in t , B(t) goes to infinity in both
directions, but that when it is applied to a monomial of weight m in p1,p2, . . . , the
result is a Laurent series with minimum degree −m in t .

The main result of this paper is an explicit expansion for the Laurent series that
results from applying B(t) to an arbitrary Schur symmetric function (where the Schur
function is written as a polynomial in p1,p2, . . . with symmetric group characters as
coefficients, as given in (8)). This result, appearing as Theorem 3.4, is given in a
remarkably simple form by using an indexing notation for partitions that is natural in
terms of the code of the partition.

For an application of our main result, we turn to the KP hierarchy of mathematical
physics. By combining our main result and its dual form, we are able to give a new,
simple proof (in Theorem 5.2) of the classical result for the KP hierarchy that relates
the Schur symmetric function expansion of a τ -function for the hierarchy and the
Plücker relations for the coefficients in this expansion. This proof is made especially
compact by our restatement (as Theorem 4.1) of the Plücker relations, in a highly
symmetrical form in terms of the code notation.

The KP (Kadomtsev–Petviashvili) hierarchy is a completely integrable hierarchy
that generalizes the KdV hierarchy (an integrable hierarchy is a family of partial dif-
ferential equations which are simultaneously solved; for a comprehensive and con-
cise account of the KP hierarchy with an emphasis on the view of physics, see Miwa,
Jimbo, and Date [11]). Over the last two decades, there has been strong interest in
the relationship between integrable hierarchies and moduli spaces of curves. This be-
gan with Witten’s Conjecture [15] for the KdV equations, proved by Kontsevich [9]
(and more recently by a number of others, including [8]). Pandharipande [13] con-
jectured that solutions to the Toda equations arose in a related context, which was
proved by Okounkov [12], who also proved the more general result that a generating
series for what he called double Hurwitz numbers satisfies the KP hierarchy. Kazarian
and Lando [8], in their recent proof of Witten’s conjecture, showed that it is implied
by Okounkov’s result for double Hurwitz numbers. More recently, Kazarian [7] has
given a number of interesting results about the structure of solutions to the KP hier-
archy. Combinatorial aspects of this connection have been studied by Goulden and
Jackson [2].

The structure of this paper is as follows. In Sect. 2, we describe the notation for
partitions (which index symmetric functions), their diagrams, and codes (in terms of
the physics presentation in [11], the code is equivalent to a Maya diagram without the
location parameter of charge). In Sect. 3, we describe the algebra of symmetric func-
tions and give our main result, with a combinatorial proof in terms of the diagrams
of partitions. Section 4 contains our symmetrical restatement of the Plücker relations.
Finally, in Sect. 5, we give our new proof of the Schur–Plücker result for the KP
hierarchy, together with a description of an equivalent system of partial differential
equations for the KP hierarchy in terms of codes of partitions.
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Fig. 1 The diagram and code for the partition (6,5,5,4,1)

2 Partitions and codes

We begin with some notation for partitions (see [10, 14]). If λ1, . . . , λn are integers
with λ1 ≥ · · · ≥ λn ≥ 1 and λ1 + · · · + λn = d , then λ = (λ1, . . . , λn) is said to be
a partition of |λ| := d (indicated by writing λ � d) with l(λ) := n parts. The empty
list ε of integers is to be regarded as a partition of d = 0 with n = 0 parts. Let P de-
note the set of all partitions. If λ has fj parts equal to j for j = 1, . . . , d , then, when
convenient, we also write λ = (dfd , . . . ,1f1). Also, Aut λ denotes the set of permu-
tations of the n positions that fix λ; therefore |Aut λ| = ∏

j≥1 fj !. The conjugate of
λ is the partition λ′ = (λ′

1, . . . , λ
′
m), where m = λ1, and λ′

i is equal to the number of
parts λj of λ with λj ≥ i, i = 1, . . . ,m. The diagram of λ is a left-justified array of
juxtaposed unit squares, with λi squares in the ith row. For example, the diagram of
the partition (6,5,5,4,1) is given on the left-hand side of Fig. 1. The diagram gives
a compact geometrical description of the conjugate; the diagram of λ′ is obtained by
reflecting the diagram of λ about the main diagonal.

The code of a partition is a two-way infinite binary string in two symbols, say U, R.
The string is infinitely U to the left and infinitely R to the right, and represents a lattice
path with unit up-steps (for “U”) and unit right-steps (for “R”); the path starts moving
up the y-axis towards the origin, ends moving out the x-axis away from the origin,
and forms the lower right-hand boundary of the diagram of the partition, when the
diagram is placed with its upper left-hand corner at the origin. An example is given on
the right-hand side of Fig. 1, which gives us the string . . .UURURRRURUURURR. . .

as the code of the partition (6,5,5,4,1) (see, e.g., [14, p. 467] for more on codes;
in [14], the symbols in the code are 0, 1, but we prefer U, R as more mnemonic.)

We let λ(i), i ≥ 1, be the partition whose code is obtained from the code of the
partition λ by switching the ith R (from the left) to U. If λ = (λ1, . . . , λn), then we
immediately have

λ(i) = (λ1 − 1, . . . , λj − 1, i − 1, λj+1, . . . λn), (2)

where j is chosen (uniquely) from 0, . . . , n so that λj ≥ i > λj+1 (with the conven-
tions that λn+1 = 0 and λ0 = ∞). Now define ui(λ) to be the number of up-steps U
that follow the ith right-step R from the left in the code of λ. Then note that ui(λ) = j
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Fig. 2 The skew diagram
(6,5,5,4,1) − (3,3,2,1)

and that we have |λ(i)| = |λ| − j + i − 1 from (2), so we can determine ui(λ) = j in
terms of i via

ui(λ) = |λ| − ∣∣λ(i)
∣∣ + i − 1. (3)

Also note that ui(λ) weakly decreases as i increases, and so we also obtain

|λ| − l(λ) = ∣∣λ(1)
∣∣ <

∣∣λ(2)
∣∣ < · · · , ∣∣λ(i)

∣∣ = |λ| + i − 1, i > λ1. (4)

We also let λ(−i), i ≥ 1, be the partition whose code is obtained from the code of
the partition λ by switching the ith U (from the right) to R. If λ = (λ1, λ2, . . .) with
λ1 ≥ λ2 . . . ≥ 0 (i.e., λ has a finite number, say n, of positive parts, and then append
an infinite sequence of 0’s), then we immediately have

λ(−i) = (λ1 + 1, . . . , λi−1 + 1, λi+1, . . .). (5)

Thus we have |λ(−i)| = |λ|−λi + i −1, and since λi weakly decreases as i increases,
we obtain

|λ| − λ1 = ∣∣λ(−1)
∣∣ <

∣∣λ(−2)
∣∣ < · · · , ∣∣λ(−i)

∣∣ = |λ| + i − 1, i > l(λ). (6)

Finally, we define skew diagrams. For partitions λ = (λ1, . . . , λn) and μ =
(μ1, . . . ,μm) with n ≥ m and λi ≥ μi for i = 1, . . . ,m, the skew diagram λ − μ

is the array of unit squares obtained by removing the squares of the diagram of μ

from the diagram of λ. For example, the skew diagram (6,5,5,4,1) − (3,3,2,1) is
given in Fig. 2.

A skew diagram is a horizontal strip if it contains at most one square in every
column; it is a vertical strip if it contains at most one square in every row. When the
total number of squares in a horizontal (or vertical) strip is equal to k, we may refer
to this skew diagram as a horizontal (or vertical) k-strip.

3 Codes of partitions and symmetric functions

3.1 The algebra of symmetric functions

We consider symmetric functions in x1, x2, . . . and refer to [10, 14] for the results
that we use in this paper. The ith power sum symmetric function is pi = ∑

j≥1 xi
j for

i ≥ 1, with p0 := 1. The ith complete symmetric function hi and the ith elementary
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symmetric function are defined by
∑

i≥0 hit
i = ∏

j≥1(1 − xj t)
−1 and

∑
i≥0 ei t

i =∏
j≥1(1 + xj t), respectively, and are related to the power sums through

∑

i≥0

hit
i = exp

∑

k≥1

pk

k
tk,

∑

i≥0

ei t
i = exp

∑

k≥1

pk

k
(−1)k−1tk. (7)

In the algebra ΛQ of symmetric functions in x1, x2, . . . over Q, the pi , i ≥ 1, are
algebraically independent, the hi , i ≥ 1, are algebraically independent, and the ei ,
i ≥ 1, are algebraically independent. This algebra is graded, by total degree in the
underlying indeterminates x1, x2, . . . . Moreover, ΛQ is generated by the pi ’s, the
hi ’s, or the ei ’s; so we have

ΛQ = Q[p1,p2, . . .] = Q[h1, h2, . . .] = Q[e1, e2, . . .].
Now suppose we define quantities pλ, hλ, eλ indexed by the partition λ =

(λ1, . . . , λn) multiplicatively, which means that we write pλ = pλ1 · · ·pλn , hλ =
hλ1 · · ·hλn , eλ = eλ1 · · · eλn , with the empty product convention pε = hε = eε = 1.
Then of course, regarded as a vector space over Q, ΛQ has (multiplicative) bases
{pλ : λ ∈ P }, {hλ : λ ∈ P }, and {eλ : λ ∈ P }.

Another (nonmultiplicative) basis is {sλ : λ ∈ P }, where sλ is the Schur function of
shape λ. There are many fascinating aspects about Schur functions, but the one that
we shall focus on in this paper is their connection with characters of the symmetric
group (we refer to [14] for the results about characters and representations of the sym-
metric group used in this paper). The conjugacy classes of the symmetric group Sd

on {1, . . . , d} are indexed by the partitions of d (and for partition λ = (λ1, . . . , λn),
the conjugacy class Cλ consists of all permutations in Sd whose disjoint cycle lengths
give the parts of λ in some order). The irreducible representations of Sd are also in-
dexed by the partitions of d . For partitions λ, μ of d , let χλ

μ denote the character of
the irreducible representation of Sd indexed by λ and evaluated at any element of
the conjugacy class Cμ (in general, characters are constant on conjugacy classes); we
usually refer to χλ

μ generically as an irreducible character. Then, to change bases of
ΛQ between {pλ : λ ∈ P } and {sλ : λ ∈ P }, we have

pλ =
∑

μ�d

χ
μ
λ sμ, sλ =

∑

μ�d

|Cμ|
d! χλ

μpμ, λ � d. (8)

The endomorphism ω : ΛQ → ΛQ defined by ω(en) = hn, n ≥ 1, is an involution
on ΛQ. For Schur functions, we have

ω(sλ) = sλ′ . (9)

We have various multiplication rules for Schur functions. For example,

hnsλ =
∑

μ

sμ, (10)

where the sum is over partitions μ such that μ − λ is a horizontal n-strip. In general,
when the involution ω is applied to an equation for symmetric functions, we call the
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resulting equation the dual. For example, applying ω to (10), we obtain the dual result

ensλ =
∑

μ

sμ, (11)

where the sum is over partitions μ such that μ − λ is a vertical n-strip. (Equations
(10) and (11) are often referred to as Pieri rules.)

Let 〈 , 〉 be the bilinear form for ΛQ defined by

〈sλ, sμ〉 = δλ,μ, λ,μ ∈ P . (12)

For each symmetric function f ∈ ΛQ, let f ⊥ : ΛQ → ΛQ be the adjoint of multipli-
cation by f , so

〈
f ⊥g1, g2

〉 = 〈g1, fg2〉, g1, g2 ∈ ΛQ.

Then

p⊥
n = n

∂

∂pn

, n ≥ 1. (13)

Moreover, from (10) and (12) we have

h⊥
n sλ =

∑

μ

sμ, (14)

where the sum is over partitions μ such that λ − μ is a horizontal n-strip. Similarly,
from (11) and (12) we have

e⊥
n sλ =

∑

μ

sμ, (15)

where the sum is over partitions μ such that λ − μ is a vertical n-strip.
We now consider Bernstein’s symmetric function operators B(t), Bn defined in

(1). Equivalently, from (7) and (13), together with the fact that the partial differential
operators ∂

∂pk
commute, we have

B(t) :=
∑

n∈Z

Bnt
n :=

∑

k,m≥0

(−1)mtk−mhke
⊥
m (16)

(where Bn is an operator on ΛQ for each n ∈ Z). Then we also have

B⊥(t) =
∑

n∈Z

B⊥
n tn =

∑

k,m≥0

(−1)mtk−memh⊥
k , (17)

and we immediately obtain B⊥
n = (−1)nωB−nω (note that this corrects the relation

given in [10, p. 96]). In terms of the series B itself, this becomes the operator equation

B⊥(t) = ωB
(−t−1)ω, (18)

where ω applied to a series in t acts linearly on the coefficients of each monomial
in t .
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Fig. 3 Partitions λ and μ with
λ-ambiguous squares

3.2 A combinatorial treatment of Bernstein’s operator

We define Rλ,μ to be the set of partitions ν such that λ − ν is a vertical strip and
μ − ν is a horizontal strip. Let

Rλ,μ =
∑

ν∈Rλ,μ

(−1)|λ|−|ν|, (19)

which is 0 when the set Rλ,μ is empty. This sum arises naturally in the action of B(t)

on a Schur function sλ, as given in the following result.

Proposition 3.1 For any partition λ, we have

B(t)sλ =
∑

μ∈P
Rλ,μt |μ|−|λ|sμ.

Proof The result follows immediately from (16), (10), and (15). �

Now we consider the structure of the set Rλ,μ, beginning with the example given
in Fig. 3, where the diagrams of λ = (5,4,2,2,2,1,1) and μ = (6,4,4,2,1,1) are
given on the left and right of the diagram, respectively. There are three classes of
squares in the union of the diagrams for λ and μ that we shall consider when Rλ,μ is
nonempty:

• The squares of μ that are not contained in λ. These squares are necessarily bottom-
most in their column of μ. None of these is contained in any ν in Rλ,μ (in Fig. 3,
these squares contain “+”). Such squares are contained in the horizontal strip that
is added in the multiplication by an hk .

• The squares of λ that are not contained in μ. These squares are necessarily right-
most in their row of λ. None of these squares is contained in any ν in Rλ,μ (in
Fig. 3, these squares contain “−”). Such squares are contained in the vertical strip
that is deleted in the application of e⊥

m .
• The squares that are contained in both λ and μ. These squares are necessarily both

rightmost in their row of λ, and bottommost in their column of μ. Each of these
is contained in some of the ν in Rλ,μ, but not others (in Fig. 3, the λ-ambiguous
squares of μ contain “?”). Such squares may have been contained in both a deleted
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vertical strip and an added horizontal strip or neither. We call the squares in μ with
this property λ-ambiguous.

Lemma 3.2 If μ has any λ-ambiguous squares, then

Rλ,μ = 0.

Proof If μ has any λ-ambiguous squares, let c be the rightmost of these (there is
at most one λ-ambiguous square in any column of μ, since it can only occur as the
bottommost element of a column). Define the mapping

φ : Rλ,μ → Rλ,μ : ν �→ ν′

as follows: if ν contains c, then ν′ is obtained by removing c from ν; if ν does not
contain c, then ν′ is obtained by adding c to ν. This is well defined for the following
reasons: since c is rightmost in its row of λ and bottommost in its column of μ, every
square of λ in the same column as c and below c must belong to the vertical strip
λ − ν (and no other squares in this column can belong to this vertical strip), so λ − ν′
is a vertical strip whether ν contains c or not; also, every square of μ in the same
row as c and to the right of c must belong to the horizontal strip μ − ν (and no other
squares in this row can belong to this horizontal strip), so μ − ν′ is a horizontal strip
whether ν contains c or not).

Clearly φ is an involution on Rλ,μ, so it is a bijection, and thus we have

Rλ,μ =
∑

ν∈Rλ,μ

(−1)|λ|−|ν| = −
∑

ν′∈Rλ,μ

(−1)|λ|−|ν′| = −Rλ,μ, (20)

where, for the second equality, we have changed summation variables to φ(ν) = ν′.
The result follows immediately. (In the context of (20), φ is often referred to as a
sign-reversing involution.) �

If Rλ,μ is nonempty and μ has no λ-ambiguous squares, we call μ a λ-survivor.
Note that in this case there is a unique ν in Rλ,μ; the terminology is chosen since μ

“survives” the involution in Lemma 3.2.

Proposition 3.3 In a λ-survivor μ:

(a) If the rightmost square of row i of λ is not contained in μ, then the rightmost
square of row i − 1 of λ is not contained in μ.

(b) If the bottommost square of column i of μ is not contained in λ, then the bottom-
most square of column i − 1 of μ is not contained in λ.

Proof For part (a), if the rightmost square of row i of λ is not contained in μ and
the rightmost square of row i − 1 of λ is contained in μ, then the latter must be
bottommost in its column of μ. But that makes it a λ-ambiguous square, impossible
in a λ-survivor. For (b), if the bottommost square of column i of μ is not contained
in λ and the bottommost square of column i − 1 of μ is contained in λ, then the latter
is by definition a λ-ambiguous square, impossible in a λ-survivor. �
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3.3 The main result

Now we are able to determine explicitly the action of B(t) on a single Schur function
sλ. The following is our main result.

Theorem 3.4 For any partition λ, we have

B(t)sλ =
∑

i≥1

(−1)|λ|−|λ(i)|+i−1t |λ(i)|−|λ|sλ(i) .

Proof From Proposition 3.1 and Lemma 3.2 we have

B(t)sλ =
∑

μ

Rλ,μt |μ|−|λ|sμ, (21)

where the summation is over all λ-survivors μ. Now we characterize the λ-survivors.
Suppose λ = (λ1, . . . , λn), where λ1 ≥ · · · ≥ λn ≥ 1, and let λ0 = ∞, λn+1 = 0. Then
in a λ-survivor μ, from Proposition 3.3(a), the rightmost cells in rows 1, . . . , j of λ

are not contained in μ, and the rightmost cells of rows j + 1, . . . , n are contained
in μ for some j = 0, . . . , n with λj > λj+1. But, in order to avoid the bottommost
cell of column λj+1 in μ being λ-ambiguous, the bottommost cell of column λj+1
in μ cannot be contained in λ. Thus we conclude from Proposition 3.3(b) that the
bottommost cells in columns 1, . . . , λj+1 of μ are not contained in λ. Also, the bot-
tommost squares in columns λj+1, . . . , i − 1 of μ are not contained in λ for some
λj+1 < i ≤ λj . Finally, for each i ≥ 1, there exists a choice of j = 0, . . . , n for which
λj+1 < i ≤ λj , so the λ-survivor μ described above exists for each i ≥ 1. This par-
tition μ is obtained from λ by deleting the column strip consisting of the rightmost
squares in rows 1, . . . , j and adding the horizontal strip consisting of the bottommost
cells in columns 1, . . . , i − 1. This gives

μ = (λ1 − 1, . . . , λj − 1, i − 1, λj+1, . . . , λn) = λ(i),

where the second equality is from (2), and where j = ui(λ). But we have Rλ,λ(i) =
(−1)j , and the result follows from (3) and (21). �

Note that the right-hand side of the above result is a Laurent series in t for each λ,
with minimum power of t given by t |λ(1)|−|λ| = t−l(λ).

The following pair of dual corollaries to our main result will be particularly con-
venient for dealing with the KP hierarchy.

Corollary 3.5 For scalars aλ, λ ∈ P , we have

B(t)
∑

λ∈P
aλsλ =

∑

β∈P
sβ

∑

k≥1

(−1)k−1t |β|−|β(−k)|aβ(−k) .

Proof From Theorem 3.4 and (3) we immediately obtain

B(t)
∑

λ∈P
aλsλ =

∑

λ∈P
aλ

∑

i≥1

(−1)ui (λ)t |λ(i)|−|λ|sλ(i) . (22)
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Now from the code description it is immediate that β = λ(i) is equivalent to λ =
β(−k), where k = ui(λ) + 1. The result follows immediately by changing summation
variables in (22) from λ ∈ P , i ≥ 1, to β ∈ P , k ≥ 1. �

Corollary 3.6 For scalars aλ, λ ∈ P , we have

B⊥(
t−1) ∑

λ∈P
aλsλ =

∑

α∈P
sα

∑

m≥1

(−1)|α|−|α(m)|+m−1t |α|−|α(m)|aα(m) .

Proof From Theorem 3.4, (18), and (9) we obtain

B⊥(
t−1) ∑

λ∈P
aλsλ =

∑

λ∈P
aλωB(−t)sλ′ =

∑

λ∈P
aλ

∑

i≥1

(−1)i−1t |(λ′)(i)|−|λ′|s((λ′)(i))′ .

But from the code description it is immediate that (λ′)(i) = (λ(−i))′, and since |μ′| =
|μ| for any partition μ, we can simplify the double summation above to obtain

B⊥(
t−1) ∑

λ∈P
aλsλ =

∑

λ∈P
aλ

∑

i≥1

(−1)i−1t |λ(−i)|−|λ|sλ(−i) . (23)

As in the proof of Corollary 3.5, we have that α = λ(−i) is equivalent to λ = α(m),
where i = um(α) + 1. The result now follows immediately by changing summation
variables in (22) from λ ∈ P , i ≥ 1, to α ∈ P , m ≥ 1, and applying (3) to evalu-
ate um(α) (which is the exponent of (−1) when the summation is expressed in terms
of α, m). �

Among the results in [10] and [16] for Bernstein’s operators is

Bλ1 · · ·Bλn1 = sλ, (24)

where λ = (λ1, . . . , λn). This result follows immediately from Theorem 3.4, together
with (4). To compose Bi when they are not ordered as in this result, one simply uses
the result that BiBj = −Bj−1Bi+1, which follows routinely from Theorem 3.4 and
considering what happens when two right-steps are switched to up-steps in the two
possible orders.

The Bernstein operators were also used in [3] to give an alternate proof of the
Littlewood–Richardson rule. A similar operator was used in [4] to give a formula
analogous to (24) for Schur Q-functions. See also [5, Chap. 7] for more on the Schur
Q-function variant.

4 Codes of partitions and the Plücker relations

We consider a set aP = {aλ : λ ∈ P } of scalars indexed by the set P of partitions.
Then the Plücker relations for aP are given by the following system of simultaneous
quadratic equations: for all m ≥ 1 and α = (α1, . . . , αm−1), β = (β1, . . . , βm+1) ∈ P
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with l(α) ≤ m − 1, l(β) ≤ m + 1 (which means that αi = 0 for i > l(α) and βi = 0
for i > l(β)), we have

m∑

k=0

(−1)k−m+1+�a(α1−1,...,α�−1,βk+1−k+�+1,α�+1,...,αm−1)

× a(β1+1,...,βk+1,βk+2,...,βm+1) = 0, (25)

where � = �(k) is chosen so that 0 ≤ � ≤ m − 1 and

α� − 1 ≥ βk+1 − k + � + 1 ≥ α�+1, (26)

with the convention that α0 = ∞, αm = −∞, and so that βk+1 −k+�+1 ≥ 0 (if there
is no such choice of �, then the term in the summation indexed by k is identically 0).
Note that, for each choice of k, then � (if it exists) is unique; to see this, let γi = αi − i,
i = 0, . . . ,m. Then ∞ = γ0 > γ1 > · · · > γm = −∞, and so for all real numbers x,
there is a unique 0 ≤ i ≤ m − 1 such that γi > x ≥ γi+1. Then, rewriting (26), �

is the unique choice of i such that (more restrictively, there may not be such an i)
γi − 2 ≥ x ≥ γi+1 with x = βk+1 − k.

The presentation of the Plücker relations given in (25) above is referred to as
“classical” by Fulton [1, p. 133]. In this presentation, each equation is a quadratic
alternating summation corresponding to an ordered pair of partitions. Each term in the
alternating summation arises from removing a single part from the second partition
and inserting it into the first partition, with some appropriate shift in the remaining
parts of both partitions. In our next result, we give a different presentation of the
Plücker relations, which is more symmetrical in its form, using the notation developed
in Sect. 2 for codes of partitions.

Theorem 4.1 The Plücker relations for aP are given by the following system of si-
multaneous quadratic equations: for all α,β ∈ P , we have

∑

i,j≥1
|α(i)|+|β(−j)|=|α|+|β|+1

(−1)|α|−|α(i)|+i+j aα(i) · aβ(−j) = 0.

Proof In the Plücker relations, (25) is satisfied for each (m,α,β) for m ≥ 1 and
α,β ∈ P with l(α) ≤ m − 1, l(β) ≤ m + 1. Now multiply (25) by (−1)m−1, to get
an equation we’ll call (25)′, and consider (25)′ for (m + 1, α,β), where we have
αm = βm+2 = 0. Then on the left-hand side, the term indexed by k = m + 1 in the
latter equation is identically 0, since there is no possible choice of � (to see this, we
must have βk+1 − k + � + 1 ≥ 0, so � ≥ m, and since 0 ≤ � ≤ m, we must uniquely
have � = m; but then we have α� − 1 = −1 < 0 = βk+1 − k + � + 1, contradicting
(26)). Thus (25)′ for (m,α,β) is identical to (25)′ for (m + 1, α,β), so there is the
following single equation for each α = (α1, α2, . . .), β = (β1, β2, . . .) ∈ P (which
means that αi = 0 for i > l(α) and βi = 0 for i > l(β)):

∑

k≥0

(−1)k+�a(α1−1,...,α�−1,βk+1−k+�+1,α�+1,...) · a(β1+1,...,βk+1,βk+2,...) = 0, (27)
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where � = �(k) is chosen so that

α� − 1 ≥ βk+1 − k + � + 1 ≥ α�+1,

with the convention that α0 = ∞, and so that βk+1 − k + � + 1 ≥ 0. But, by (2) and
(5), (27) becomes

∑

k≥0

(−1)k+�a
α(βk+1−k+�+2) · aβ(−k−1) = 0.

Finally, note that

∣∣α(βk+1−k+�+2)
∣∣ + ∣∣β(−k−1)

∣∣ = |α| + |β| + 1,

and the result follows from (3), (4), and (6). �

To fix ideas, we now give a few examples of Plücker relations. These examples
illustrate that there are redundant equations in the Plücker relations.

Example 4.2 For α = β = (1), we obtain α(1) = ε, α(2) = (1,1), α(3) = (2,1), and
β(−1) = ε, β(−2) = (2), β(−3) = (2,1), so the corresponding quadratic equation is

−aε · a(2,1) + a(2,1) · aε = 0.

But the left-hand side of this equation is identically 0, so the equation is redundant.
For α = ε, β = (1,1,1), we obtain α(1) = ε, α(2) = (1), α(3) = (2), α(4) = (3),

and β(−1) = (1,1), β(−2) = (2,1), β(−3) = (2,2), so the corresponding quadratic
equation is

aε · a(2,2) − a(1) · a(2,1) + a(2) · a(1,1) = 0. (28)

For α = (2), β = (1), we obtain α(1) = (1), α(2) = (1,1), α(3) = (2,2), and β(−1) =
ε, β(−2) = (2), β(−3) = (2,1), so the corresponding quadratic equation is

−a(1) · a(2,1) + a(1,1) · a(2) + a(2,2) · aε = 0,

which is the same equation as (28).

5 τ -functions for the KP hierarchy and the Plücker relations

We now make use of the preceding results to show that solutions to the KP hierarchy
admit a combinatorial description in terms of power series whose Schur function
coefficients satisfy the Plücker relations. This result is well known in the literature,
however, our presentation is new.

There are a number of equivalent descriptions of the KP hierarchy, as is well de-
scribed in [11]. The one that we shall start with in this paper involves the so-called
τ -function of the hierarchy and two independent sets of indeterminates p1,p2, . . .
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and p̂1, p̂2, . . . . A power series is said to be a τ -function for the KP hierarchy if and
only if it satisfies the bilinear equation

[
t−1] exp

(∑

k≥1

tk

k
(pk − p̂k)

)
exp

(
−

∑

k≥1

t−k

(
∂

∂pk

− ∂

∂p̂k

))
τ(p)τ (̂p) = 0, (29)

where p = (p1,p2, . . .), p̂ = (p̂1, p̂2, . . .), and the notation [A]B means the coeffi-
cient of A in B .

In considering (29), we regard p1,p2, . . . as the power sum symmetric functions
of an underlying set of variables x1, x2, . . ., as in Sect. 3. Also, we regard p̂1, p̂2, . . .

as the power sum symmetric functions of another set of variables, algebraically inde-
pendent of x1, x2, . . . (one could write this other set of variables as x̂1, x̂2, . . . , say, but
the precise names of these variables are irrelevant, since no further explicit mention
of either x1, x2, . . . or x̂1, x̂2, . . . will be made). We shall use the notation êi , ĥi , ŝλ,
B̂(t) to denote the symmetric functions in this other set of variables corresponding to
ei , hi , sλ, B(t) in x1, x2, . . . .

The following result follows immediately by taking this symmetric function view
of (29). This view has appeared in a number of earlier works (see, e.g., [6]), but the
results from symmetric functions that have been applied in these works have been
different than ours.

Proposition 5.1 A power series is a τ -function for the KP hierarchy if and only if it
satisfies

[
t−1](B(t)τ (p)

) · (B̂⊥(
t−1)τ (̂p)

) = 0. (30)

Proof The result follows immediately from (29), together with (1) and (13). �

Next we give a proof of the connection between Schur function coefficients of a
τ -function for the KP hierarchy, and the Plücker relations. Our proof is immediate
from Corollaries 3.5 and 3.6.

Theorem 5.2 (See, e.g., [11, p. 90, (10.3)]) Let aλ be the coefficient of the Schur
function of shape λ in a power series, for λ ∈ P . Then the power series is a
τ -function for the KP hierarchy if and only if aP = {aλ : λ ∈ P } satisfies the Plücker
relations.

Proof We are given τ(p) = ∑
λ∈P aλsλ and τ (̂p) = ∑

λ∈P aλ̂sλ. Then, from (30), it
is necessary and sufficient that aP satisfies S(p, p̂) = 0, where

S(p, p̂) = [
t−1]

(
B(t)

∑

λ∈P
aλsλ

)
·
(

B̂⊥(
t−1) ∑

μ∈P
aμŝμ

)
.

Now, from Corollaries 3.5 and 3.6 we immediately obtain

S(p, p̂) =
∑

β,α∈P
sβ ŝα

∑

m,k≥1
|α(m)|+|β(−k)|=|α|+|β|+1

(−1)|α|−|α(m)|+m+kaα(m) · aβ(−k) .
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But S(p, p̂) = 0 if and only if [sβ ŝα]S(p, p̂) = 0 for all β,α ∈ P , since the Schur
functions form a basis for symmetric functions, and the result follows immediately
from Theorem 4.1. �

Often the KP hierarchy is written as a system of simultaneous quadratic partial
differential equations for τ . In the next result, we apply Theorem 5.2 and the methods
of symmetric functions to obtain such a system of partial differential equations, with
one equation corresponding to each quadratic equation in the Plücker relations. The
result is well known, but we include a simple proof for completeness.

Theorem 5.3 (See, e.g., [11, p. 92, Lemma 10.2]) The power series τ(p) is a τ -
function for the KP hierarchy if and only if the following partial differential equation
is satisfied for each pair of partitions α and β:

∑

i,j≥1
|α(i)|+|β(−j)|=|α|+|β|+1

(−1)|α|−|α(i)|+i+j
(
sα(i)

(
p⊥)

τ(p)
) · (sβ(−j)

(
p⊥)

τ(p)
) = 0

(where, e.g., sλ(p⊥) is interpreted as the partial differential operator obtained by
substituting p⊥

n for pn in (8) for each n ≥ 1 and using (13).)

Proof Let q = (q1, q2, . . .), where the qi are independent of the pj and p̂k . We begin
the proof by proving that (I) τ satisfies (30) if and only if (II) τ satisfies

[
t−1](B(t)τ (p + q)

) · (B̂⊥(
t−1)τ (̂p + q)

) = 0 (31)

for all q.
It is easy to see that (II) implies (I) by setting q = 0 (where 0 = (0,0, . . .)).
To prove that (I) implies (II), define the operator Θ(p) = exp(

∑
k≥1 qk

∂
∂pk

). Using
the multivariate Taylor series expansion of an arbitrary formal power series f (p), we
see that

f (p + q) = Θ(p)f (p). (32)

Also define Γ (p) = exp(
∑

i≥1
t i

i
pi) and Υ (p) = exp(−∑

j≥1 t−j ∂
∂pj

), so B(t) =
Γ (p)Υ (p). Then from (32) and the trivial fact that Υ (p) commutes with Θ(p) we
have

B(t)τ (p + q) = Γ (p)Υ (p)Θ(p)τ (p) = Γ (p)Θ(p)Υ (p)τ (p).

But using (32) again, we have the operator identity

Θ(p)Γ (p) = Γ (p + q)Θ(p) = Γ (q)Γ (p)Θ(p),

and combining these expressions and the fact that Γ (q)−1 = Γ (−q) gives

B(t)τ (p + q) = Γ (−q)Θ(p)B(t)τ (p).

Similarly we have B̂⊥(t−1) = Γ (−p̂)Υ (−p̂) and then obtain

B̂⊥(
t−1)τ (̂p + q) = Γ (q)Θ(̂p)B̂⊥(

t−1)τ (̂p).
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Multiplying these two expressions together, we find that (31) becomes

Θ(p)Θ(̂p)
[
t−1](B(t)τ (p)

) · (B̂⊥(
t−1)τ (̂p)

) = 0,

since Γ (−q)Γ (q) = 1, and Θ(p), Θ(̂p) are independent of t . We conclude that (I)
implies (II).

Finally, in order to apply Theorem 5.2, we determine the coefficient of the Schur
function of shape λ. This gives

[
sλ(p)

]
τ(p + q) = 〈

sλ(p), τ (p + q)
〉 = 〈

1, sλ
(
p⊥)

τ(p + q)
〉

= sλ
(
p⊥)

τ(p + q)
∣∣
p=0 = sλ

(
q⊥)

τ(q),

and the result then follows from Theorem 5.2, replacing q by p. �

As an example of Theorem 5.3, we now give one of the quadratic partial differen-
tial equations for a τ -function.

Example 5.4 Consider the Plücker equation (28). Now we have

sε = 1, s(1) = p1, s(2) = 1

2

(
p2

1 + p2
)
, s(1,1) = 1

2

(
p2

1 − p2
)
,

s(2,1) = 1

3

(
p3

1 − p3
)
, s(2,2) = 1

12

(
p4

1 − 4p1p3 + 3p2
2

)
,

so from Theorem 5.3, the partial differential equation for τ that corresponds to (28)
is given by

1

12
τ(τ1111 −12τ13 +12τ22)− 1

3
τ1(τ111 −3τ3)+ 1

4
(τ11 +2τ2)(τ11 −2τ2) = 0, (33)

where we use τijk to denote ∂
∂pi

∂
∂pj

∂
∂pk

τ , etc.

Often, in the literature of integrable systems, the series F = log τ is used instead of
τ itself. This series F is often referred to as a solution to the KP hierarchy, where the
“KP hierarchy” in this context refers to a system of simultaneous partial differential
equations for F . Of course, the system of partial differential equations for τ given
in Theorem 5.3 becomes an equivalent system of partial differential equations for F

by substituting τ = expF into the equations of Theorem 5.3 and then multiplying
the equation by exp(−2F). For example, when we apply this to (33), we obtain the
equation

1

12
F1111 − F13 + F22 + 1

2F 2
11 = 0,

which is often referred to as “the KP equation.”
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