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Abstract We prove that the near hexagon Q(5,2) × L3 has a non-abelian represen-
tation in the extra-special 2-group 21+12+ and that the near hexagon Q(5,2)⊗Q(5,2)

has a non-abelian representation in the extra-special 2-group 21+18− . The description
of the non-abelian representation of Q(5,2) ⊗ Q(5,2) makes use of a new combina-
torial construction of this near hexagon.

Keywords Near hexagon · Non-abelian representation · Extra-special 2-group

1 Introduction

Let S = (P,L) be a partial linear space with point set P and line set L. We suppose
that S is slim, i.e., that every line of S is incident with precisely three points. For
distinct points x, y ∈ P , we write x ∼ y if they are collinear. In that case, we denote
by xy the unique line containing x and y and define x ∗ y by xy = {x, y, x ∗ y}. For
x ∈ P , we define x⊥ := {x} ∪ {y ∈ P : y ∼ x}. If x, y ∈ P , then d(x, y) denotes the
distance between x and y in the collinearity graph of S .
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A representation [9, p. 525] of S is a pair (R,ψ), where R is a group and ψ is a
mapping from P to the set of involutions of R, satisfying:

(R1) R is generated by the image of ψ .
(R2) ψ is one–one on each line {x, y, x ∗ y} of S and ψ(x)ψ(y) = ψ(x ∗ y).

Notice that if x ∼ y, then ψ(x) and ψ(y) necessarily commute by Condition (R2).
The group R is called a representation group of S . A representation (R,ψ) of S
is faithful if ψ is injective and is abelian or non-abelian according as R is abelian
or not. Note that, in [9], ‘non-abelian representation’ means that ‘the representation
group is not necessarily abelian’. Abelian representations are called embeddings in
the literature. For an abelian representation, the representation group is an elementary
abelian 2-group and hence can be considered as a vector space over the field F2 with
two elements. We refer to [8] and [12, Sects. 1 and 2] for more on representations of
partial linear spaces with p + 1 points per line, where p is a prime.

A finite 2-group G is called extra-special if its Frattini subgroup �(G), its com-
mutator subgroup G′ = [G,G] and its center Z(G) coincide and have order 2. We
refer to [5, Sect. 20, pp. 78–79] or [6, Chap. 5, Sect. 5] for the properties of extra-
special 2-groups which we will mention now. An extra-special 2-group is of order
21+2m for some integer m ≥ 1. Let D8 and Q8, respectively, denote the dihedral and
the quaternion groups of order 8. A non-abelian 2-group of order 8 is extra-special
and is isomorphic to either D8 or Q8. If G is an extra-special 2-group of order 21+2m,
m ≥ 1, then the exponent of G is 4 and either G is a central product of m copies of
D8, or G is a central product of m−1 copies of D8 and one copy of Q8. If the former
(respectively, latter) case occurs, then the extra-special 2-group is denoted by 21+2m+
(respectively, 21+2m− ).

A partial linear space S = (P,L) is called a near polygon if for every point p

and every line L, there exists a unique point on L nearest to p. If d is the maximal
distance between two points of S , then the near polygon is also called a near 2d-gon.
A near polygon is called dense if every line is incident with at least three points and if
every two points at distance 2 have at least two common neighbors. By [1], there are
(up to isomorphism) 11 slim dense near hexagons. The paper [13] initiated the study
of the non-abelian representations of these dense near hexagons.

Suppose (R,ψ) is a non-abelian representation of a slim dense near hexagon.
Then by [13, Proposition 4.1, p. 205], (R,ψ) is necessarily faithful and for x, y ∈ P ,
[ψ(x),ψ(y)] 
= 1 if and only if x and y are at maximal distance 3 from each other.
If S is the (up to isomorphism) unique slim dense near hexagon on 81 points, which
will be denoted by Q(5,2)×L3 in the sequel, then it was shown in [13, Theorem 1.6,
p. 199] that R is necessarily isomorphic to the extra-special 2-group 21+12+ . If S is the
(up to isomorphism) unique slim dense near hexagon on 243 points, which will be
denoted by Q(5,2) ⊗ Q(5,2) in the sequel, then it was shown in [13, Theorem 1.6,
p. 199], that R is necessarily isomorphic to the extra-special 2-group 21+18− . The ques-
tion whether such non-abelian representations exist remained, however, unanswered
in [13]. The following theorem, which is the main result of this paper, deals with
these existence problems.
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Theorem 1.1

(1) The slim dense near hexagon Q(5,2) × L3 has a non-abelian representation in
the extra-special 2-group 21+12+ .

(2) The slim dense near hexagon Q(5,2)⊗Q(5,2) has a non-abelian representation
in the extra-special 2-group 21+18− .

The slim dense near hexagon Q(5,2) ⊗ Q(5,2) has many substructures isomor-
phic to Q(5,2) × L3. We will describe a non-abelian representation of Q(5,2) × L3
in Sect. 4. In Sect. 5, we will use this to construct a non-abelian representation of
Q(5,2) ⊗ Q(5,2). To describe the non-abelian representation of Q(5,2) ⊗ Q(5,2),
we make use of a model of Q(5,2) ⊗ Q(5,2) which we discuss in Sects. 2 and 3.

Remark Two other constructions of non-abelian representations of slim dense near
polygons, in particular, of the slim dense near hexagons on 105 and 135 points, can
be found in [10].

2 The point–line geometry Sθ

Near quadrangles are usually called generalized quadrangles (GQs). A GQ is said to
be of order (s, t) if every line is incident with precisely s +1 points and if every point
is incident with precisely t + 1 lines. Up to isomorphism, there exist unique GQs of
order (2,2) and (2,4), see, e.g., [11]. These GQs are denoted by W(2) and Q(5,2),
respectively. A spread of a point–line geometry is a set of lines partitioning its point
set. A spread S of Q(5,2) is called a spread of symmetry if for every line L ∈ S

and every two points x1, x2 ∈ L, there exists an automorphism of Q(5,2) fixing each
line of S and mapping x1 to x2. By [2, Sect. 7.1], Q(5,2) has (up to isomorphism) a
unique spread of symmetry.

Now, suppose S is a given spread of symmetry of Q(5,2). If L1 and L2 are two
distinct lines of S and if G denotes the unique (3 × 3)-subgrid of Q(5,2) containing
L1 and L2, then the unique line L3 of G disjoint from L1 and L2 is also contained
in S.

Suppose θ is a map from S ×S to Z3 (the additive group of order three) satisfying
the following property:

(∗) If L1,L2,L3 are three lines of S contained in a grid of Q(5,2), then θ(L1,L2)+
θ(L2,L3) = θ(L1,L3).

Notice that θ(L,L) = 0 and θ(M,L) = −θ(L,M) for all L,M ∈ S. With θ , there is
associated a point-line geometry Sθ . The points of Sθ are of four types:

(P 1) The points x of Q(5,2).
(P 2) The symbols x̄, where x is a point of Q(5,2).
(P 3) The symbols ¯̄x, where x is a point of Q(5,2).
(P 4) The triples (x, y, i), where i ∈ Z3 and x, y are distinct collinear points of

Q(5,2) satisfying xy ∈ S.

The lines of Sθ are of nine types:
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(L1) The lines {x, y, z} of Q(5,2).
(L2) The sets {x̄, ȳ, z̄}, where {x, y, z} is a line of Q(5,2).
(L3) The sets { ¯̄x, ¯̄y, ¯̄z}, where {x, y, z} is a line of Q(5,2).
(L4) The sets {x, x̄, ¯̄x}, where x is a point of Q(5,2).
(L5) The sets {a, (a, b, i), (a, c, i)}, where i ∈ Z3 and {a, b, c} ∈ S.
(L6) The sets {ā, (b, a, i), (c, a, i)}, where i ∈ Z3 and {a, b, c} ∈ S.
(L7) The sets { ¯̄a, (b, c, i), (c, b, i)}, where i ∈ Z3 and {a, b, c} ∈ S.
(L8) The sets {(a, b, i), (b, c, j), (c, a, k)}, where {i, j, k} = Z3 and {a, b, c} is a

line belonging to S.
(L9) The sets {(a,u, i), (b, v, j), (c,w, k)}, where (i) {a, b, c} and {u,v, w} are two

disjoint lines of Q(5,2); (ii) d(a,u) = d(b, v) = d(c,w) = 1; (iii) au,bv, cw ∈
S; (iv) j = i + θ(au, bv), k = i + θ(au, cw).

Incidence is containment. One can easily show that Sθ is a partial linear space. In
order to show that two distinct points of Sθ are contained in at most one line of
Type (L9), one has to make use of Property (∗).

3 An isomorphism Q(5,2) ⊗ Q(5,2) ∼= Sθ

The aim of this section is to show that the slim dense near hexagon Q(5,2)⊗Q(5,2)

is isomorphic to a point–line geometry Sθ for a suitable spread of symmetry S of
Q(5,2) and a suitable map θ : S × S → Z3 satisfying Property (∗). We start with
recalling some known properties of the near hexagon Q(5,2) ⊗ Q(5,2).

(1) Every two points x and y of Q(5,2) ⊗ Q(5,2) are contained in a unique convex
subspace of diameter 2, called a quad. The points and lines which are contained
in a given quad define a GQ which is isomorphic to either the (3 × 3)-grid or
Q(5,2).

(2) If Q is a Q(5,2)-quad and x 
∈ Q, then x is collinear with a unique point πQ(x) ∈
Q and we denote by RQ(x) the unique point of xπQ(x) distinct from x and
πQ(x). If x ∈ Q, then we define πQ(x) = RQ(x) := x. The map x �→ RQ(x)

defines an automorphism of Q(5,2) ⊗ Q(5,2). If Q1 and Q2 are two disjoint
Q(5,2)-quads, then the map Q1 → Q2;x �→ πQ2(x) defines an isomorphism
between Q1 and Q2.

(3) There exist two partitions T1 and T2 of the point set of Q(5,2) ⊗ Q(5,2) into
Q(5,2)-quads.

(4) Every element of T1 intersects every element of T2 in a line. As a consequence,
S⊗ := {Q1 ∩ Q2 : Q1 ∈ T1 and Q2 ∈ T2} is a spread of Q(5,2) ⊗ Q(5,2).

(5) For every Q ∈ Ti , i ∈ {1,2}, the set {Q ∩ R : R ∈ T3−i} is a spread of symmetry
of Q.

(6) Every line L of Q(5,2) ⊗ Q(5,2) not belonging to S⊗ is contained in a unique
quad of T1 ∪ T2.

Now, let Q and Q be two disjoint Q(5,2)-quads belonging to T1 and put Q :=
RQ(Q) = RQ(Q). For every point x of Q, put x̄ := πQ(x) and ¯̄x := π

Q
(x).

Put S = {Q ∩ Q2 : Q2 ∈ T2}. Then S is a spread of symmetry of Q. For every
L ∈ S, let RL denote the unique element of T2 containing L. Let L∗ denote a specific
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line of S and put R∗ = RL∗ . For every L ∈ S, RL ∩ (Q ∪ Q ∪ Q) is a (3 × 3)-
subgrid σL of RL. This (3 × 3)-subgrid σL is contained in precisely three W(2)-
subquadrangles of RL. We denote by W 0,W 1,W 2 the three W(2)-subquadrangles

of R∗ containing R∗∩(Q∪Q∪Q). For every L ∈ S and i ∈ Z3, put Wi
L := πRL

(Wi).
For every i ∈ Z3, for every L ∈ S and for all x, y ∈ L with x 
= y, we denote by

(x, y, i) the unique point μ of RL \ (Q ∪ Q ∪ Q) such that πQ(μ) = x,πQ(μ) = ȳ

and μ ∈ Wi
L. The point (x, y, i) is the unique point of Wi

L collinear with x and ȳ, but
not contained in σL.

Lemma 3.1 Every point of Q(5,2) ⊗ Q(5,2) not contained in Q ∪ Q ∪ Q has re-
ceived a unique label.

Proof Let μ be a point of Q(5,2) ⊗ Q(5,2) not contained in Q ∪ Q ∪ Q, let R

denote the unique element of T2 containing μ and put L := R ∩ Q. Then R = RL.
There exists a unique W(2)-subquadrangle of R containing μ and σL. Let i ∈ Z3 such
that μ ∈ Wi

L. Let x and y be the points of L such that x = πQ(μ) and ȳ = πQ(μ).

If x = y, then {x, ȳ,μ} is a set of mutually collinear points, implying that μ = ¯̄x,

contradicting μ /∈ Q. Hence x 
= y and the point μ has label (x, y, i). It is also clear
that μ cannot be labeled in different ways. �

We will now define a map θ : S ×S → Z3. For each ordered pair (L1,L2) of lines
of S, the map R∗ → R∗;x �→ πR∗ ◦ πRL2

◦ πRL1
(x) determines an automorphism

of R∗ fixing each line of the spread {R∗ ∩Q1 : Q1 ∈ T1} of R∗. By [2, Theorem 4.1],
such an automorphism either is trivial or acts on any line of the form R∗ ∩ Q1,Q1 ∈
T1, as a cycle. Since every line R∗ ∩Q1,Q1 ∈ T1 \ {Q,Q,Q}, intersects each W(2)-
subquadrangle Wi , i ∈ Z3, in a unique point, the map R∗ → R∗;x �→ πR∗ ◦ πRL2

◦
πRL1

(x) is either trivial or permutes the elements of {W 0,W 1,W 2} in one of the
following ways:

W 0 → W 1 → W 2 → W 0, W 0 → W 2 → W 1 → W 0.

Hence, there exists a unique θ(L1,L2) ∈ Z3 such that

πR∗ ◦ πRL2
◦ πRL1

(
Wi

) = Wi+θ(L1,L2)

for every i ∈ Z3.

Lemma 3.2 The following holds:

(i) For every L ∈ S, θ(L,L) = 0.
(ii) For any two lines L1 and L2 of S, θ(L2,L1) = −θ(L1,L2).

(iii) If L1,L2,L3 are three lines of S which are contained in a grid, then θ(L1,L2)+
θ(L2,L3) = θ(L1,L3).

(iv) If L1,L2,L3 are three lines of S which are not contained in a grid, then
θ(L1,L2) + θ(L2,L3) 
= θ(L1,L3).
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Proof

(i) For every i ∈ Z3, we have πR∗ ◦πRL
◦πRL

(Wi) = πR∗ ◦πRL
(Wi) = Wi . Hence,

θ(L,L) = 0.
(ii) If πR∗ ◦ πRL2

◦ πRL1
(Wi) = Wi+θ(L1,L2) for every i ∈ Z3, then Wi = πR∗ ◦

πRL1
◦ πRL2

(Wi+θ(L1,L2)) for every i ∈ Z3. It follows that θ(L2,L1) =
−θ(L1,L2).

(iii) Let L1,L2,L3 be three lines of S which are contained in a grid. Then πR∗ ◦
πRL3

◦ πRL1
(Wi) = πR∗ ◦ πRL3

◦ πRL2
◦ πRL1

(Wi) = πR∗ ◦ πRL3
◦ πRL2

◦ πR∗ ◦
πRL2

◦ πRL1
(Wi) = πR∗ ◦ πRL3

◦ πRL2
(Wi+θ(L1,L2)) = Wi+θ(L1,L2)+θ(L2,L3).

Hence, θ(L1,L3) = θ(L1,L2) + θ(L2,L3).
(iv) Let L1,L2,L3 be three lines of S which are not contained in a grid. Suppose

that θ(L1,L3) = θ(L1,L2) + θ(L2,L3). Then for every y ∈ R∗, πR∗ ◦ πRL3
◦

πRL1
(y) = (πR∗ ◦ πRL3

◦ πRL2
) ◦ (πR∗ ◦ πRL2

◦ πRL1
)(y), that is, πR∗ ◦ πRL3

◦
πRL1

(y) = πR∗ ◦ πRL3
◦ πRL2

◦ πRL1
(y). Hence, the map RL3 → RL3 defined

by x �→ πRL3
◦ πRL2

◦ πRL1
(x) is the identity map on RL3 . This implies that

the points x,πRL1
(x),πRL2

(x) are mutually collinear for every x ∈ RL3 , that
is, {x,πRL1

(x),πRL2
(x)} is a line for every x ∈ RL3 . This contradicts the fact

that L1,L2,L3 are not contained in a grid. Hence, θ(L1,L3) 
= θ(L1,L2) +
θ(L2,L3).

�

Proposition 3.3 Q(5,2) ⊗ Q(5,2) ∼= Sθ , where θ is as defined above.

Proof We must show that the set of lines of Q(5,2) ⊗ Q(5,2) are in bijective corre-
spondence with the sets of Type (L1), (L2), . . . , (L9) defined in Sect. 2. Obviously:

• The set of lines of Q(5,2) ⊗ Q(5,2) contained in Q correspond to the sets of
Type (L1).

• The set of lines of Q(5,2) ⊗ Q(5,2) contained in Q correspond to the sets of
Type (L2).

• The set of lines of Q(5,2) ⊗ Q(5,2) contained in Q correspond to the sets of
Type (L3).

• The set of lines of Q(5,2) ⊗ Q(5,2) meeting Q,Q and Q correspond to the sets
of Type (L4).

Consider a line M of RL which is not contained in σL and which intersects σL in a
point a ∈ L of Q. Put L = {a, b, c}. There exists a unique W(2)-subquadrangle Wi

L

containing σL and M . One readily sees that the points of M have labels a, (a, b, i) and
(a, c, i). So, M corresponds to a set of Type (L5). Conversely, every set of Type (L5)

corresponds to a (necessarily unique) line of Q(5,2) ⊗ Q(5,2).
Next, consider a line M of RL which is not contained in σL and which inter-

sects σL in a point ā of Q. Put L = {a, b, c}. Then, there exists a unique W(2)-
subquadrangle Wi

L containing σL and M . One readily sees that the points of M

have labels ā, (b, a, i) and (c, a, i). So, M corresponds to a set of Type (L6).
Conversely, every set of Type (L6) corresponds to a (necessarily unique) line of
Q(5,2) ⊗ Q(5,2).
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Now, consider a line M of RL which is not contained in σL and which intersects σL

in a point ¯̄a of Q. Put L = {a, b, c}. Then, there exists a unique W(2)-subquadrangle
Wi

L containing σL and M . One readily sees that the points of M have labels ¯̄a,
(b, c, i) and (c, b, i). So, M corresponds to a set of Type (L7). Conversely, every
set of Type (L7) corresponds to a (necessarily unique) line of Q(5,2) ⊗ Q(5,2).

Consider next a line M of RL which is disjoint from σL. Then M intersects
each Wi

L, i ∈ Z3, in a unique point. Put L = {a, b, c}. The labels of the points
of M are (u,u′, i), (v, v′, j), (w,w′, k), where {i, j, k} = {0,1,2}, {u,v,w} =
πQ(M) = {a, b, c}, {u′, v′,w′} = πQ ◦ πQ(M) = {a, b, c}, u 
= u′, v 
= v′, w 
= w′.
It readily follows that {(u,u′, i), (v, v′, j), (w,w′, k)} is a set of Type (L8). Con-
versely, one can readily verify that every set of Type (L8) corresponds to a line of
Q(5,2) ⊗ Q(5,2).

Finally, let M be a line of Q(5,2) ⊗ Q(5,2) not belonging to S⊗ and con-

tained in a quad of T1 \ {Q,Q,Q}. With M , there corresponds a set of the form
{(a,u, i), (b, v, j), (c,w, k)}. We have that {a, b, c} = πQ(M) is a line of Q not be-
longing to S. Similarly, {u,v,w} = πQ ◦ πQ(M) is a line of Q not belonging to S.
Moreover, we have that au,bv, cw ∈ S and j = i + θ(au, bv), k = i + θ(au, cw) by
the definition of the map θ . So, M corresponds to a set of Type (L9). Conversely, we
show that every set {(a,u, i), (b, v, j), (c,w, k)} of Type (L9) corresponds to a line

of Q(5,2)⊗Q(5,2) not belonging to S⊗ and contained in a quad of T1 \ {Q,Q,Q}.
Let x denote the point of Q(5,2) ⊗ Q(5,2) corresponding to (a,u, i), let Q1 denote
the unique element of T1 containing x and let M = πQ1({a, b, c}). Then M corre-
sponds to a set of the form {(a,u, i), (b,∗,∗), (c,∗,∗)}. Since v,w, j, k are uniquely
determined by a,u, i, b, c, this set is equal to {(a,u, i), (b, v, j), (c,w, k)}.

By the above discussion, we indeed know that Q(5,2) ⊗ Q(5,2) ∼= Sθ . �

Definitions.

(1) An admissible triple is a triple Σ = (L,G,�), where:

• G is a nontrivial additive group whose order s + 1 is finite.
• L is a linear space, different from a point, in which each line is incident with

exactly s + 1 points. We denote the point set of L by P .
• � is a map from P ×P to G such that the following holds for any three points

x, y and z of L: x, y and z are collinear ⇔ �(x,y) + �(y, z) = �(x, z).

(2) Suppose Σ1 = (L1,G1,�1) and Σ2 = (L2,G2,�2) are two admissible triples,
where L1 and L2 are not lines. Then Σ1 and Σ2 are called equivalent if there
exist an isomorphism α from L1 to L2, an isomorphism β from G1 to G2 and
a map f from the point set of L1 to G1 satisfying �2(α(x),α(y)) = (f (x) +
�1(x, y) − f (y))β for all points x and y of L1.

Let LS denote the linear space whose points are the elements of S and whose lines
are the unordered triples of lines of S which are contained in a grid, with incidence
being containment. Then LS is isomorphic to the affine plane AG(2,3) of order three.
By Lemma 3.2, we know that (LS,Z3, θ) is an admissible triple.
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Proposition 3.4 Let θ1 and θ2 be two maps from S × S to Z3 such that Σ1 =
(LS,Z3, θ1) and Σ2 = (LS,Z3, θ2) are admissible triples. If Σ1 and Σ2 are equiva-
lent, then Sθ1

∼= Sθ2 .

Proof Since Σ1 and Σ2 are equivalent, there exists an automorphism α of LS , an
automorphism β of Z3 and a map f from S to Z3 satisfying θ2(α(x),α(y)) =
(f (x) + θ1(x, y) − f (y))β for all points x and y of LS . There exists an automor-
phism φ of Q such that α(L) = φ(L) for every line L of S; see, e.g., [3, Sect. 3,

Example 1]. One readily verifies that the map x �→ xφ; x̄ �→ xφ; ¯̄x �→ xφ; (a, b, i) �→
(aφ, bφ, (i − f (ab))β) defines an isomorphism between Sθ1 and Sθ2 . �

It is known that the affine plane AG(2,3) admits, up to equivalence, a unique
admissible triple. (This follows, for instance, from [4, Theorem 2.1] and the fact that
there exists a unique generalized quadrangle of order (2,4), namely Q(5,2), and a
unique spread of symmetry in Q(5,2).) If we coordinatize AG(2,3) in the standard
way, then an admissible triple can be obtained by putting �[(x1, y1), (x2, y2)] :=
x1y2 − x2y1 ∈ Z3.

4 A non-abelian representation of the near hexagon Q(5,2) × L3

The slim dense near hexagon Q(5,2) × L3 is obtained by taking three isomorphic
copies of Q(5,2) and joining the corresponding points to form lines of size 3. In this
section, we prove that there exists a non-abelian representation of Q(5,2) × L3.

Let Q and B , respectively, be the point and line set of Q(5,2). Set Q =
{x̄ : x ∈ Q}, Q = { ¯̄x : x ∈ Q}, B = {{x̄, ȳ, z̄} : {x, y, z} ∈ B} and B = {{ ¯̄x, ¯̄y, ¯̄z} :
{x, y, z} ∈ B}. Then (Q,B) and (Q,B) are isomorphic to Q(5,2). The near hexagon

Q(5,2) × L3 is isomorphic to the geometry whose point set P is Q ∪ Q ∪ Q and

whose line set L is B ∪ B ∪ B ∪ {{x, x̄, ¯̄x} : x ∈ Q}.
It is known that if Q(5,2) × L3 admits a non-abelian representation, then the rep-

resentation group must be the extra-special 2-group 21+12+ [13, Theorem 1.6, p. 199].
Let R = 21+12+ with R′ = {1, λ}. Set V = R/R′. Consider V as a vector space over F2.
The map f : V × V → F2 defined by

f
(
xR′, yR′) =

{
0 if [x, y] = 1,

1 if [x, y] = λ

for x, y ∈ R, is a non-degenerate symplectic bilinear form on V [5, Theorem 20.4,
p. 78]. Write V as an orthogonal direct sum of six hyperbolic planes Ki (1 ≤ i ≤ 6)
in V and let Hi be the inverse image of Ki in R (under the canonical homomor-
phism R → R/R′). Then each Hi is generated by two involutions xi and yi such
that [xi, yi] = λ. Let M = 〈xi : 1 ≤ i ≤ 6〉 and M = 〈yi : 1 ≤ i ≤ 6〉. Then M and M

are elementary abelian 2-subgroups of R each of order 26. Further, M,M and Z(R)

pairwise intersect trivially and R = MMZ(R). Also, CM(M) and CM(M) are trivial.
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We regard the points and lines of Q as the points and lines of a nonsingu-
lar elliptic quadric of the projective space PG(M), where M is regarded as a 6-
dimensional vector space over F2. Let (M, τ) be the natural abelian representation of
(Q,B) associated with this embedding of Q in PG(M). For every point x of Q, put
mx = τ(x). There exists a unique non-degenerate symplectic bilinear form g on M

such that m⊥
x = 〈my : y ∈ x⊥〉 for every point x of Q; see, e.g., [7, Sect. 22.3]. Here,

the following notational convention has been used: for every m ∈ M , m⊥ denotes the
set of all m′ ∈ M for which g(m,m′) = 0.

Now, let m be an arbitrary element of M . If m = 1, then we define m := 1. Sup-
pose now that m 
= 1. Then m⊥ is maximal in M , that is, of index 2 in M . So, the
centralizer of m⊥ in M is a subgroup 〈m〉 of order 2. Since m⊥ is maximal in M ,
〈m⊥,m′〉 = M for every m′ ∈ M \ m⊥. The triviality of CM(M) then implies that
[m,m′] = λ for every m′ ∈ M \ m⊥.

We prove that the map M → M;m �→ m is an isomorphism. This map is easily
seen to be bijective. (Notice that CM(m) = m⊥.) So, it suffices to prove that m1m2 =
m1 m2 for all m1,m2 ∈ M . Clearly, this holds if 1 ∈ {m1,m2} or m1 = m2. So, we
may suppose that m1 
= 1 
= m2 
= m1. The set {m1,m2,m1m2} corresponds to a line
of PG(M). So, for every m ∈ (m1m2)

⊥, ([m1,m], [m2,m]) is equal to either (1,1)

or (λ,λ). Then

[m1 m2,m] = [m1,m][m2,m] = 1.

The first equality holds since R has nilpotency class 2. Thus m1 m2 ∈ CM((m1m2)
⊥)

= 〈m1m2〉. Since m1 m2 
= 1, we have m1 m2 = m1m2.
We conclude that if we define τ : Q → M; x̄ �→ mx for every x ∈ Q, then (M, τ)

is a faithful abelian representation of (Q,B).
Now, let m be an arbitrary element of M . If m = 1, then we define m := 1. If

m = mx for some x ∈ Q, then we define m := mm. If m 
= 1 and m 
= mx , ∀x ∈ Q,
then we define m := mmλ. Since m2 = m2 = λ2 = [m,m] = 1, m is an involution.
We prove that the map m �→ m defines an isomorphism between M and an elemen-

tary abelian 2-group M of order 26. Since R = MMZ(R), this map is injective and
hence it suffices to prove that m1m2 = m1 m2 for all m1,m2 ∈ M . Obviously, this
holds if 1 ∈ {m1,m2} or m1 = m2. So, we may suppose that m1 
= 1 
= m2 
= m1.
The set {m1,m2,m1m2} corresponds to a line of PG(M). Suppose 3 − N elements
of {m1,m2,m1m2} correspond to points of Q. Then m1 ∈ m⊥

2 if and only if N is
even.1 So, [m1,m2] = λN . If N ′ is the number of elements of {m1,m2} correspond-
ing to points of Q, then 2 − N ′ − N ∈ {−1,0} and 2 − N ′ − N = 0 if and only
if m1m2 corresponds to a point of Q. Hence, m1 m2 = m1 m1 m2 m2 λ2−N ′ =
m1 m2 m1 m2 λ2−N ′−N = m1m2 m1m2 λ2−N ′−N = m1m2.

So, if we define τ : Q → M by putting τ( ¯̄x) := mx = mxmx for all x ∈ Q, then

(M, τ) is a faithful abelian representation of (Q,B).

1Perhaps the case N = 3 needs more explanation. Suppose N = 3 and m1 ∈ m⊥
2 . Then the hyperplane

π of PG(M) corresponding to m⊥
2 intersects Q in a nonsingular parabolic quadric Q(4,2) of π . Since

the point of PG(M) corresponding to m2 is the kernel of Q(4,2), the line of PG(M) corresponding to
{m1,m2,m1m2} ⊂ π must meet Q(4,2), in contradiction with N = 3.
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Now, define a map ψ : P → R which coincides with τ on Q, τ on Q and τ on Q.
Since R = 〈M,M〉, R = 〈ψ(P )〉. By construction, (R,ψ) also satisfies Property (R2)
in the definition of representation. Hence, (R,ψ) is a non-abelian representation of
Q(5,2) × L3.

5 A non-abelian representation of the near hexagon Q(5,2) ⊗ Q(5,2)

In this section, we prove that the slim dense near hexagon Q(5,2) ⊗ Q(5,2) has a
non-abelian representation. By Proposition 3.3, this is equivalent with showing that
the partial linear space Sθ has a non-abelian representation, where θ is as defined in
Sect. 3.

We continue with the notation introduced in Sect. 3. Let M∗ be a line of S⊗ con-
tained in R∗ but distinct from R∗ ∩ Q, R∗ ∩ Q and R∗ ∩ Q. Then M∗ intersects
each Wi , i ∈ {1,2,3}, in a unique point. For every point x of L∗, put ε(x) := i if the
unique point of M∗ collinear with x belongs to Wi . If y ∈ Q \ L∗, then we define
ε(y) := ε(x), where x is the unique point of L∗ collinear with y.

Lemma 5.1 Let L1 and L2 be two distinct lines in S and let αi ∈ Li , i ∈ {1,2}. Then
α1 ∼ α2 if and only if ε(α2) − ε(α1) = θ(L1,L2).

Proof Let α′
2 be the unique point of L2 collinear with α1, let x1 and x2 be the unique

points of L∗ nearest to α1 and α′
2, respectively, and let zi , i ∈ {1,2}, denote the

unique point of M∗ collinear with xi . The automorphism R∗ → R∗;x �→ πR∗ ◦πRL2
◦

πRL1
(x) of R∗ maps x1 to x2 and hence z1 to z2. This implies that Wε(x1)+θ(L1,L2) =

Wε(x2), i.e., θ(L1,L2) = ε(x2) − ε(x1) = ε(α′
2) − ε(α1). Hence, α1 ∼ α2 if and only

if α2 = α′
2, i.e., if and only if ε(α2) − ε(α1) = θ(L1,L2). �

Lemma 5.2 Let N = 21+6− with N ′ = {1, λ} and let I2(N) be the set of involutions
in N . Then there exists a map δ from Q to I2(N) satisfying the following:

(i) δ is one–one.
(ii) For x, y ∈ Q, [δ(x), δ(y)] = 1 if and only if y ∈ x⊥.

(iii) If x, y ∈ Q with x ∼ y, then

δ(x ∗ y) =
{

δ(x)δ(y) if xy ∈ S,

δ(x)δ(y)λ if xy /∈ S.

(iv) The image of δ generates N .

Proof We use a model for the generalized quadrangle Q ∼= Q(5,2) which is
described in [11, Sect. 6.1, pp. 101–102]. Put Ω = {1,2,3,4,5,6} and Ω ′ =
{1′,2′,3′,4′,5′,6′}. Let E be the set of all 2-subsets of Ω and let F be the set of
all partitions of Ω in three 2-subsets of Ω . Then the point set of Q can be iden-
tified with the set E ∪ Ω ∪ Ω ′ and the line set of Q can be identified with the set
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F ∪{{i, {i, j}, j ′} : 1 ≤ i, j ≤ 6, i 
= j}. Now, consider the following nine lines of Q:

L1 = {{1,2}, {3,4}, {5,6}}; L2 = {{1,4},1,4′}; L3 = {{2,6},2,6′};
L4 = {{1,6}, {2,4}, {3,5}}; L5 = {{1,5},1′,5

}; L6 = {{2,3},2′,3
};

L7 = {{1,3}, {2,5}, {4,6}}; L8 = {{3,6},3′,6
}; L9 = {{4,5},4,5′}.

These 9 lines are mutually disjoint and hence determine a spread S′ of Q. Any two
distinct lines Li and Lj of S′ are contained in a unique (3×3)-subgrid and the unique
line of this subgrid disjoint from Li and Lj also belongs to S′. A spread of Q(5,2)

having this property is called regular. Since any regular spread of Q(5,2) is also a
spread of symmetry [2, Sect. 7.1], and there exists up to isomorphism a unique spread
of symmetry in Q(5,2), we may without loss of generality suppose that S = S′.

Put N = 〈a, b〉 ◦ 〈c, d〉 ◦ Q8, where a, b, c, d are involutions and 〈a, b〉 ∼= 〈c, d〉 ∼=
D8. So, [a, b] = [c, d] = λ. Take Q8 = {1, λ, i, j, k, iλ, jλ, kλ}, where i2 = j2 =
k2 = λ, ij = k, jk = i, ki = j and [i, j ] = [j, k] = [k, i] = λ. We define δ : Q →
I2(N) as follows:

δ
({1,2}) = a, δ

({3,4}) = c, δ
({5,6}) = ac,

δ
({1,4}) = abdi, δ(1) = cdj, δ

(
4′) = abckλ,

δ
({2,6}) = abiλ, δ(2) = acdk, δ

(
6′) = bcdjλ,

δ
({1,6}) = b, δ

({2,4}) = bd, δ
({3,5}) = d,

δ
({1,5}) = abci, δ

(
1′) = cdkλ, δ(5) = abdj,

δ
({2,3}) = bcdiλ, δ

(
2′) = acdjλ, δ(3) = abk,

δ
({1,3}) = abcdλ, δ

({2,5}) = bcλ, δ
({4,6}) = adλ,

δ
({3,6}) = acdiλ, δ

(
3′) = abjλ, δ(6) = bcdk,

δ
({4,5}) = cdi, δ(4) = abcj, δ

(
5′) = abdkλ.

Put W = N/N ′. Suppose {x1, x2, . . . , x6} is a set of 6 points of Q such that the
smallest subspace [x1, x2, . . . , x6] of Q containing {x1, x2, . . . , x6} coincides with Q.
If τ is an abelian representation of Q in W , then by Property (R1) in the definition of
representation, W = 〈τ(x1), . . . , τ (x6)〉 and hence {τ(x1), . . . , τ (x6)} is a basis of W

(regarded as F2-vector space). Conversely, if {w1, . . . ,w6} is a basis of W , then the
map xi �→ wi , i ∈ {1, . . . ,6}, can be extended to a unique abelian representation τ

of Q in W . (Since there exists an abelian representation of Q in W , there must exist
an abelian representation τ for which τ(xi) = wi , i ∈ {1, . . . ,6}. The uniqueness of
τ follows from the fact that τ(y1 ∗ y2) = τ(y1)τ (y2) for any two distinct collinear
points y1 and y2 of Q.) Consider now the special case where x1 = {1,2}, x2 = {3,4},
x3 = {3,5}, x4 = {1,6}, x5 = {4,5}, x6 = 1, w1 = aN ′, w2 = cN ′, w3 = dN ′, w4 =
bN ′, w5 = cdiN ′ and w6 = cdjN ′. One indeed readily verifies that [x1, . . . , x6] = Q

and that {w1, . . . ,w6} is a basis of the F2-vector space W . Let δ′ denote the unique
abelian representation of Q in W for which δ′(xi) = wi , i ∈ {1, . . . ,6}. Then, using
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the fact that δ′(y1 ∗ y2) = δ′(y1)δ
′(y2) for any two distinct collinear points y1 and y2

of Q, one can verify that δ′(y) = δ(y)N ′ for every y ∈ Q. This implies that δ(y1 ∗y2)

is equal to either δ(y1)δ(y2) or δ(y1)δ(y2)λ for any two distinct collinear points y1

and y2 of Q.
Clearly, the map δ : Q → I2(N) satisfies the properties (i) and (iv) of the

lemma. We will now prove that also property (ii) of the lemma is satisfied. So, if
{y1, y2} is one of the 351 unordered pairs of distinct points of Q, then we need
to prove that [δ(y1), δ(y2)] = 1 if and only if y1 ∈ y⊥

2 . Since Q = [x1, . . . , x6],
it suffices to prove the following three statements: (I) the above claim holds if
{y1, y2} ⊆ {x1, . . . , x6}; (II) if [δ(y1), δ(y2)] = 1 for some distinct collinear points
y1 and y2, then also [δ(y1), δ(y1 ∗ y2)] = 1; (III) if the above claim holds for un-
ordered pairs {y1, y2} and {y1, y3} of points where y2 ∼ y3 and y1 
∈ y2y3, then
it also holds for the unordered pair {y1, y2 ∗ y3}. Statement (I) is easily veri-
fied by considering all 15 pairs {xi, xj } where i, j ∈ {1, . . . ,6} with i 
= j . As to
Statement (II), notice that [δ(y1), δ(y1 ∗ y2)] is equal to either [δ(y1), δ(y1)δ(y2)]
or [δ(y1), δ(y1)δ(y2)λ] which is in any case equal to 1. We now prove State-
ment (III). Since δ(y2 ∗ y3) is equal to either δ(y2)δ(y3) or δ(y2)δ(y3)λ, we
have [δ(y1), δ(y2 ∗ y3)] = [δ(y1), δ(y2)δ(y3)] = [δ(y1), δ(y2)][δ(y1), δ(y3)]. If y1

is collinear with precisely one of y2, y3, then y1 is not collinear with y2 ∗ y3 and
[δ(y1), δ(y2 ∗ y3)] = [δ(y1), δ(y2)][δ(y1), δ(y3)] = 1 · λ = λ. If y1 is collinear with
y2 ∗ y3, then [δ(y1), δ(y2 ∗ y3)] = [δ(y1), δ(y2)][δ(y1), δ(y3)] = λ · λ = 1. So, this
proves Statement (III) and finishes the proof of property (ii) of the lemma.

Property (iii) of the lemma is verified by considering all 45 lines L of Q and an
ordered pair (x, y) of distinct points of L. Notice that by property (ii) of the lemma,
we only need to consider one ordered pair (x, y) for each line L of Q. �

It is known that if the near hexagon Q(5,2) ⊗ Q(5,2) admits a non-abelian
representation, then the representation group must be the extra-special 2-group
21+18− [13, Theorem 1.6, p. 199]. We next construct a non-abelian representation of
Sθ

∼= Q(5,2) ⊗ Q(5,2) in the group 21+18− .
Let R = 21+18− with R′ = {1, λ}. Write R as a central product R = M ◦ N , where

M = 21+12+ and N = 21+6− . Let Y = Q ∪ Q ∪ Q. Then the subgeometry of Sθ whose
point set is Y together with the lines of types (L1)–(L4) is isomorphic to Q(5,2) ×
L3. Let P be the point set of Sθ and let δ be a map from Q to I2(N) satisfying the
conditions of Lemma 5.2. We extend δ to the set P \ Y using the map ε : Q → Z3

which we defined in the beginning of this section:

For L1 ∈ S, distinct points a, b ∈ L1 and j ∈ Z3, we define δ(a, b, j) := δ(u),
where u is the unique point of L1 with ε(u) = j .

Now, fix a non-abelian representation (M,φ) of Y . Such a representation exists by
Sect. 4. Let ψ be the following map from P to R:

• If q ∈ Y , then ψ(q) := φ(q).
• If q = (a, b, i) ∈ P \ Y , then ψ(q) = ψ(a, b, i) := φ(b)φ(ā)δ(a, b, i).

We prove the following.
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Theorem 5.3 (R,ψ) is a non-abelian representation of Sθ .

Proof Since the image of φ generates M and the image of δ generates N , we have
R = 〈ψ(P )〉. For every line L1 ∈ S and distinct a, b ∈ L1, we have [φ(a),φ(b̄)] = 1,
since a and b̄ are at distance two from each other. This implies that ψ(q) is an invo-
lution for every q ∈ P . We need to verify Condition (R2) in the definition of repre-
sentation. This is true for all lines of types (L1)–(L4), since they are also lines of Y

and ψ coincides with φ on Y .
Let {a, (a, b, i), (a, c, i)} be a line of type (L5). Since δ(a, b, i) = δ(a, c, i), we

have ψ(a, b, i)ψ(a, c, i) = φ(b)φ(ā)φ(c)φ(ā) = φ(b)φ(c) = φ(a) = ψ(a). Similar
argument holds for lines of types (L6) and (L7).

Next, consider a line {(a, b, i), (b, c, j), (c, a, k)} of type (L8). We have
ψ(a, b, i)ψ(b, c, j) = φ(b)φ(ā)φ(c)φ(b̄)δ(a, b, i)δ(b, c, j). Since {i, j, k} = Z3,
{δ(a, b, i), δ(b, c, j), δ(c, a, k)} = {δ(a), δ(b), δ(c)}. Since {a, b, c} ∈ S, Lem-
ma 5.2(iii) implies that δ(a, b, i)δ(b, c, j) = δ(c, a, k). So, ψ(a, b, i)ψ(b, c, j) =
φ(b)φ(c)φ(ā)φ(b̄)δ(c, a, k) = φ(a)φ(c̄)δ(c, a, k) = ψ(c, a, k). Notice that the sec-
ond equality holds since {a, b, c} and {ā, b̄, c̄} are lines of Y .

Finally, consider a line {(a,u, i), (b, v, j), (c,w, k)} of type (L9). Here the lines
au,bv, cw are in S, j = i + θ(au, bv) and k = i + θ(au, cw). Let δ(a,u, i) =
δ(α), δ(b, v, j) = δ(β) and δ(c,w, k) = δ(γ ), where α ∈ au,β ∈ bv and γ ∈ cw. So
ε(α) = i, ε(β) = j and ε(γ ) = k. Since ε(β)−ε(α) = j − i = θ(au, bv), Lemma 5.1
implies that α ∼ β . Similarly, α ∼ γ . Thus {α,β, γ } is a line of Q not contained
in S. Then by Lemma 5.2(iii), δ(a,u, i)δ(b, v, j) = δ(α)δ(β) = δ(γ )λ = δ(c,w, k)λ.
So ψ(a,u, i)ψ(b, v, j) = φ(u)φ(ā)φ(v)φ(b̄)δ(c,w, k)λ. Since v and ā are at dis-
tance three from each other, [φ(ā),φ(v)] = λ. So φ(ā)φ(v) = φ(v)φ(ā)[φ(ā),

φ(v)] = φ(v)φ(ā)λ. Then ψ(a,u, i)ψ(b, v, j) = φ(u)φ(v)φ(ā)φ(b̄)δ(c,w, k) =
φ(w)φ(c̄)δ(c,w, k) = ψ(c,w, k). The second equality holds since {ā, b̄, c̄} and
{u,v,w} are lines of Y . This completes the proof. �
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