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Abstract Hurwitz numbers count genus g, degree d covers of P
1 with fixed branch

locus. This equals the degree of a natural branch map defined on the Hurwitz space.
In tropical geometry, algebraic curves are replaced by certain piece-wise linear ob-
jects called tropical curves. This paper develops a tropical counterpart of the branch
map and shows that its degree recovers classical Hurwitz numbers. Further, the com-
binatorial techniques developed are applied to recover results of Goulden et al. (in
Adv. Math. 198:43–92, 2005) and Shadrin et al. (in Adv. Math. 217(1):79–96, 2008)
on the piecewise polynomial structure of double Hurwitz numbers in genus 0.
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1 Introduction

Hurwitz numbers are important objects connecting the geometry of algebraic curves
to the combinatorics of the symmetric group. Geometrically, Hurwitz numbers count
genus g, degree d covers of P

1, with specified ramification profile over a fixed set of n

points in P
1. By matching a cover with a (equivalence class of) monodromy represen-

tation, such count is equivalent to choices of n-tuples of elements of Sd multiplying
to the identity element and acting transitively on the set {1, . . . , d}.

This connection dates back to Hurwitz himself, and has provided a rich interplay
between the two fields for a long time. In more recent times, Hurwitz numbers have
found a prominent role in the study of the moduli space of curves and in Gromov-
Witten theory. The moduli space of genus g, degree d covers of P

1 with only simple
ramification (Hurwitz space) admits a natural branch map recording the position of
the branch points on P

1. The degree of the branch map onto its image is tautologically
equal to a Hurwitz number. The Hurwitz space sits inside the moduli space of stable
maps Mg(P

1, d). However, the latter is a singular, non-equidimensional stack. In [3],
Fantechi and Pandharipande define a branch map

br : Mg

(
P

1, d
) → P

n = Symn
(
P

1)

and show that the virtual degree

br−1(pt) ∩ [
Mg

(
P

1, d
)]vir

still recovers the appropriate Hurwitz number.
The theory of relative stable maps [9, 10] extends this scenario to more general

Hurwitz numbers, with arbitrary ramification profiles over the branch points. Connec-
tions with the moduli spaces of curves, the most remarkable being the ELSV formula
[2], are produced by virtual localization on these moduli spaces [7].

In tropical geometry, algebraic curves are degenerated to certain piece-wise lin-
ear graphs called tropical curves. This process “loses a lot of information”, but many
properties of the algebraic curve can be read off the tropical curve, and many theo-
rems that hold for algebraic curves remarkably continue to hold on the tropical side.
One of the fields in which tropical geometry has had significant success recently is
enumerative geometry. Moduli spaces of curves and maps are important objects for
the study of enumerative geometry, and so their tropical counterparts have been at the
center of attention.

The aim of this paper is twofold: first, we develop tropical branch maps and show
that their degrees are equal to the Hurwitz numbers, just as in the “classical world”.
Second, we use one of lemmas to understand the combinatorial structure of double
Hurwitz numbers; in this paper we develop this application in genus 0.

As a first step, we understand degree d covers of P
1 tropically. It is natural to

think of them as elements in tropical Mg,0(P
1, d). An element in tropical Mg,0(P

1, d)

roughly consists of a graph of genus g and a map to tropical P
1 satisfying certain

conditions (see Sect. 5.1). We think of tropical P
1 as R ∪ {±∞} (see [11]). Next, we

seek for a tropical counterpart of a branch point. Thinking of a branch point as a point
where several sheets of the fibers of the map come together, it is natural to interpret
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a tropical branch point as a (more than 2-valent) vertex of the abstract tropical curve
mapping to P

1. So far, this notion seems to work effectively only in the generic case
of simple ramification, corresponding to trivalent vertices.

Luckily, we have the freedom to impose arbitrary ramification profiles over the two
special points ±∞. In these case the ramification data is encoded in the collection of
weights of the edges “going to ∞”.

To sum up, we think of a tropical cover of P
1 as an element in Mg,0,trop(P

1, d);
the branch map assigns the positions of the vertices. To adapt the notion of tropical
moduli spaces of maps to our situation, we introduce a labeling on the vertices. The
moduli space we define is a weighted polyhedral complex. Although we would prefer
to give it the structure of a tropical variety, the structure of polyhedral complex is
enough to work with the branch map. We adopt this shortcut because for higher genus
it is not yet known how the tropical moduli spaces can be understood as tropical
varieties. The degree of the tropical branch map is well defined.

Our main theorem (Theorem 5.28 in Sect. 5.3) shows that the degree of the tropical
branch map is equal to the classical double Hurwitz numbers.

The strategy of proof is natural. We interpret each graph on the tropical side as a
family of monodromy representations contributing to the classical Hurwitz number.
The number of elements in this family is determined via a cut and join analysis, and
coincides with the tropical multiplicity of the graph: how many times a tropical curve
with that graph occurs in the preimage of the branch map times the multiplicity of the
branch map.

Lemma 4.2, which shows how cut and join recursion is conveniently organized
as a sum over weighted graphs, leads to new and elementary proofs of existing re-
sults about the combinatorial structure of double Hurwitz numbers. It was shown
in [6] that double Hurwitz numbers are piecewise polynomial in the entries of the
two partitions, and in [13] this structure was investigated in genus 0. In particular,
it was shown that the chambers of polynomiality are delimited by hyperplanes pa-
rameterizing Hurwitz data allowing the existence of disconnected cover curves, and
that the way the Hurwitz polynomials vary across a wall can be expressed recursively
in terms of the Hurwitz data for the connected components of these disconnected
covers. Using Lemma 4.2, we give an elementary proof of the fact that Hurwitz num-
bers are piecewise polynomial in genus 0, and in Theorem 6.10 we give a proof of
the wall-crossing formula. Although these proofs do not logically depend on tropical
geometry, Lemma 4.2 was only discovered with tropical geometry as a motivation.

The same approach to polynomiality and wall crossing can be extended to higher
genus, where wall-crossing formulas were previously unknown. However, the com-
binatorics required are considerably more sophisticated. These results are presented
in [1].

The paper is organized as follows. We first recall the definition of Hurwitz num-
bers (Sect. 2) and discuss the cut and join equations (Sect. 3). In Sect. 4, we de-
duce a weighted graph count which computes the Hurwitz number. Section 5 estab-
lishes tropical Hurwitz theory. In Sect. 5.1 we define the tropical moduli space and in
Sect. 5.2 the tropical branch map. Our main theorem that the degree of the tropical
branch map equals the Hurwitz number is formulated and proved in Sect. 5.3. Sec-
tion 6 explores combinatorial properties of double Hurwitz numbers in genus 0. In
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Sect. 6.1 we show piecewise polynomiality and identify the polynomiality chambers.
In Sect. 6.2 we prove the wall-crossing formula.

2 Hurwitz numbers

In this section we recall the definition and some basic facts about Hurwitz numbers.

Definition 2.1 Fix r +s points p1, . . . , pr , q1, . . . , qs on P
1, and η1, . . . , ηr partitions

of the integer d . The Hurwitz number:

H
g
d (η1, . . . , ηr)

:= weighted number of

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

degree d covers C
π−→ P

1 such that:

• C is a smooth connected curve of genus g;
• π is unramified over P

1 \ {p1, . . . , pr , q1, . . . , qs};
• π ramifies with profile ηi over pi;
• π has simple ramification over qi.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Each cover π is weighted by 1/|Aut(π)|.

Note that this is independent of the locations of the pi and qi . For a partition η,
let �(η) denote the number of parts of η. By the Riemann–Hurwitz formula, we have
that

2 − 2g = 2d − dr − s +
r∑

i=1

�(ηi),

and hence s is determined by g,d and η1, . . . , ηr .
It is often common language to use Hurwitz number for the generic case H

g
d when

all ramification is simple; simple (resp. double) Hurwitz number when one (resp. two)
point of arbitrary ramification are prescribed.

A ramified cover is essentially equivalent information to a monodromy represen-
tation it induces; thus, an equivalent definition of Hurwitz number counts the number
of homomorphisms ϕ from the fundamental group Π1 of P

1 \{p1, . . . , pr , q1, . . . , qs}
to the symmetric group Sd such that:

• the image of a loop around pi has cycle type ηi ;
• the image of a loop around qi is a transposition;
• the subgroup ϕ(Π1) acts transitively on the set {1, . . . , d}.
This number is divided by |Sd |, to account both for automorphisms and for different
monodromy representations corresponding to the same cover.

3 Cut and join

The Cut and Join equations are a collection of recursions among Hurwitz numbers.
In the most elegant and powerful formulation they are expressed as one differential
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Fig. 1 Composing with a transposition in Sd . How it affects the cycle type of σ and multiplicity

operator acting on an appropriate potential function. Since our use of cut and join is
unsophisticated, we limit ourselves to a basic discussion, and refer the reader to [5]
for a more in-depth presentation.

Let σ ∈ Sd be a fixed element of cycle type η = (n1, . . . , nl), written as a compo-
sition of disjoint cycles as σ = cl · · · c1. Let τ = (ij) ∈ Sd vary among all transposi-
tions. The cycle types of the composite elements τσ are described below.

cut: if i, j belong to the same cycle (say cl), then this cycle gets “cut in two”: τσ

has cycle type η′ = (n1, . . . , nl−1,m
′,m′′), with m′ + m′′ = nl . If m′ �= m′′,

there are nl transpositions giving rise to an element of cycle type η′. If m′ =
m′′ = nl/2, then there are nl/2.

join: if i, j belong to different cycles (say cl−1 and cl ), then these cycles are
“joined”: τσ has cycle type η′ = (n1, . . . , nl−1 + nl). There are nl−1nl trans-
positions giving rise to cycle type η′.

Example 3.1 Let d = 4. There are 6 transpositions in S4. If σ = (12)(34) is of cycle
type (2,2), then there are 2 transpositions ((12) and (34)) that “cut” σ to give rise
to a transposition and 2 · 2 transpositions ((13), (14), (23), (24)) that “join” σ into a
four-cycle.

For readers allergic to notation, Fig. 1 illustrates the above discussion.

4 Double Hurwitz numbers and Weighted graph sums

The analysis in Sect. 3 leads us to compute double Hurwitz numbers in terms of a
weighted sum over graphs. The idea is to start at one of the special points, and count
all possible monodromy representations as each transposition gets added until one
gets to the second special point with the specified cycle type. We now make this
precise.

Fix g and let η = (n1, . . . , nk) and ν = (m1, . . . ,ml) be two partitions of d . Denote
by s = 2g − 2 + l + k the number of non-special branch points, determined by the
Riemann–Hurwitz formula.

Definition 4.1 Monodromy graphs project to the segment [0, s + 1] and are con-
structed according to the following procedure:

(a) Start with k small segments over 0 labeled n1, . . . , nk . We call these n’s the
weights of the strands.
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(b) Over the point 1 create a three-valent vertex by either joining two strands or
splitting one with weight strictly greater than 1. In case of a join, label the new
strand with the sum of the weights of the edges joined. In case of a cut, label the
two new strands in all possible (positive) ways adding to the weight of the split
edge.

(c) Consider only one representative for any isomorphism class of labeled graphs.
(d) Repeat (b) and (c) for all successive integers up to s.
(e) Retain all connected graphs that “terminate” with l points of weight m1, . . . ,ml

over s + 1.

Note The graphs constructed above should be considered as abstract graphs with
weighted edges and a map to the segment [0, s + 1]. In other words, the relative
positions of the strands is irrelevant, and there are no crossings between the strands.

Lemma 4.2 The double Hurwitz number H
g
d (η, ν) is computed as a weighted sum

over monodromy graphs. Each monodromy graph is weighted by the product of the
following factors:

(i) The number ε(η) of elements of Sd of cycle type η.
(ii) |Aut(η)|.

(iii) For every vertex, the product of the degrees of edges coming into the vertex from
the left.

(iv) A factor of 1/2 for any balanced fork or wiener.
(v) 1/d!.

A balanced fork is a tripod with weights n,n,2n such that the vertices of weight
n lie over 0 or s + 1. A wiener consists of a strand of weight 2n splitting into two
strands of weight n and then re-joining. See Fig. 2.

Proof Recall how a ramified cover gives rise to a monodromy representation. Pick
a point x outside the branch locus in P

1, and label the preimages 1, . . . , d . Choose
a set of loops based at x winding around each branch point, letting the first and the
last loop wind around the two special points. The liftings of the loops give rise to
permutations of the preimages of x. The two special points give permutations ση, σν

of cycle type η and ν; all other points give transpositions τi . The product

σντs · · · τ1ση

is the identity.

Fig. 2 Balanced right pointing forks, balanced left pointing forks and wiener
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The first permutation ση can be chosen in ε(η) ways (i). We represent this cycle
type as described in (a). The strands should be associated to the cycles of ση, but
we are only labeling the strands by their weights: there are |Aut(η)| distinct ways
of assigning a cycle of η to each strand (ii). If two strands with the same multi-
plicity get joined to form a left pointing fork, then the two “teeth” of the fork are
indistinguishable—this gives us a 1/2 factor for every balanced left pointing fork (iv).

The analysis of Sect. 3 tells us how the cycle type changes every time a transposi-
tion is composed. The cut and join action is represented as described in (b), (c), (d);
lastly, (e) ensures the connectedness of the cover and the right cycle type over the
last point. The weights (iii) are precisely the multiplicities given by the cut and join
analysis, with one exception. We count the cutting of 2n into n,n twice as much as the
cut and join equation prescribes. If the two n-strands have distinguishable evolution
after the splitting, then it matters which cycle has which evolution: each (n,n) cycle
counts for 2. The two n strands do not have a distinguishable evolution only in the
case of balanced right pointing forks and wieners: in this case we want the original
cut and join count. This gives a factor of (1/2)#b.r.forks+#wieners correcting our con-
vention (iv). Finally we divide by d! to account for the action of Sd by conjugation,
corresponding to a relabeling of the d preimages of x (v). �

Remark 4.3 The genus of all graphs in the graph sum is g. This is immediately
seen by combining the computation of the Euler characteristic of the graphs with
the Riemann–Hurwitz formula.

We organize our graph sum so as to make it transparent that it counts monodromy
representations. In our presentation the symmetry between the two special partitions
is not obvious. However it suffices to notice that

ε(η)
∣∣Aut(η)

∣∣ ·
k∏

1

ni = d! (1)

to recover the desired symmetry. With this substitution, we obtain the following.

Corollary 4.4 The formula for double Hurwitz numbers from Lemma 4.2 simplifies
to:

H
g
d (η, ν) =

∑

Γ

1

|Aut(Γ )|
∏

w(e), (2)

where we take the product of all the interior edge weights; the factors of 1/2 coming
from the balanced forks and wieners amount to the size of the automorphism group
of our decorated graphs.

Example 4.5 We illustrate our procedure by computing:

H 1
4

(
(4), (2,2)

) = 14.

Table 1 shows the type of contributing graphs and the various contributions discussed
in this section, both in the form of Lemma 4.2 and of Corollary 4.4.
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Table 1

Graph type (i) (ii) (iii) (iv) (v)
∏

w(e) |Aut(Γ )| Total

6 1 48 1
2

1
24 12 2 6

6 1 12 1 1
24 3 1 3

6 1 8 1
2

1
24 2 2 1

6 1 64 1
4

1
24 16 4 4

5 Tropical Hurwitz theory

5.1 Tropical maps to P
1

In this section, we define the tropical moduli spaces needed for tropical Hurwitz
numbers.

Let Γ be a connected graph without 2-valent vertices. We call ends of Γ edges
adjacent to a 1-valent vertex. Edges which are not ends are called bounded edges. We
denote the set of vertices by Γ 0, the subset of 1-valent vertices by Γ 0∞ and the subset
of more than 1-valent vertices (called inner vertices) Γ 0

0 . Likewise, the set of edges
is Γ 1, the subset of ends Γ 1∞ and the bounded edges Γ 1

0 . We call a pair F = (V , e)

where e is an edge of Γ and V ∈ ∂e a flag of Γ and think of it as a “directed edge”,
an edge pointing away from its end vertex V .



J Algebr Comb (2010) 32: 241–265 249

Fig. 3 An abstract tropical
curve

An abstract tropical curve is a connected graph Γ without 2-valent vertices,
whose edges e are equipped with a length l(e) ∈ R>0 ∪ {∞}. Ends e ∈ Γ 1∞ have
length l(e) = ∞ and bounded edges e ∈ Γ 1

0 have a length l(e) ∈ R>0. We can think
of the edges of an abstract tropical curves as intervals (0, l(e)).

The genus of an abstract tropical curve is the genus of Γ , equal to h1(Γ ) since Γ

is connected.
The valency of a vertex is denoted by val(V ). An abstract tropical curve with g-

labels is an abstract tropical curve Γ of genus g′ ≤ g where each inner vertex V is
labeled with val(V ) − 2 + 2kV numbers for some kV ≥ 0, and points p ∈ (0, l(e))

on each edge e are labeled with 2kp numbers for some kp ≥ 0, such that the disjoint
union of all labels equals {1, . . . , s − 2 + 2g} where s is the number of ends.

For i ∈ {1, . . . , s − 2 + 2g} we denote by Vi the vertex or point which has the
label i.

Two abstract tropical curves with g-labels Γ and Γ̃ are called isomorphic (and
will from now on be identified) if there is a homeomorphism Γ → Γ̃ mapping the
label i in Γ to i in Γ̃ for all i and such that every edge of Γ is mapped bijectively
onto an edge of Γ̃ by an affine map of slope ±1, i.e. by a map of the form t �→ a ± t

(where a = 0 or a = l(e), and we again identify an edge of length l(e) with the
interval (0, l(e))).

The combinatorial type of an abstract tropical curve with g-labels is the data ob-
tained when dropping the information about the lengths of the edges.

Example 5.1 Figure 3 shows an abstract tropical curve of genus 1 with 1-labels. All
ends have length ∞, the bounded edges have the length written next to them. The
labels are at the inner vertices, marked with a black dot in the picture.

A graph of genus g has #Γ 1
0 = #Γ 1∞ − 3 + 3g − ∑

V ∈Γ 0
0
(val(V ) − 3) bounded

edges. We call a graph for which every vertex has valence 1 or 3 a 3-valent graph.
In particular, a 3-valent graph has #Γ 1

0 = #Γ 1∞ − 3 + 3g bounded edges. A 3-valent
graph of genus g has #Γ 0

0 = #Γ 1∞ − 2 + 2g inner vertices. We need these relations
for dimension counts later on.

Remark 5.2 Consider an abstract tropical curve Γ with g-labels. If Γ is 3-valent and
of genus g, then it has s−2+2g inner vertices, thus each inner vertex must be labeled
with exactly one number. If Γ has higher valent vertices or is of lower genus, then it
is possible that Vi = Vj for i �= j in this notation. We can think of such a curve as the
result of shrinking several edges and g − g′ cycles in a 3-valent curve of genus g.

In the following, we define the tropical analogue of stable maps to P
1. Note that

tropical P
1 can be thought of as R ∪ {±∞} (see e.g. [11]).
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Definition 5.3 Let g ∈ N and Δ be a multiset with entries in Z \ {0} satisfying∑
z∈Δ z = 0.
A (parametrized) tropical curve of degree Δ and genus g in P

1 is a tuple (Γ,h)

where Γ is an abstract tropical curve with g-labels and #Δ ends and h : Γ → R ∪
{±∞} is a continuous map satisfying:

(a) The image of the graph without the 1-valent vertices has to be inside R,
h(Γ \ Γ 0∞) ⊂ R.

(b) h maps each edge e of length l(e) affinely to a line segment of R ∪ {±∞} of
length ω(e) · l(e), where ω(e) is a natural number that we call the weight of e.

For a flag F = (V , e) we say that F is of direction v(F ) := ω(e) if h(V ) < h(p) for a
point V �= p ∈ e and F is of direction v(F ) := −ω(e) otherwise. For ends e we also
say that the direction of e is v(e) := v(V, e), where V is the inner end vertex of e.

(c) The multiset of directions of all ends equals Δ.
(d) For every vertex V ∈ Γ 0

0 we have the balancing condition

∑

e|V ∈∂e

v(V, e) = 0.

Two parametrized tropical curves (Γ,h) and (Γ̃ , h̃) in R
r are called isomorphic (and

will from now on be identified) if there is an isomorphism ϕ : Γ → Γ̃ of the under-
lying abstract curves such that h̃ ◦ ϕ = h.

For the special choice Δ = {−1, . . . ,−1,1 . . . ,1} (each d times) we also say that
these curves have degree d .

Remark 5.4 Note that 5.3 implies that a 1-valent vertex V which is adjacent to an
end e satisfying ω(e) �= 0 has to be mapped to ±∞.

The combinatorial type of a tropical curve of degree Δ and genus g in P
1 is given

by the data of the combinatorial type of the underlying abstract tropical curve Γ

together with the directions of all its flags (flags of bounded edges as well as ends).
The space of all tropical curves of degree Δ and genus g in P

1 is denoted
Mg,trop(P

1,Δ).

Remark 5.5 For a tropical curve C = (Γ,h) and a point p ∈ R such that h−1(p)

does not contain a vertex of Γ , the number of preimages (counted with the weight
of the edge they are on) is constant because of the balancing condition (and equal to
d in case the degree is d). One can think of elements in Mg,trop(P

1,Δ) as limits of
degree d maps where we have “sent” some of the vertices to ±∞. I.e., we interpret
the weight partitions over ±∞ (that are given by the positive/negative entries in Δ)
as special ramification profiles over the two points.

If we fix a combinatorial type α then we denote by Mα
g,trop(P

1,Δ) the subset of

curves in Mg,trop(P
1,Δ) with type α. We call it a cell of Mg,trop(P

1,Δ).
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Fig. 4 Two rational tropical curves in P
1

Example 5.6 Figure 4 shows two rational tropical curves of degree 2 in P
1 of the

same combinatorial type. If we denote the only bounded edge of the graph by e, then
in both cases the direction of the flag (V1, e) is 2 and the direction of (V2, e) is −2.
The multiset of directions of the four ends is {1,1,−1,−1}.

Lemma 5.7 For a combinatorial type α of curves in Mg,trop(P
1,Δ), the space

Mα
g,trop(P

1,Δ) is an unbounded open convex polyhedron in a real vector space of

dimension 1 + #Γ 1
0 . It has one coordinate for the position of a root vertex and coor-

dinates for the lengths of all bounded edges. Mα
g,trop(P

1,Δ) is cut out by the inequal-
ities that all lengths have to be positive and by the equations for the loops.

The expected dimension of Mα
g,trop(P

1,Δ) is 1 + #Γ 1
0 − gα = #Δ − 2 + 2gα −∑

V ∈Γ 0
0
(val(V ) − 3), where gα ≤ g denotes the genus of Γ .

The proof is a straightforward adaption of the proof of Lemma 3.1 of [8]. We say that
a combinatorial type α is regular if Mα

g,trop(P
1,Δ) is of expected dimension.

Only types with a bounded flag of direction 0 can be non-regular. If we have a
genus g graph with no bounded flags of direction 0, we can pick g edges such that Γ

without the g edges is a tree. Then we can put back in one edge after the other. Each
time, we close a loop and get a condition on the lengths of the edges in this loop, in
particular, a condition on the edge we just put in. Since we put in the edges one after
the other, we get a matrix with a triangular shape for the g edges, thus independent
conditions.

We want to make Mg,trop(P
1,Δ) a weighted polyhedral complex of dimension

#Δ−2+2g (which is the maximal expected dimension) in the sense of Definition 3.4
of [8].

In order to define weights for the maximal cells, we need the following notions:
Let f : Z

n → Z
m be a linear map. We call the index of f , If , the index of the

sublattice f (Zn) inside Z
m.

Definition 5.8 Let α be a regular type of top dimension #Δ−2+2g in Mg,trop(P
1,Δ).

Pick g independent cycles of the underlying 3-valent graph Γ , i.e. generators of
H1(Γ,Z). Each such generator is given as a chain of flags around the loop. Define a
g times 1 + #Γ 1

0 = #Δ − 2 + 3g matrix Aα with a column for the position of h(V1)

and a column for each length coordinate, and with a row for each cycle containing
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Fig. 5 A combinatorial type

the equation of the loop (depending on the lengths of the bounded edges in the loop):

∑

(V ,e)

v(V , e) · l(e),

where the sum now goes over the chosen chain of flags around the loop. Denote by
Iα the index of the map Aα : Z

#Δ−2+3g → Z
g . Note that Iα does not depend on the

chosen generators of H1(Γ,Z): if we choose another set of generators, these new
generators are given as linear combinations with coefficients in Z of the old gener-
ators, so the rowspace of the matrix is not changed. Note also that Mα

g,trop(P
1,Δ)

equals the intersection of R × (R>0)
#Γ 1

0 with the kernel of this map.

Example 5.9 For a curve of type α as in Fig. 5, we have 5 bounded edges and one
loop. Aα is a 1 × 6 matrix. The loop is formed by two edges, say e1 and e2. Going
around the loop, we set up the equation 2 · l(e1) + (−2) · l(e2), so the matrix reads
(0,2,−2,0,0,0). The entries in the column of the root vertex are always 0.

We have to throw away cells of Mg,trop(P
1,Δ) of too big dimension. When we

introduce the branch map later and define its degree, cells of too big dimension would
not contribute to the count anyway. However, we would like the dimension of the
space as expected.

Definition 5.10 Let Mg,trop(P
1,Δ) be the subset of Mg,trop(P

1,Δ) containing all
combinatorial types α such that if Mα

g,trop(P
1,Δ) is of dimension #Δ − 2 + 2g or

bigger then α is regular and if Mα
g,trop(P

1,Δ) is of dimension less than #Δ − 2 + 2g

then it is contained in a cell Mα′
g,trop(P

1,Δ) of highest dimension. In particular, the

highest dimension of a cell in Mg,trop(P
1,Δ) is #Δ − 2 + 2g.

Let α be a type corresponding to a cell of highest dimension. Recall that the data of
α consists of the graph Γ (without lengths) and the information about all directions.
We define its weight w(α) as the product of three types of factors:

• 1
2 for every vertex V such that Γ \ V has two connected components of the same
combinatorial type.

• The index Iα .
• 1

2 for every cycle which consists of two edges which have the same weight, i.e. for
every wiener as in Lemma 4.2.

Remark 5.11 These choices of weights are not new to tropical geometry (see e.g. [8],
Remark 3.6 or [4]). We can interpret the factors of 1

2 as taking care of extra automor-
phisms.
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Example 5.12 Figure 5 shows a type of curves of genus 1 and degree {−1,−1,−2,

1,3}. The corresponding cell gets the weight 1
2 · 1

2 · 2. The first factor of 1
2 ap-

pears because two of the connected components of Γ \ {V1} are identical. The sec-
ond factor appears because of the wiener. The third factor is the index of the map
(0,2,−2,0,0,0) which is the equation for the loop. The numbers written next to the
edges are the weights of the edges (there are no lengths, because the picture only
shows a combinatorial type).

Finally we have to glue the cells Mα
g,trop(P

1,Δ) to make Mg,trop(P
1,Δ) a

weighted polyhedral complex. This can be done analogously to Proposition 3.2 of [8].

Lemma 5.13 The tropical moduli space Mg,trop(P
1,Δ) as defined in Definition 5.10

is a weighted polyhedral complex of pure dimension #Δ − 2 + 2g.

5.2 The tropical branch map

Definition 5.14 We define the tropical branch map br as

br : Mg,trop
(
P

1,Δ
) → R

#Δ−2+2g : (Γ,h) �→ (
h(V1), . . . , h(V#Δ−2+2g)

)
,

where Vi is the vertex or point with label i.

Example 5.15 For the left picture of Example 5.6, we have br(Γ,h) = (h(V1), h(V2))

= (0,2).

Then br is a morphism of weighted polyhedral complexes of the same dimension in
the sense of Definition 4.1 of [8]. To see this, we have to see that it is a linear map on
each cell Mα

g,trop(P
1,Δ). This is true because the position h(Vi) differs from h(V1)

by a sum v(V1, e1)l(e1) + · · · + v(Vr , er )l(er ) where (V1, e1), . . . , (Vr , er ) denotes a
chain of flags that we have to pass to go from V1 to Vi in Γ . Note that the map does
not depend on the chain of flags we choose: going another way around a cycle does
not change anything since the length coordinates satisfy the conditions given by the
cycles.

Definition 5.16 For a type α of maximal dimension in Mg,trop(P
1,Δ) we choose

the following data:

• for each vertex Vi ∈ Γ 0
0 a chain of flags leading from V1 to Vi and

• a set of generators of H1(Γ,Z), where each such generator is given as a chain of
flags around the loop.

Depending on these choices, we define a linear map fα by defining a square matrix
of size #Δ − 2 + 3g with

• for each vertex Vi ∈ Γ 0
0 a row with the linear equation describing the position of

h(Vi) (depending on the position of h(V1) and the lengths of the bounded edges in
the chosen chain of flags from V1 to Vi ):

h(V1) +
∑

(V ,e)

v(V , e) · l(e),



254 J Algebr Comb (2010) 32: 241–265

Fig. 6 The curve of
Example 5.18

where the summation goes over all flags (V , e) in the chosen chain from V1 to Vi ;
and

• g rows as in the matrix Aα defined in Definition 5.8.

Remark 5.17 The map fα of Definition 5.16 depends on the choices we made, while
the absolute value of the determinant of fα does not. First, a coordinate change for
Mα

g,0,trop(P
1,Δ) has determinant ±1 and therefore leaves the absolute value of detfα

unchanged. The same holds for a coordinate change of the target space R
#Δ−2+3g ,

that is, a different order of the vertices and loops.
If there are two chains of flags from V1 to Vi , then their difference is a loop. As-

sume first that this loop is one of our chosen generators of H1(Γ,Z). Then choosing
one or the other chain of flags from above just corresponds to adding (respectively
subtracting) the equation of the loop from the row of Vi . We have seen already in
Definition 5.8 that other generators H1(Γ,Z) are given as linear combinations with
coefficients in Z of the old generators.

By abuse of notation, we still speak of the map fα , even though its definition
depends on the choices we made, and keep in mind that |det(fα)| is uniquely deter-
mined, no matter what choices we made.

Example 5.18 For the curve in Fig. 6, we have 3 vertices, V1, V2 and V3.
As usual, V1 is the root vertex. We choose to go to V2 via e1 and to V3 via e1

and e2. So h(V2) = h(V1) + 2 · l(e1) and h(V3) = h(V1) + 2 · l(e1) + 1 · l(e2). There
is one loop which consists of the three edges e1, e2 and e3. So the equation for the
loop is 2 · l(e1) + 1 · l(e2) − 1 · l(e3). That amounts to the following matrix for fα :

⎛

⎜⎜⎜
⎝

1 0 0 0

1 2 0 0

1 2 1 0

0 2 1 −1

⎞

⎟⎟⎟
⎠

.

The absolute value of its determinant is 2.

Remark 5.19 A straightforward lattice index computation shows that for a combina-
torial type α of maximal dimension in Mg,trop(P

1,Δ), the index Iα times the absolute
value of the determinant of the linear map br restricted to the cell Mα

g,trop(P
1,Δ)

is equal to |det(fα)|. A similar lattice index computation can e.g. be found in Re-
mark 4.8 in [8], or see [12], Lemma 1.6. The index of a square integer matrix is just
the absolute value of its determinant, and the index of a product of two maps f × g

is equal to the index of f |kerg times the index of g.
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Fig. 7 An equivalence class of
combinatorial types

Definition 5.20 Two combinatorial types α and α′ are called equivalent if they differ
only by the labeling of the vertices.

Example 5.21 We can visualize an equivalence class of combinatorial types by a
graph without labeling for the vertices, but together with the information about the
weights of the edges. In this sense, Fig. 7 shows an equivalence class of combinatorial
types of rational curves of degree {−3,−1,1,1,1,1}.

Remark 5.22 The set of points p ∈ R
#Δ−2+2g satisfying pi �= pj is an open dense

subset of R
#Δ−2+2g . It is contained in the set of points in br-general position, because

for any preimage under br, no vertex has more than one number as label and so each
vertex has to be 3-valent. Then the expected dimension of the combinatorial type has
the highest dimension. Thus the type is regular and of expected dimension, since we
removed types of too high dimension.

Definition 5.23 Let [α] be an equivalence class of types of highest dimension in
Mg,trop(P

1,Δ). We define a partial ordering on the vertices in Γ 0
0 in the following

way: V < V ′ if and only if V ′ can be reached from V by a chain of flags with positive
direction. We denote by n([α]) the number of ways to extend this ordering to a well-
ordering.

Lemma 5.24 Fix a class [α] of combinatorial types of highest dimension in
Mg,trop(P

1,Δ). Fix p ∈ R
#Δ−2+2g satisfying pi �= pj . Then there are n([α]) com-

binatorial types α′ in the class of α such that there is a preimage of p under br in
M ′α′

g,0,trop(P
1,Δ).

Proof Without loss of generality, we can assume p1 < · · · < p#Δ−2+2g . If V < V ′
in the partial ordering on the vertices of Γ then the images h(V ) and h(V ′) have to
satisfy h(V ) < h(V ′). If we choose one of the n([α]) well-orderings extending <,
then there is only one labeling of the vertices which can satisfy h(Vi) = pi . Let α′ be
the combinatorial type of class [α] with this labeling. We have to show that there is a
tropical curve of this type in the preimage of p under br. Γ has #Δ−3+3g bounded
edges. Each edge has two end vertices. Therefore the length of the edge is given by
the distance of the images h(Vi) = pi of the two end vertices. We only need to show
that those lengths satisfy the conditions given by the loops. But this is obviously true,
since the images of the vertices contained in a loop close up a loop in R. �

Example 5.25 For the equivalence class of types in Example 5.21, there are 3 differ-
ent choices for a well-ordering on the vertices extending the ordering of Lemma 5.24
as shown in Fig. 8.
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Fig. 8 Ordering the vertices

Lemma 5.26 Fix an equivalence class [α] of types in Mg,trop(P
1,Δ) of the highest

dimension and p ∈ R
#Δ−2+2g satisfying pi �= pj . Then the contribution k[α] of curves

of types in this class to degbr(p) is given by

k[α] = n
([α]) ·

(
1

2

)r+s

·
∏

e

ω(e), (3)

where r denotes the number of vertices V such that Γ \ V has two identical parts,
s denotes the number of wieners (as in Lemma 4.2) and the product goes over all
bounded edges e in Γ 1

0 .

Proof Let α and α′ be types in the class [α]. Obviously multbr(C) = multbr(C
′) for

two curves C ∈ Mα
g,trop(P

1,Δ) and C′ ∈ M ′α′
g,0,trop(P

1,Δ). Therefore the contribution

of types of class [α] is equal to k[α] = n([α]) ·multbr(C) (where C ∈ Mα
g,trop(P

1,Δ)).
The latter multiplicity is by definition equal to the weight of α, w(α), times the ab-
solute value of the determinant of the linear map br restricted to Mα

g,trop(P
1,Δ). By

definition, w(α) = Iα · ( 1
2 )r+s and by Remark 5.19, the absolute value of the deter-

minant of br times Iα equals |det(fα)|. Thus k[α] = n([α]) · ( 1
2 )r+s · |det(fα)| and it

remains to show that |det(fα)| = ∏
e ω(e).

To see this, we want to show that we can choose an order of the coordinates such
that the matrix of fα is lower triangular and the weights of all bounded edges appear
on the diagonal. Start by removing g bounded edges from Γ breaking the cycles.
The new graph that we call Γ ′ is rational and has the same set of vertices. It has 1-,
2- and 3-valent vertices in Γ 0

0 . We want to show that there is an order of the edges



J Algebr Comb (2010) 32: 241–265 257

and of the vertices in Γ 0
0 such that we need only edges of order less than i to go from

vertex 1 to vertex i, and such that edge i − 1 is adjacent to vertex i and needed in
the path from V1 to Vi . We show this by induction. The induction beginning—where
Γ ′ has only one vertex in Γ 0

0 —is obvious. Now we can assume Γ ′ has at least two
vertices in Γ 0

0 . The subgraph of Γ ′ of bounded edges is a tree, so it has to have at
least two leaves. This means that there are at least two vertices which are adjacent
to only one bounded edge. Call one of those vertices Vk and its adjacent bounded
edge ek−1. Remove Vk and all adjacent ends and make ek−1 an end. We call this new
graph Γ ′′. By induction we can assume that we can order the remaining edges and
vertices in Γ 0

0 in the way we require. Now we add Vk and ek−1 back in. To go from
V1 to Vk , we need edges in Γ ′′ and ek−1. Now add the g edges back in, one after the
other. At each step, we close a loop. We write down the equation for this loop as the
next row of our matrix. Thus we end up with a lower triangular matrix such that the
absolute value of its determinant is equal to the product of all weights of bounded
edges. �

Lemma 5.27 The degree of br is constant, i.e. deg(br) := degbr(p) does not depend
on the choice of p, as long as we pick p such that pi �= pj .

Proof By the above, degbr(p) = ∑
k[α] where the sum goes over all equivalence

classes of combinatorial types of highest dimension in Mg,trop(P
1,Δ). �

5.3 The main theorem

We combine the results from Sects. 4 and 5.2 to prove our main theorem:

Theorem 5.28 The degree deg(br) of the tropical branch map br : Mg,trop(P
1,Δ) →

R
#Δ−2+2g as defined in Definition 5.14 is equal to the Hurwitz number H

g
d (η, ν) as

defined in Definition 2.1, where η is the partition of d given by the negative entries in
Δ and ν is the partition of d given by the positive entries in Δ.

Proof From Lemmas 5.27 and 4.2 we know that the degrees of the tropical branch
map and the Hurwitz number Hd

g (η, ν) are computed via a weighted sum of graphs.
We now show that, for each combinatorial type of graphs, we have the same coeffi-
cient in both cases. Fix a combinatorial type α.

In Lemma 5.26 the contribution from graphs of type α is given by (3). After sim-
plifying via (1) in Corollary 4.4, the contribution on the Hurwitz count side is

n′([α]) ·
(

1

2

)#b.forks+#wieners

·
∏

e

ω(e), (4)

where n′([α]) is the number of times a graph of type α appears in the construction,
and the product is over all bounded edges. To prove the theorem it suffices to show:

n′([α]) ·
(

1

2

)#b.forks

= n
([α]) ·

(
1

2

)r

,
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where r is the number of vertices V such that Γ \ V has two identical connected
components.

Graphs in the Hurwitz count induce a labeling of the vertices by assigning label i

to the vertex mapping to i. However we are counting isomorphism classes of labeled
graphs: a graph has two indistinguishable labelings precisely when removing a vertex
(non-adjacent to any end) there are two identical connected components, i.e.

n′([α]) = n
([α]) ·

(
1

2

)r−#b.forks

,

which is what we need to show. �

Remark 5.29 A geometric proof of our main theorem should also follow from Theo-
rem 1, [11]. We thank G. Mikhalkin for pointing this out to us.

6 Combinatorial properties of genus 0 double Hurwitz numbers

In this section we use Lemma 4.2 to recover in an elementary way results in [6] and
[13] on the structure of double Hurwitz numbers in genus 0. That is, we do not view
Hurwitz numbers one by one, but as a function on the entries of the two partitions μ

and ν. We point the attention of the reader to a technical detail: in this section we wish
to adopt the definition of Hurwitz numbers in [6], which differs from the classical one
used so far in that the preimages of 0 and ∞ are marked. The difference between the
two definitions is a multiplicative factor of |Aut(μ)||Aut(ν)|.

Definition 6.1 Let k + l ≥ 3 and μ1, . . . ,μk, ν1, . . . , νl be the coordinates of R
k+l .

Let H be the hyperplane
∑

μi = ∑
νj . We think of H 0 as a map

H 0 : H ∩ N
k+l

→ Q : (μ1, . . . ,μk, ν1, . . . , νl) �→ H 0
μ1+···+μk

(
(μ1, . . . ,μk), (ν1, . . . , νl)

)
.

6.1 Piecewise polynomiality

Theorem 6.2 [6, 13] The map H 0 is piece-wise polynomial. More precisely, H is
subdivided into a finite number of chambers, and inside each chamber the map H 0 is
a homogeneous polynomial in the μi and νj of degree k + l − 3. Walls defining the
chambers are given by the equations:

∑

i∈I

μi −
∑

j∈J

νj = 0, (5)

for I, J any proper subsets of the indices sets.

We introduce some notions that are necessary to the proof of Theorem 6.2.
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Definition 6.3 Let T (k, l) be the set of all connected 3-valent directed trees with k in-
ends labeled with 1, . . . , k and l out-ends labeled with 1, . . . , l and with no sources or
sinks, together with a total order of the vertices compatible with the edge directions.

If we assign weights to the ends of any graph in T (k, l) (in such a way that the sum
of the weights of the in-ends equals the sum of the weights of the out-ends), we can
then weight the internal edges in a unique way by imposing the balancing condition.

Lemma 6.4 Let Γ ∈ T (k, l). If we choose the weight μi for the in-end labeled i and
νj for the out-end labeled j , then the weights ω(e) of all inner edges e are uniquely
determined (but might be negative). The weight ω(e) equals

ω(e) =
∑

i∈I

μi −
∑

j∈J

νj , (6)

where I ⊂ {1, . . . , k} and J ⊂ {1, . . . , l} are the subsets of in- and out-ends belonging
to the connected component of Γ \ {e} from which e points away.

Proof The balancing condition implies that the weighted graphs can be interpreted
as networks of flowing water where water is neither created nor destroyed: the sum
of inflow and outflow must then be equal. When cutting a tree along an internal edge,
the two resulting connected components also satisfy this condition, thus determining
uniquely the weight of the cut edge to be given by formula (6). �

We note that the weights of all internal edges are linear homogeneous polynomials
in the entries of the partitions.

Definition 6.5 For a fixed pair of partitions μ,ν, we define T +(μ, ν) ⊂ T (k, l) to be
the subset of graphs such that all internal edges have strictly positive weights when
the ends are given weights corresponding to the partitions μ and ν.

In formula (2), we are summing over all graphs Γ ∈ T +(μ, ν): for every Γ ∈
T +(μ, ν), we can build a projection sending Γ to the interval [0, s + 1] that maps
the source vertices of the in-ends to 0, the target vertices of the out-ends to s + 1
and the vertex with label i to i. The projection satisfies that the image of the source
vertex of an edge is smaller than the image of the target vertex. Vice versa, by di-
recting the edges in a graph projecting to [0, s + 1], we get an element in T +(μ, ν).
From Lemma 6.4 we see that the set T +(μ, ν) is constant precisely in the cham-
bers C defined by the walls in (5); thus we also use T +(C) to denote T +(μ, ν) for
any μ,ν in C. We have now proved all ingredients needed in the proof of Theo-
rem 6.2.

Proof of Theorem 6.2 Proving this theorem using formula (2) is elementary: for any
contributing graph the weights of the internal edges are linear homogeneous polyno-
mials in the μi ’s and νj ’s (Lemma 6.4), and we are taking a product over k + l − 3
internal edges. We next sum over a finite set of graphs, which remains constant in
regions where the signs of all internal edges does not change (Definition 6.5). �



260 J Algebr Comb (2010) 32: 241–265

Fig. 9 Weighted trees with two in-ends and two out-ends

Example 6.6 Figure 9 shows graphs of the set T (2,2), after attaching the weights for
the ends and concluding the weight of the inner edge according to Lemma 6.4.

The chambers are defined by the inequalities ±(μ1 − ν1)>0, and ±(μ1 − ν2)>0.
Note that two such inequalities, e.g. μ1 > ν1 and μ1 > ν2 imply two other inequalities
ν1 > μ2 and ν2 > μ2. This is true since the sum μ1 + μ2 equals ν1 + ν2. Figure 10
shows the four chambers and the two walls, and marks which of the above graphs
belongs to T +(C) for each chamber C. Also, it shows the polynomial which equals
H 0 in each chamber.

6.2 Wall crossing formulas

In this section we investigate how the polynomials computing Hurwitz numbers vary
from chamber to chamber. Example 6.6 suggests a crucial observation: if we are only
concerned with the difference of the polynomials across a wall δ = 0, we need only
consider the contributions from graphs that belong to T + in only one of the two
chambers in questions. Further we can characterize these graphs as those containing
an edge with weight δ that switches direction across the wall. This allows us to easily
recover the formulas of [13].

Definition 6.7 Choose a subset I of the in-ends, and a subset J of the out-ends. This
defines a wall δ = ∑

i∈I μi −∑
j∈J νj = 0. We select two adjacent chambers C1 and

C2: all inequalities defining these chambers are the same, except for the inequality
corresponding to the wall. We define C1 to correspond to

∑
i∈I μi − ∑

j∈J νj > 0.

Let P1 denote the polynomial that equals H 0 in C1, P2 the polynomial that equals
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Fig. 10 The polynomiality chambers for Example 6.6

H 0 in C2. Then the wall crossing for this wall and the two adjacent chambers C1 and
C2 is defined to be the difference of the two polynomials:

WCδ(μ, ν) := P1(μ, ν) − P2(μ, ν).

Example 6.8 Refer to Example 6.6 (Fig. 10) and consider the wall μ1 = ν1,μ2 = ν2

and the two adjacent regions on the top, i.e. μ1 > ν1,μ1 > ν2,μ2 < ν1,μ2 < ν2 and
μ1 < ν1,μ1 > ν2,μ2 < ν1,μ2 > ν2. The graph (II) appears on the left, but is replaced
on the right by (IV). This happens because this graph has an edge with weight going
to 0 when approaching the wall. Graph (IV) equals graph (II) with the direction of
the edge going to 0 reversed, and the weight multiplied with −1 accordingly.

The graphs (I) and (III) appear on both sides of the wall. Their contribution to the
respective polynomials remains unchanged and they thus do not contribute to the wall
crossing.

Thus, the wall crossing is given by the contribution from (II) minus the contribu-
tion from (IV), i.e. μ1 − ν1 − (−μ1 + ν1) = 2μ1 − 2ν1.

Lemma 6.9 For the wall δ = 0 the wall crossing WCδ(μ, ν) can be expressed in
terms of graphs in T δ := (T +(C1)∪ T +(C2))\(T +(C1)∩ T +(C2)); all these graphs
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have an edge ē with weight ±δ:

WCδ(μ, ν) =
∑

Γ ∈T δ

δ ·
∏

e′ �=ē

ω
(
e′).

Proof We have

WCδ = P1 − P2 =
∑

Γ ∈T +(C1)

ϕΓ −
∑

Γ ∈T +(C2)

ϕΓ ,

where ϕΓ denotes the product of the weights of all internal edges of Γ , as in for-
mula (2) (note that the graphs have no automorphisms: since the genus is 0 there are
no wieners, and all ends are labeled with distinct variables). Both chambers are given
by inequalities of the form

∑
i∈I ′ μi −∑

j∈J ′ νj > 0. The only inequality that differs
for the two regions is the equality of the wall: δ = 0. Let us say in C1 we have δ > 0
and in C2 we have δ < 0.

If Γ is a graph in T +(C1) that does not have an edge of weight δ, then all the
weights will be positive in both chambers since all other inequalities persist. Thus
Γ also belongs to T +(C2) and hence its contribution ϕΓ cancels in the difference
P1 − P2.

We then have

WCδ = P1 − P2 =
∑

Γ ∈(T +(C1)\T +(C2))

ϕΓ −
∑

Γ ∈(T +(C2)\T +(C1))

ϕΓ .

Notice that for each graph in T δ there is precisely one edge of weight ±δ. This is true
since the weights of the edges are given by Lemma 6.4 as sums of weights of ends in
a connected component of Γ \ {e}, and this differs for different edges. Let ē denote
the edge of weight ±δ. Naturally, ē has weight δ for graphs in T +(C1) and −δ for
graphs in T +(C2).

Therefore, we finally have:

WCδ = P1 − P2 =
∑

Γ ∈(T +(C1)\T +(C2))

δ
∏

e′ �=ē

ω
(
e′)

−
∑

Γ ∈(T +(C2)\T +(C1))

(−δ)
∏

e′ �=ē

ω
(
e′)

=
∑

Γ ∈T δ

δ ·
∏

e′ �=ē

ω
(
e′).

�

We use the following notation: μI := (μi)i∈I is the subpartition of μ containing only
the μi with index i ∈ I (and νJ analogously). Let r = k + l − 2, r1 = #I + #J − 1
and r2 = k − #I + l − #J − 1 = r − r1.
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Theorem 6.10 [13] For the wall δ = 0 and the chambers C1 and C2 the wall crossing
equals

WCδ(μ, ν) =
(

r

r1, r2

)
· δ · H 0(μI , (νJ , δ)

) · H 0((μIc , δ), νJ c

)
. (7)

The idea of the proof is simple: cutting a graph contributing to the wall crossing
along the special edge ē disconnects the graph into two components, which we can
interpret as graphs contributing to the Hurwitz numbers on the right hand side of the
formula. Conversely, given any pair of graphs contributing to the Hurwitz numbers
on the right hand side, we can glue them to create a graph contributing to the wall
crossing. The binomial coefficient gives the number of ways to merge the total order-
ings of the vertices of the two components into a total order of the glued graph. We
now make this precise. We maintain all notation from Lemma 6.9.

Proof The inequalities defining C1 induce inequalities for the entries of the parti-
tions (μI , (νJ , δ)) resp. ((μIc , δ), νJ c ). These inequalities determine chambers C1

1
(resp. C2

1 ) in the vector spaces R
#I+#J+1 (resp. R

k−#i+l−#J+1) with coordinates
(μI , (νJ , δ)) resp. ((μIc , δ), νJ c ).

A graph Γ1 ∈ T +(C1
1) has r1 vertices. Any Γ2 ∈ T +(C2

1) has r2 vertices. Since
Γ1 ∪ Γ2 is disconnected, there are

(
r

r1,r2

)
orderings of the r = r1 + r2 vertices of

Γ1 ∪ Γ2 that refine the orderings of Γ1 and Γ2 and are compatible with the directions
of edges.

Let T̃ denote the set of triples (Γ1,Γ2, Õ) with Γ1 ∈ T +(C1
1), Γ2 ∈ T +(C2

1) and
Õ is a choice of an ordering of the r vertices of Γ1 ∪Γ2 as in the previous paragraph.
Then:

(
r

r1, r2

)
· δ · H 0(μI , (νJ , δ)

) · H 0((μIc , δ), νJ c

)

=
(

r

r1, r2

)
· δ ·

( ∑

Γ1∈T +(C1
1 )

ϕΓ1

)
·
( ∑

Γ2∈T +(C2
1 )

ϕΓ2

)

=
(

r

r1, r2

)
· δ ·

∑

(Γ1,Γ2)∈T +(C1
1 )×T +(C2

1 )

ϕΓ1 · ϕΓ2

= δ ·
∑

(Γ1,Γ2,Õ)∈T̃

ϕΓ1 · ϕΓ2 .

The theorem now follows from the claims:

Claim 1: There are natural bijections

Cut : T δ ↔ T̃ : Glue.

Claim 2: The polynomial contributions of Γ and Cut(Γ ) to the two sides of (7)
coincide.
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Let Γ ∈ T δ . If the graph Γ is in T +(C1), then cut the special edge ē to produce
two graphs Γ1 and Γ2. If Γ ∈ T +(C2), then the new ends obtained by cutting ē

face the wrong way. The first graph would contribute to H 0((μI , δ), νJ ) instead of
H 0(μI , (νJ , δ)), as desired. Hence we flip the direction of these ends. We now argue
that this procedure does not produce any sources or sinks.

Let v be the vertex at the source of ē, and suppose that both other edges incident
to v are oriented with v as their target, so that reversing ē would produces a sink.
Recall that ē is labeled with δ; let α and β be the labelings of the other two edges.
The direction of the edges and the balancing condition then implies that α + β = δ.
The hyperplanes defining chamber C1 contain among them α > 0 and β > 0, which
together imply that δ > 0, and so we see that the chamber C1 does not border on the
wall δ in codimension 1—to cross the wall δ = 0 we must first cross one of the walls
α = 0 or β = 0. This is a contradiction, and so we see that one of the other edges
incident to v must have had v as its source, and so flipping ē does not create a sink.
The argument for a source is analogous.

The data Γ1,Γ2, together with the ordering Õ of all r vertices that is naturally
inherited by the ordering of the vertices in Γ , defines Cut(Γ ).

We now define Glue. Let (Γ1,Γ2, Õ) ∈ T̃ . Glue Γ1 and Γ2 along the two ends
with weight δ, producing a new inner edge ē. The ordering Õ of the r vertices in
particular orders the two vertices adjacent to ē and thus determines the direction of ē.
If the direction of ē agrees with the original directions of the two ends we obtain a
graph in T +(C1), otherwise the glued graph is in T +(C2). In the second case we must
make sure no sources or sinks are created in changing the direction of ē. However, by
definition Γ1 belongs to chamber C1

1 , and so we can view it as a portion of a graph
from chamber C1 and follow the same argument we used in defining the map Cut,
and similarly Γ2 is a graph contributing to chamber C2

1 .
Thus, we see the glued graph together with the ordering Õ of all r vertices belongs

to T δ , and is defined to be Glue(Γ1,Γ2, Õ).
The two maps Cut and Glue are inverses of each other and thus give bijections of

the two sets, as stated in Claim 1. Furthermore, Γ contributes δ · ∏e′ �=ē ω(e′) to the
left hand side of (7). The image Cut(Γ ) contributes

δ · ϕΓ1 · ϕΓ2 = δ ·
∏

e′ int. edge of Γ1

ω
(
e′) ·

∏

e′ int. edge of Γ2

ω
(
e′)

= δ ·
∏

e′ �=ē, e′ int. edge of Γ

ω
(
e′)

to the right hand side of (7), proving Claim 2 and Theorem 6.10. �

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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