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Abstract We give a complete classification of torsion pairs in the cluster category
of Dynkin type An. Along the way we give a new combinatorial description of
Ptolemy diagrams, an infinite version of which was introduced by Ng (1005.4364v1
[math.RT], 2010). This allows us to count the number of torsion pairs in the cluster
category of type An. We also count torsion pairs up to Auslander–Reiten transla-
tion.
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1 Introduction

Let A be the cluster algebra of Dynkin type An, let C be the cluster category of
Dynkin type An, and let P be a (regular) (n + 3)-gon. There are bijections between
the following sets:

(i) Clusters in A ,
(ii) Cluster tilting objects in C,

(iii) Triangulations by non-crossing diagonals of P .

See Caldero, Chapoton, and Schiffler [7] and Iyama [10].
To place this in a larger context, note that if u is a cluster tilting object in C and

U = add(u) is the full subcategory consisting of direct sums of direct summands of
u, then (U,�U) is a so-called torsion pair by Keller and Reiten [13, Sect. 2.1]. Here
� is the suspension functor of the triangulated category C. The triangulation on C is
due to Keller [12] and is based on the definition of C as an orbit category by Buan,
Marsh, Reineke, Reiten, and Todorov [6].

In this paper, we widen the perspective by investigating general torsion pairs in C.
A torsion pair in a triangulated category T is a pair (X,Y) of full subcategories closed
under direct sums and direct summands such that

(i) The morphism space T(x, y) is zero for x ∈ X, y ∈ Y;
(ii) Each t ∈ T sits in a distinguished triangle x → t → y → �x with x ∈ X, y ∈ Y.

This concept was introduced by Iyama and Yoshino in [11, Definition 2.2]. It is a tri-
angulated version of the classical notion of a torsion pair in an abelian category due
to Dickson, see [8]. In the triangulated situation, it has precursors in the form of the
t-structures of Beilinson, Bernstein, and Deligne, where, additionally, one assumes
�X ⊆ X (see [2]), and the co-t-structures of Bondarko and Pauksztello where, addi-
tionally, one assumes �−1X ⊆ X (see [5, 16]). Note that the terminology of torsion
pairs in triangulated categories was also employed by Beligiannis and Reiten in [3],
but they used it as a synonym for t-structures.

There has so far been little systematic investigation of torsion pairs in triangulated
categories, but Ng [15] gave a complete classification of torsion pairs in the cluster
category of type A∞ in terms of certain infinite combinatorial objects. See [9] for
details on this category. In particular, Ng introduced the Ptolemy condition which,
when supplanted to the finite situation, takes the following form: a Ptolemy dia-
gram is a set of diagonals of a finite polygon (with a distinguished oriented base
edge) such that, if the set contains crossing diagonals a and b, then it contains all
diagonals which connect end points of a and b. See Fig. 1 and Definition 2.1 be-
low.

For instance, a polygon with no diagonals (an “empty cell”) is a Ptolemy diagram,
as is a polygon with all diagonals (a “clique”). The triangle is the only Ptolemy di-
agram which is both an empty cell and a clique. If A and B are boundary edges of
two Ptolemy diagrams, then there is an obvious way of gluing A to B to obtain a
new Ptolemy diagram. We will show the following classification result on Ptolemy
diagrams and torsion pairs.
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Fig. 1 The Ptolemy condition

Theorem A

(i) There is a bijection between Ptolemy diagrams of the (n + 3)-gon and torsion
pairs in the cluster category C of Dynkin type An.

(ii) Each Ptolemy diagram can be obtained by gluing empty cells and cliques.

Note that a triangulation by non-crossing diagonals is a Ptolemy diagram. Under
the bijection of part (i), it corresponds to a torsion pair coming from a cluster tilting
object.

Part (i) is a type An analogue of Ng’s classification, but our proof is easier than
hers because it uses the gluing in part (ii). The gluing follows from the observation
that if a diagonal in a Ptolemy diagram crosses no other diagonal in the diagram,
then it divides the diagram into two smaller Ptolemy diagrams. In fact, the gluing can
be organised so as to be unique, and this permits us to prove the following counting
result which, by virtue of part (i), also counts torsion pairs in C.

Theorem B The number of Ptolemy diagrams of the (n + 3)-gon is

1

n + 2

∑

�≥0

2�

(
n + 1 + �

�

)(
2n + 2

n + 1 − 2�

)

with the convention that the second binomial coefficient is 0 for n + 1 − 2� < 0.

The first few values, starting at n = 0, are

1,4,17,82,422,2274,12665,72326,421214,2492112,

14937210,90508256,553492552,3411758334,21175624713,

132226234854,830077057878, . . .

This sequence may not have appeared previously in the literature. Based on this paper,
it is now item A181517 in the Online Encyclopedia of Integer Sequences [18]. Its
asymptotic behaviour can be determined explicitly, see Remark 3.2.

We are also able to determine the generating function for Ptolemy diagrams up
to rotation, see Proposition 3.5. This corresponds to counting torsion pairs up to
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Auslander–Reiten translation. The first few values are

1,3,5,19,62,301,1413,7304,38294,208052,

1149018,6466761,36899604,213245389,1245624985,

7345962126,43688266206, . . .

Again it seems that this sequence was not encountered before. It is now item A181519
in the Online Encyclopedia of Integer Sequences.

Köhler [14] recently classified and counted thick subcategories of triangulated
categories with finitely many indecomposables. This is the same as counting torsion
pairs (X,Y) in which X and Y are triangulated subcategories; these are known as stable
t-structures. One can show that the only stable t-structures in the cluster category C
are (C,0) and (0,C), so our results do not overlap with Köhler’s.

2 Characterizing torsion pairs combinatorially

Let P be an (n + 3)-gon with a distinguished oriented edge which we refer to as
the distinguished base edge. We denote vertices of the polygon by lower case Greek
letters. An edge is a set of two neighbouring vertices of the polygon. A diagonal is
a set of non-neighbouring vertices. Two diagonals {α1, α2} and {β1, β2} cross if their
end points are all distinct and come in the order α1, β1, α2, β2 when moving around
the polygon in one direction or the other. This corresponds to an obvious notion of
geometrical crossing. Note that a diagonal does not cross itself and that two diagonals
sharing an end point do not cross.

We recall the following from the introduction.

Definition 2.1 Let A be a set of diagonals in P . Then A is a Ptolemy diagram if it has
the following property: when a = {α1, α2} and b = {β1, β2} are crossing diagonals in
A, then those of {α1, β1}, {α1, β2}, {α2, β1}, {α2, β2} which are diagonals are in A.
See Fig. 1.

Note that, because of the distinguished base edge which we draw in bold, the two
Ptolemy diagrams in Fig. 2 are distinct.

Let C be the cluster category of type An. There is a bijection between indecompos-
able objects of C and diagonals of P . We use lower case roman letters for (indecom-
posable) objects of C and lower case fraktur letters for the corresponding diagonals.

Fig. 2 Two different Ptolemy
diagrams
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Fig. 3 The dotted diagonals are
nc of the solid diagonals

The suspension functor � acts on (indecomposable) objects and hence on diago-
nals; the action on diagonals is rotation by one vertex. Note that � is equal to the
Auslander–Reiten translation of C since C is 2-Calabi–Yau. We have

dim Ext1C(a, b) =
{

1 if a and b cross,
0 otherwise,

(1)

see [7].
The bijection between indecomposable objects of C and diagonals of P extends

to a bijection between subcategories of C closed under direct sums and direct sum-
mands, and sets of diagonals of P . We use upper case sans serif letters for subcat-
egories and upper case fraktur letters for the corresponding sets of diagonals. The
suspension functor acts on diagonals and hence on sets of diagonals.

Definition 2.2 If A is a set of diagonals, then

ncA = {
b is a diagonal of P | b crosses no diagonal in A

}
.

Figure 3 is an example where A consists of the solid diagonals and ncA of the
dotted ones. Note that this is not a Ptolemy diagram. In the example, A and ncA are
disjoint but this is not always the case since a diagonal does not cross itself.

Let A be a subcategory of C closed under direct sums and direct summands. We
define the perpendicular subcategories by

⊥A = {
c ∈ C |C(c, a) = 0 for each a ∈ A

}
,

A⊥ = {
c ∈ C |C(a, c) = 0 for each a ∈ A

}
.

If A corresponds to the set of diagonals A, then (1) implies that ⊥A corresponds to
�−1 ncA and A⊥ corresponds to � ncA; this follows using C(c,�d) = Ext1C(c, d).
Note that the operator nc commutes with � and �−1.

Proposition 2.3 The following are equivalent for a subcategory A of C which is
closed under direct sums and direct summands.

(i) A is closed under extensions, that is, if a1, a2 ∈ A and a1 → b → a2 → �a1 is a
distinguished triangle of C, then b ∈ A.
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(ii) (A,A⊥) is a torsion pair.
(iii) A = ⊥(A⊥).
(iv) A = nc ncA.

Proof (i) ⇒ (ii) holds by [11, Proposition 2.3(1)] since A is contravariantly finite
because it has only finitely many indecomposable objects. (Indeed, C itself has only
finitely many indecomposable objects.)

(ii) ⇒ (iii) holds by the remarks following [11, Definition 2.2].
(iii) ⇒ (i): If X is any full subcategory of C then ⊥X is closed under extensions.

Namely, if a1, a2 ∈ ⊥X and a1 → b → a2 → �a1 is a distinguished triangle, then
each x ∈ X gives an exact sequence C(a2, x) → C(b, x) → C(a1, x). The outer terms
are 0, so C(b, x) = 0 whence b ∈ ⊥X.

(iii) ⇔ (iv) follows from the remarks before the proposition by which A⊥ corre-
sponds to � ncA and ⊥(A⊥) corresponds to �−1 nc(� ncA) = nc ncA. �

Remark 2.4 Note that by an easy argument, in a torsion pair (X,Y) we always have
Y = X⊥; see [11, Definition 2.2]. It follows that every torsion pair in C has the form
(A,A⊥) for one of the subcategories A in Proposition 2.3. By the proposition, there is
hence a bijection between torsion pairs in C and sets of diagonals A with A = nc ncA.

Let P be the set of Ptolemy diagrams in polygons of any size with a distinguished
base edge. For convenience, we will consider the edges of the polygon to be part
of a Ptolemy diagram. Moreover, P includes the degenerate Ptolemy diagram con-
sisting of two vertices and the distinguished base edge. We give a different (global)
description of Ptolemy diagrams by establishing a recursive combinatorial equation
for P .

Recall that a polygon with no diagonals is called an empty cell and that a polygon
with all diagonals is called a clique; these are both Ptolemy diagrams.

Proposition 2.5 The set P is recursively given as the disjoint union of

(i) The degenerate Ptolemy diagram,
(ii) An empty cell with at least three edges, one of which is the distinguished base

edge, where we have glued onto each other edge an element of P along its
distinguished base edge,

(iii) A clique with at least four edges, one of which is the distinguished base edge,
where we have glued onto each other edge an element of P along its distin-
guished base edge.

These types correspond to the three parts of the right hand side of the equation in
Fig. 4. In particular, a Ptolemy diagram can be decomposed completely into Ptolemy
diagrams which are either empty cells or cliques.

Proof It is clear that the sets (i), (ii), and (iii) are disjoint.
Let a non-degenerate Ptolemy diagram A be given with distinguished base edge

{α,β}. We will show that A is either of type (ii) or type (iii). For convenience, we will
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Fig. 4 The decomposition of the set of Ptolemy diagrams with a distinguished base edge

consider the vertices of the polygon to be ordered in an obvious way, starting with α

and ending with β .
Type (ii): Suppose that there do not exist crossing diagonals a and b in A ending

in α, respectively β . We will show that A is of type (ii).
Consider increasing sequences of vertices α, γ1, . . . , γm, β with m ≥ 1 for which

the edges and diagonals

{α,γ1}, {γ1, γ2}, . . . , {γm−1, γm}, {γm,β}
are in A, and choose a sequence with m minimal. For ease of notation, write γ0 = α

and γm+1 = β . The displayed edges and diagonals along with the distinguished base
edge {α,β} bound a region C.

We show that A is of type (ii) by showing that no diagonal in A intersects the
interior of C. Then C is an empty cell and each {γj , γj+1} with 0 ≤ j ≤ m divides
C from a (smaller) Ptolemy diagram; see Fig. 4. Note that each smaller Ptolemy
diagram is clearly uniquely determined.

Suppose that A does contain a diagonal {ε1, ε2} intersecting the interior of C. We
can assume ε1 < ε2. There are three cases, each leading to a contradiction.

(a) ε1 and ε2 are among the γi . Then ε1 = γj−1 and ε2 = γk+1 where 1 ≤ j ≤ k ≤ m.
This contradicts that m is minimal.

(b) One of ε1 and ε2 is among the γi and the other is not, see Fig. 5. By symme-
try, we can assume ε1 = γj−1 and γk < ε2 < γk+1 with 1 ≤ j ≤ k ≤ m. The
diagonals {ε1, ε2} = {γj−1, ε2} and {γk, γk+1} cross. By the Ptolemy condition,
c = {γj−1, γk+1} is in A.

If c intersects the interior of C then we are in case (a). If it does not, then
we must have γj−1 = α and γk+1 = β . But then there are crossing diagonals
a = {α, ε2} = {γj−1, ε2} = {ε1, ε2} and b = {β,γk} = {γk, γk+1} ending in α, re-
spectively β , contradicting our assumption on A.

(c) ε1 and ε2 are not among the γi , see Fig. 5. Then γj−1 < ε1 < γj and γk < ε2 <

γk+1 for some 1 ≤ j ≤ k ≤ m. The diagonal {ε1, ε2} crosses each of the diago-
nals {γj−1, γj } and {γk, γk+1} so, by the Ptolemy condition, each of the diagonals
{ε1, γk+1} and {γj−1, ε2} is in A. These diagonals cross, so by the Ptolemy con-
dition c = {γj−1, γk+1} is in A. Now conclude the argument by using the second
paragraph of (b).

Type (iii): Suppose that crossing diagonals a = {α, δ} and b = {β, δ′} ending in α,
respectively β , do exist in A. We will show that A is of type (iii).
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Fig. 5 In type (ii), the diagonal {ε1, ε2} forces the presence of the diagonal {γj−1, γk+1}

By the Ptolemy condition, {α, δ′} and {β, δ} are in A. Consider those vertices
which are connected to each of α and β by an edge or a diagonal in A. Denote them
by δ1, . . . , δm in increasing order and note that m ≥ 2 because δ and δ′ are among
the δi . For ease of notation write δ0 = α and δm+1 = β .

Let 0 ≤ j < k ≤ m + 1. Then {δj , δk} is in A. Namely, this holds by definition if
j = 0 since then δj = α. So we can assume 1 ≤ j and by symmetry k ≤ m. But then
{α, δk} and {δj , β} are crossing diagonals in A and by the Ptolemy condition {δj , δk}
is in A. So the δi form the vertices of a clique of edges and diagonals in A which
contains the distinguished base edge.

We show that A is of type (iii) by showing that if {δj , δj+1} is a diagonal with
0 ≤ j ≤ m, then no diagonal in A crosses {δj , δj+1}: then {δj , δj+1} divides the clique
with vertices δi from a (smaller) Ptolemy diagram; see Fig. 4. Note that, again, each
smaller Ptolemy diagram is uniquely determined.

So suppose that A contains a diagonal {ε1, ε2} crossing {δj , δj+1}. We can assume
that ε1 < ε2 and by symmetry considerations that δj < ε1 < δj+1. Note that this
entails j ≤ m − 1.

There are two cases, each leading to a contradiction.

(a) ε2 �= β , see Fig. 6. Then the diagonal {ε1, ε2} crosses the diagonals {α, δj+1} and
{β, δj+1} so, by the Ptolemy condition, {α, ε1} and {β, ε1} are in A. Hence ε1 is
among the δi , contradicting δj < ε1 < δj+1.

(b) ε2 = β , see Fig. 6. Then {β, ε1} = {ε1, ε2} is in A. Moreover, {ε1, ε2} crosses
{α, δj+1} so, by the Ptolemy condition, {α, ε1} is in A. Hence ε1 is again among

the δi , which is a contradiction. �

Remark 2.6 The proposition proves Theorem A(ii) from the introduction: each
Ptolemy diagram can be uniquely decomposed into regions, each of which is either
an empty cell or a clique.

Moreover, let A be a Ptolemy diagram. To obtain ncA from A, one replaces empty
cells by cliques and vice versa in the decomposition.

Namely, let d be an arbitrary diagonal. If d separates two regions of A, then d is
one of the diagonals along which two smaller Ptolemy diagrams have been glued in
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Fig. 6 In type (iii), the diagonal
{ε1, ε2} forces the presence of
the diagonals {α, ε1} and {β, ε1}

the decomposition to form A so, clearly, d crosses no diagonal of A, thus d ∈ ncA.
If d is an internal diagonal in a clique, then it crosses some other internal diagonal
which must be in A, so d �∈ ncA. If d is an internal diagonal in an empty cell, then it
crosses no diagonal of A, so d ∈ ncA.

Note that we have A = ncA if and only if A is a triangulation of the polygon, since
a triangle is the only polygon which is an empty cell and a clique simultaneously.

With the above decomposition, we can show the following alternative characteri-
zation of Ptolemy diagrams.

Proposition 2.7 We have A = nc ncA if and only if A is a Ptolemy diagram.

Proof Suppose that A = nc ncA. In Fig. 1, consider the diagonal {α1, β1}. The diag-
onals crossing it are precisely the diagonals which connect a vertex on one side of
{α1, β1} with a vertex on the other side of {α1, β1}. But each such diagonal intersects
a or b so is outside ncA. Hence {α1, β1} is in nc ncA = A. The other diagonals in the
Ptolemy condition follow similarly.

Conversely, suppose that A satisfies the Ptolemy condition. By Remark 2.6, the
operator nc interchanges empty cells and cliques in the decomposition of A according
to Proposition 2.5, so it is clear that A = nc ncA. �

Remark 2.8 Combining Remark 2.4 and Proposition 2.7 proves Theorem A(i) of the
introduction. In particular, to count torsion pairs in the cluster category of type An

we only need to determine the number of Ptolemy diagrams of the (n + 3)-gon with
a distinguished base edge.

3 Counting the number of Ptolemy diagrams

In this section, we deduce expressions for the number of Ptolemy diagrams. First, we
compute the number of Ptolemy diagrams with a distinguished base edge. In a second
step, we also determine the number of Ptolemy diagrams up to rotation.
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3.1 Ptolemy diagrams with a distinguished base edge

Using combinatorial reasoning, we shall obtain below an equation for the (ordinary)
generating function

P (y) =
∑

N≥1

#
{
Ptolemy diagrams of the (N + 1)-gon

}
yN . (2)

Let us briefly recall some facts from the general theory of generating functions, see,
for example, the book by Bergeron, Labelle and Leroux [4, Sect. 1.3] or Aigner [1,
Sects. 3.2 and 3.3]. Of course, our objective is to convey the general idea, precise
formulations are given in the cited textbooks.

Let F and G be sets of objects. Each object is assigned to a non-negative integer,
referred to as its size. Let F (y) and G(y) be their generating functions. Then the
generating function

• For the disjoint union of F and G is F (y) + G(y), and
• For the set of objects obtained by pairing objects from F and G is F (y)G(y), where

the size of a pair is the sum of the sizes of its two components.

Because of the natural correspondence with the operation on generating functions,
we denote the pairing of sets considered in the second item by F · G .

We can now derive an equation for the generating function of lists of Ptolemy
diagrams L P . Namely, either such a list is empty, or it is a pair whose first component
is a Ptolemy diagram and whose second component is a list of Ptolemy diagrams. We
thus have

L P = ∅ ·∪ P · L P ,

or, on the level of generating functions,

L P (y) = 1 + P (y)L P (y),

which entails

L P (y) = 1

1 − P (y)
.

Clearly, we can interpret the set of Ptolemy diagrams of type (ii) in Proposition 2.5
as the set of lists of Ptolemy diagrams with at least two elements. With a slight shift
of perspective, this is the same as a triple whose first two components are Ptolemy di-
agrams and whose last component is a list of diagrams. Hence, this set has generating
function P (y)2/(1 − P (y)). Similarly, a Ptolemy diagram of type (iii) in Proposi-
tion 2.5 can be interpreted as a list of diagrams with at least three elements. Namely,
recall that in the decomposition of Proposition 2.5, the cliques which occur have at
least four edges, one of which is the distinguished base edge; to the other three, we
can attach Ptolemy diagrams.

In summary, using the combinatorial decomposition of Proposition 2.5 sketched
in Fig. 4,

P (y) = y + P (y)2

1 − P (y)
+ P (y)3

1 − P (y)
.
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Let us rewrite this equation (essentially multiplying by 1 − P (y)), to make it
amenable to Lagrange inversion (e.g. [4, Sect. 3.1] or [1, Theorem 3.8]):

P (y) = y
1 − P (y)

1 − 2P (y) − P (y)2
,

i.e. P (y) = yA(P (y)) with A(y) = (1 − y)/(1 − 2y − y2). Thus, denoting the coef-
ficient of yN in P (y) with [yN ]P (y), we have

[
yN

]
P (y) = 1

N

[
yN−1]

(
1 − y

1 − 2y − y2

)N

.

We can now apply the binomial theorem (1 + z)a = ∑
k≥0

(
a
k

)
zk , for a ∈ Z and

(
a
k

) =
a(a − 1) · · · (a − k + 1)/k!, to transform the right hand side into a sum. As pointed
out by Christian Krattenthaler the result becomes much nicer if we first rewrite the
expression slightly, taking advantage of the fact that 1 − 2y −y2 is ‘almost’ (1 −y)2:

(1 − y)N
(
1 − 2y − y2)−N = (1 − y)−N

(
1 − 2y2

(1 − y)2

)−N

= (1 − y)−N
∑

�≥0

(−N

�

)
(−1)�

(2y2)�

(1 − y)2�

=
∑

�≥0

(−N

�

)
(−1)�

(
2y2)�

∑

k≥0

(−N − 2�

k

)
(−1)kyk

=
∑

k,�≥0

(−N

�

)(−N − 2�

k

)
(−1)k+�2�yk+2�. (3)

Extracting the coefficient of yN−1 in (3) by setting k = N − 1 − 2�, we obtain

[
yN

]
P (y) = 1

N

∑

�≥0

(−N

�

)( −N − 2�

N − 1 − 2�

)
(−1)N−1−�2�.

Finally, using
(−N

�

) = (−1)�
(
N+�−1

�

)
, we get that the number of Ptolemy diagrams of

an (N + 1)-gon with a distinguished base edge is

1

N

∑

�≥0

2�

(
N − 1 + �

�

)(
2N − 2

N − 1 − 2�

)
.

Setting N = n + 2 proves Theorem B of the introduction, and the first few values are
given there.

Remark 3.1 Note that Petkovšek’s algorithm hyper [17, Sect. 8] proves that the sum
above cannot be written as a linear combination of (a fixed number of) hypergeomet-
ric terms.
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Remark 3.2 Since the generating function P (y) satisfies an algebraic equation, the
asymptotic behaviour of the coefficients of P (y) can be extracted automatically, for
example, using the equivalent function in Bruno Salvy’s package gdev available
at http://algo.inria.fr/libraries/. Thus, we learn that the leading term of the asymptotic
expansion of [yN ]P (y) is

α√
πN3

ρN,

where ρ = 6.847333996370022 . . . is the largest positive root of 8x3 −48x2 −47x+4
and α = 0.10070579427884086 . . . is the smallest positive root of 1136x6 − 71x4 −
98x2 + 1.

3.2 Ptolemy diagrams up to rotation

Let us now turn to the enumeration of Ptolemy diagrams up to rotation. It seems
easiest to apply a relatively general technique known as the ‘dissymmetry theorem for
trees’. Namely, we will consider Ptolemy diagrams as certain planar trees, where each
inner vertex of the tree corresponds to either an empty cell or a clique of the diagram.
Thus, we will have to count trees according to their number of leaves, where the
edges incident to an inner vertex are cyclically ordered and additionally these inner
vertices ‘know’ whether they correspond to an empty cell or a clique. This situation
is covered by Proposition 3.3 below.

This proposition is phrased in the language of combinatorial species (as described
in [4]), which is at first a tool to compute with labelled objects. Formally, a species is
a functor from the category of finite sets with bijections into itself. Thus, applying a
species F to a finite set U , namely a set of labels, we obtain a new set F [U ], namely
the set of objects that can be produced using the given labels. Applying F to a bijec-
tion σ : U → V produces a bijection F [σ ] : F [U ] → F [V ], which, by functoriality,
corresponds to relabelling the objects. (However, when defining a particular species
here, we refrain from giving a precise definition of this relabelling operation.)

A simple, but nevertheless important species is the singleton species Y : it returns
the input set U if U has cardinality one and otherwise the empty set. Another basic
species we will need is the species of unordered pairs E2, which returns the input
set U if U has cardinality two and the empty set otherwise. Finally, for k ≥ 1 we
introduce the species of cycles Ck , which consists of all (oriented) cycles with k

labelled vertices.
We associate to every species F a so-called exponential generating function F (y),

which is given by

F (y) =
∑

N≥1

#F
[{1,2, . . . ,N}]yN

N ! ,

i.e. the coefficient of yN is the number of objects with labels {1,2, . . . ,N} produced
by F , divided by N !. In particular, the exponential generating function associated to
Y is Y(y) = y, and the exponential generating function associated to E2 is E2(y) =
y2/2. Finally, Ck(y) = (k − 1)! yk

k! = yk

k
.

http://algo.inria.fr/libraries/
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There are natural definitions for the sum F + G , the product F · G and the compo-
sition F ◦ G of two species F and G . We only give informal descriptions of the sets
of objects which they produce, and refer for precise definitions to [4, Sect. 1]. Let U

be a set of labels, then

• The set of objects in (F + G)[U ] is the disjoint union of F [U ] and G[U ];
• The set of objects in (F · G)[U ] is obtained by partitioning the set U in all possible

ways into two disjoint (possibly empty) sets V and W such that U = V ∪ W , and
producing all pairs of objects in

(
F [V ], G[W ]),

i.e. {(f, g) | f ∈ F [V ], g ∈ G[W ]};
• The set of objects in (F ◦ G)[U ] is the set of all tuples of the form

(
F

[{1,2, . . . , k}], G[B1], G[B2], . . . , G[Bk]
)
,

where {B1,B2, . . . ,Bk} is a set partition of U .

The composition of species can be visualised by taking an object produced by F ,
and replacing all its labels by objects produced by G , such that the set of labels is
exactly U . In particular, F ◦ Y = Y ◦ F = F .

Finally, we need to describe the derivative F ′ of a species F . Given a set of labels
U , we set F ′[U ] = F [U ·∪ {∗}], where ∗ is a ‘transcendental’ element, i.e. an element
that does not appear in U .

It should not come as a surprise (although it certainly needs a proof) that the
exponential generating functions associated to the sum, the product, the composition,
and the derivative of species are respectively F (y)+ G(y), F (y) · G(y), F (G(y)) and
F ′(y).

It remains to introduce the species of R-enriched trees bR and R′-enriched rooted
trees BR′ with labels on the leaves, see [4, Definition 13, Sect. 3.1 and p. 287,
Sect. 4.1]: let R be a species with #R[∅] = 0, #R[{1}] = 1 and #R[{1,2}] = 0. Then
an R-enriched tree on a set of labels U is a tree with at least two vertices, whose
vertices of degree one (i.e. the leaves) correspond to the labels in U . Additionally,
every vertex is assigned an object from R[N ], where N is the set of neighbours of
the vertex. Since #R[{1,2}] = 0, there are no vertices of degree two. Therefore, any
such tree must have more leaves than inner vertices and thus the set of R-enriched
trees with a finite number of leaves is finite. The condition #R[{1}] = 1 implies that
only the inner vertices carry additional structure.

An R′-enriched rooted tree on a set of labels U is a rooted tree, possibly an isolated
vertex, where the vertices of degree at most one (i.e. the leaves) correspond to the
labels in U . Additionally, every vertex is assigned an object from R′[N ], where N is
the set of those neighbours of the vertex which are further away from the root than
the vertex itself. Again, since #R′[{1}] = 0, no vertex can have a single successor,
and thus the set of R′-enriched rooted trees with a finite number of leaves is finite.

In our situation, we set R = Y + C≥3 + C≥4 where C≥k denotes the species of
cycles with at least k vertices. The derivative of R is

R′ = 1 + L≥2 + L≥3,
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Fig. 7 The correspondence
between R′-enriched rooted
trees and labelled Ptolemy
diagrams with base edge

where L≥k denotes the species of lists with at least k elements. We now see that
BR′ is isomorphic (in the sense of [4, Definition 12, Sect. 1.2]) to the combinatorial
species of Ptolemy diagrams with a distinguished base edge and labels on all ver-
tices except the counterclockwise first on the base edge. Namely, a Ptolemy diagram
can be regarded as an R′-enriched rooted tree as follows: the region attached to the
distinguished base edge corresponds to the root and the other regions to the internal
vertices of the tree, i.e. vertices which are not leaves, see Fig. 7. Note that the de-
generate Ptolemy diagram, consisting of the base edge only, carries one label. This
corresponds to the tree consisting of one isolated vertex, which is also labelled—
despite being the root of the tree.

Let us informally explain the meaning of the three summands in R′: the first sum-
mand, 1, applies if a vertex is a leaf and thus has no successor. The second summand,
L≥2, applies if a vertex corresponds to a region that is of type (ii) in the decomposi-
tion of Proposition 2.5, i.e. an empty cell, in which case the vertex must have at least
two successors. Finally, the third summand, L≥3, applies if a vertex corresponds to
a region that is of type (iii) in Proposition 2.5, in which case the vertex must have at
least three successors. In the latter two cases, the species of lists imposes an ordering
onto the successors of the vertex.

In a similar manner, we can see that bR is the species of Ptolemy diagrams up to
rotation and labels on all vertices. Here, enriching the inner vertices with the species
of cycles imposes a cyclic ordering on the neighbours of each vertex.

We can now state the announced tool. We reproduce it here in a slightly simplified
form; it is the special case of Theorem 4.1.7 in [4] obtained by setting X = 1. In
this special case, we additionally have to require #R0[{1,2}] = 0 to ensure well-
definedness of the species involved.

Proposition 3.3 Let R0 be a combinatorial species such that #R0[∅] = #R0[{1}] =
#R0[{1,2}] = 0 and let R = R0 + Y . Then the combinatorial species bR of R-
enriched trees and the combinatorial species of R′-enriched rooted trees BR′ are
related as follows:

bR + B2
R′ = (E2 + R0) ◦ BR′ + Y · BR′ .
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As far as the enumeration of labelled structures is concerned, this proposition is
not very interesting. Namely, it follows directly from the definition of the derivative
of a species that BR′ is the derivative of bR : the correspondence is accomplished by
making the root into another labelled vertex. In particular, the number of labelled
Ptolemy diagrams up to rotation with N + 1 vertices (and N + 1 labels) equals the
number of labelled Ptolemy diagrams with distinguished base edge with N + 1 ver-
tices (and N labels) and is given by N ! times the N th coefficient of P (y).

However, the proposition enables us to determine also the (ordinary) generating
function of unlabelled Ptolemy diagrams up to rotation. In the jargon of combinatorial
species, this is the isomorphism type generating function b̃R(y) of the species bR

with the specific value of R used above. In general, the isomorphism type generating

function of a species F is denoted F̃ (y) and we have the usual rules ˜(F + G)(y) =
F̃ (y) + G̃(y) and (̃F G)(y) = F̃ (y)G̃(y). To compute b̃R(y), we additionally need
to use cycle indicator series. We collect the facts significant for us in the following
lemma.

Lemma 3.4 Let F be a combinatorial species and ZF its cycle indicator series.
Then the generating function for the isomorphism types of F is given by

F̃ = ZF
(
y, y2, y3, . . .

)
(see [4, Theorem 8, Sect. 1.2]).

Moreover, let G be another species satisfying #G[∅] = 0. Then the generating function
for the isomorphism types of F ◦ G is given by

F̃ ◦ G = ZF
(

G̃(y), G̃
(
y2), G̃

(
y3), . . .

)
(see [4, Theorem 2, Sect. 1.4]).

The cycle indicator series of the species of cycles C is given by

ZC(p1,p2, . . .) =
∑

d≥1

φ(d)

d
log

(
1

1 − pd

)
,

where φ is Euler’s totient (see [4, (18), Sect. 1.4]).
The cycle indicator series of the two element set E2 (which coincides with the

2-cycle C2) is given by

ZE2(p1,p2, . . .) = 1

2

(
p2

1 + p2
)

(see [4, Table 5, App. 2]).

The cycle indicator series of the 3-cycle C3 is given by

ZC3(p1,p2, . . .) = 1

3

(
p3

1 + 2p3
)

(see [4, Table 5, App. 2]).

Note that, since P (y) is algebraic, P̃(y) = P (y). Putting all the bits together, we
find:
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Proposition 3.5 The generating function for Ptolemy diagrams up to rotation is

2
∑

d≥1

φ(d)

d
log

(
1

1 − P (yd)

)
− 1

2

(
3P (y)2 + P

(
y2)) − 1

3

(
P (y)3 + 2P

(
y3))

− 2P (y) + yP (y),

where P (y) is the generating function for Ptolemy diagrams with a distinguished
base edge, and φ(d) is Euler’s totient.

The first few coefficients are given in the introduction.

Proof We use Proposition 3.3 with R0 = C≥3 + C≥4. Since (formally) E2 + R0 =
Ck≥2 + Ck≥4 = 2C − 2Y − E2 − C3,

ZE2+R0 = 2
∑

d≥1

φ(d)

d
log

(
1

1 − pd

)
− 2p1 − 1

2

(
p2

1 + p2
) − 1

3

(
p3

1 + 2p3
)
.

Since P (y) is algebraic, we have B̃R′ = P (y) and therefore

b̃R(y) = ZE2+R0

(
P (y), P

(
y2), . . .

) + yP (y) − P (y)2

= 2
∑

d≥1

φ(d)

d
log

(
1

1 − P (yd)

)
− 2P (y) − 1

2

(
P (y)2 + P

(
y2))

− 1

3

(
P (y)3 + 2P

(
y3)) + yP (y) − P (y)2,

which is equivalent to the claim. �
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