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Abstract In this paper, we define and study what we call the double Catalan monoid.
This monoid is the image of a natural map from the 0-Hecke monoid to the monoid of
binary relations. We show that the double Catalan monoid provides an algebraization
of the (combinatorial) set of 4321-avoiding permutations and relate its combinatorics
to various off-shoots of both the combinatorics of Catalan numbers and the com-
binatorics of permutations. In particular, we give an algebraic interpretation of the
first derivative of the Kreweras involution on Dyck paths, of 4321-avoiding involu-
tions and of recent results of Barnabei et al. on admissible pairs of Dyck paths. We
compute a presentation and determine the minimal dimension of an effective repre-
sentation for the double Catalan monoid. We also determine the minimal dimension
of an effective representation for the 0-Hecke monoid.
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1 Introduction and description of the results

The 0-Hecke monoid Hn is the monoid obtained by specializing the defining relations
of the Hecke algebra at q = 0 (and changing signs of the canonical generators to get
rid of negatives). This is a classical object of study in both representation theory
and combinatorics with many applications; see, for example, [7, 9, 14, 21–24] and
references therein. An important quotient of the 0-Hecke monoid, as observed in
[12], is the monoid of all order preserving and non-decreasing transformations on
{1,2, . . . , n}, also known the Catalan monoid to emphasize that its cardinality is given
by the Catalan numbers. The presentation of Hn is very symmetric, but a large portion
of this symmetry is lost by going to the Catalan monoid, as the latter corresponds to
choosing a “one-way” orientation on the Dynkin diagram. In other words, there are
two different quotients of Hn, both isomorphic to the Catalan monoid, corresponding
to two different choices of the orientation.

The main object of study in the present paper is what we call the double Catalan
monoid. It is defined as the image of Hn in the semigroup Bn of binary relations under
the natural map sending a generator of Hn to the semiring sum (inside of Bn) of the
identity and the simple transposition of the symmetric group corresponding to this
generator. Equivalently, the double Catalan monoid can be described as the diagonal
image of Hn in the direct sum of two “opposite” Catalan quotients, corresponding to
the two different choices of orientation mentioned above.

The generators of the double Catalan monoid, as described above, appear in var-
ious guises in many rather different contexts. To start with, one can observe that the
sum of the identity and a simple reflection is an element of the Kazhdan–Lusztig
basis in the group algebra of Sn, see [16]. The binary relation representing this sum
appears in the theory of factor-powers of symmetric groups, see [10]. In the theory of
random walks, one often works with a “lazy” version of a walk to remove periodicity
phenomena. This amounts to standing still with probability 1

2 and following the orig-
inal random walk with probability 1

2 . The operator 1
2 (id + si) can be viewed then as a

lazy random walk operator. Its “booleanization” is exactly a generator of the double
Catalan monoid.

The paper is structured as follows. In Sect. 2, we recall the definition of the 0-
Hecke monoid and discuss a combinatorial (or semigroup-theoretic) and a geometric
realization of this monoid. The double Catalan monoid is introduced in Sect. 3. It is
defined as a submonoid of the monoid of binary relations. We also give an alterna-
tive realization of the double Catalan monoid as a quotient of the 0-Hecke monoid.
To some extent, the latter realization “restores” the symmetry lost under the projec-
tion of the 0-Hecke monoid onto the Catalan monoid. Section 4 interprets several
combinatorial results for 4321-avoiding permutations in terms of the algebraic struc-
ture of the double Catalan monoid. This includes a bijection between 4321-avoiding
permutations and elements of the double Catalan monoid, a bijection between 4321-
avoiding involutions and self-dual elements of the double Catalan monoid, and an
algebraic interpretation of the first derivative of the Kreweras involution on Dyck
paths and of the description of admissible pairs of Dyck paths in the sense of [3]. In
Sect. 5, we give a presentation of the double Catalan monoid by exploiting a result of
[29] characterizing vexillary permutations. In Sect. 6, we propose generalizations of
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both the Catalan and double Catalan monoids to other Coxeter groups and parabolic
subgroups (with our original definition corresponding to the case of the symmetric
group Sn and its maximal parabolic subgroup Sn−1).

In Sect. 5, we prove that the minimal dimension (over any field) of an injective
representation of the 0-Hecke monoid associated to a finite Coxeter group W equals
the sum of the indices of its maximal parabolics minus the rank of W . From this
we deduce that the minimal dimension (over any field) of an injective representation
of the double Catalan monoid corresponding to Sn is 2n − 2. Note that in general
the question of computing the minimal dimension of an injective representation of a
given monoid is very hard and there are few known techniques for doing this. The
key ingredient in our approach is a reinterpretation of the combinatorics of Bruhat
quotients in terms of the algebraic structure of left ideals of 0-Hecke monoids (a
similar interpretation appears in [27]).

2 0-Hecke monoids

2.1 Classical definition

Let N denote the set of all positive integers. For n ∈ N set N := {1,2, . . . , n}, N′ :=
{1,2, . . . , n − 1} and let Sn be the symmetric group on N. We will use the one-line
notation for elements of Sn and write a1a2 · · ·an for the permutation

(
1 2 . . . n

a1 a2 . . . an

)
.

As usual, for i ∈ N′ we denote by si the simple transposition (i, i + 1) of Sn. We
denote by id the identity element of Sn. Then the si are Coxeter generators of Sn and
satisfy the following set of defining relations (for all appropriate i, j ∈ N′):

s2
i = id; sisj = sj si, i �= j ± 1; sisi+1si = si+1sisi+1.

The corresponding 0-Hecke monoid Hn is then defined as generated by elements ei ,
i ∈ N′, subject to the following relations (for all appropriate i, j ∈ N′):

e2
i = ei; eiej = ej ei, i �= j ± 1; eiei+1ei = ei+1eiei+1. (1)

Reversal of words induces an involution on Hn that we term canonical.
For w ∈ Sn with reduced decomposition w = si1si2 · · · sik consider the element

zw := ei1ei2 · · · eik ∈ Hn. Then zw does not depend on the reduced decomposition
of w and the map w �→ zw is bijective (see [20, Theorem 1.13]). For w ∈ Sn, the
corresponding element zw is an idempotent if and only if w is the longest element of
some parabolic subgroup of Sn, see [22, Lemma 2.2]. In particular, Hn has exactly
2n−1 idempotents.
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2.2 Subset realization

Let P (Sn) denote the power semigroup of Sn, that is, the set of all subsets of Sn. It
is a monoid with respect to the operation A · B = {ab : a ∈ A,b ∈ B}. The following
statement was observed by several people (in particular, S. Margolis and the second
author mention this without proof in [19]):

Proposition 1 The submonoid T of P (Sn) generated by {id, si}, for i ∈ N′, is iso-
morphic to Hn.

Proof Set Ai := {id, si}. It is straightforward to verify that the Ai satisfy the follow-
ing relations:

A2
i = Ai; AiAj = AjAi, i �= j ± 1; AiAi+1Ai = Ai+1AiAi+1.

This means that the map ei �→ Ai extends uniquely to a surjective homomorphism
ϕ : Hn � T .

The subword property of the Bruhat order on Sn implies that, for every w ∈ Sn,
the subset ϕ(zw) coincides with the principal ideal of Sn (with respect to the Bruhat
order) generated by w. This implies that ϕ is injective and hence an isomorphism. �

In other words, Hn can be viewed as the monoid of principal Bruhat order ideals
under the usual multiplication of subsets. Recall that a monoid M is said to be J -
trivial if MaM = MbM implies a = b.

Corollary 2 The monoid Hn, realized as a submonoid of P (Sn) as above, is an
ordered monoid (by inclusion) in which {id} is the smallest element. In particular, Hn

is J -trivial.

Proof The first claim is obvious. The “in particular” statement follows from [28]. �

The order on Hn described in Corollary 2 corresponds to the Bruhat order under
the identification given by Proposition 1 (that is, zu ≤ zw if and only if u ≤ w in the
Bruhat order). A direct argument for J -triviality of Hn can be found in [12].

2.3 Realization via foldings of the Coxeter complex

The symmetric group Sn gives rise to an example of a Coxeter group. Every Coxeter
group W acts on a special simplicial complex Σ(W), called its Coxeter complex. The
Coxeter generators act by reflecting over the walls of the complex. The face poset of
Σ(W) is the set of all cosets of (standard) parabolic subgroups of W ordered by
reverse inclusion. For details concerning the theory of Coxeter complexes described
below, see [1].

In the case of the symmetric group Sn, there is a simple combinatorial descrip-
tion of this complex. The symmetric group acts on the n-simplex as its symmetry
group by permuting the vertices and extending uniquely to an affine map. The Cox-
eter complex Σ(Sn) of Sn is the barycentric subdivision of the boundary of the n-
simplex. Formally, the vertex set of Σ(Sn) consists of all non-empty proper subsets
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of N (and so there are 2n − 2 vertices). One should think of a subset as corresponding
to the barycenter of the corresponding face of the n-simplex. A simplex is then a set
{F1, . . . ,Fk} of subsets forming a flag F1 � F2 � · · · � Fk . Maximal faces are called
chambers in this context. The fundamental chamber C is the flag

{1} � {1,2} � · · · � {1, . . . , n − 1}.
Notice that the chambers are in bijection with permutations by listing the sequence

of elements adjoined at each step followed by the missing element. For example,
{3} � {34} � {341} corresponds to the permutation 3412. In general, one can identify
the face F1 � F2 � · · · � Fk with the ordered set partition (F1,F2 \ F1, . . . ,Fk \
Fk−1,N \ Fk), and so we can view the faces as ordered set partitions with at least
two blocks. Going down in the order corresponds to joining together two consecutive
blocks. The faces of the fundamental chamber are in bijection with subsets J of N′.
If J consists of i1 < i2 < · · · < ik , then the corresponding ordered set partition is

({1, . . . , i1}, {i1 + 1, . . . , i2}, . . . , {ik + 1, . . . , n}). (2)

This face and all the elements of its orbit under Sn are said to have type J . Notice that
the stabilizer of (2) is the parabolic subgroup generated by si , i ∈ N′ \J . For instance,
the panel (codimension one) face of C of type N′ \ {i} is (1, . . . , i − 1, {i, i + 1},
i + 2, . . . , n).

A simplicial endomorphism of Σ(Sn) is said to be type-preserving if it preserves
the type of each face. In particular, such an endomorphism must preserve the dimen-
sion of each simplex as the dimension of a face of type J is |J |. Type-preserving
endomorphisms are determined by their actions on chambers. To make this more
precise, consider the unoriented labeled Cayley graph Γ of Sn with respect to the
Coxeter generators. So the vertex set of Γ is Sn and there is an edge between v and
w labeled by sj if v−1w = sj . If we identify the chambers with vertices of Γ and
the panels with labeled edges by associating a face of type N′ \ {j} with the edge la-
beled sj , then one has that the monoid of type-preserving endomorphisms of Σ(Sn)

is isomorphic to the monoid of label-preserving endomorphisms of Γ .
The wall Hi of Σ(Sn) associated to the simple reflection si is the subcomplex

fixed by si . It consists of all ordered set partitions in which {i, i + 1} are in the same
block. A folding of Σ(Sn) is an idempotent type-preserving endomorphism ϕ such
that |ϕ−1(ϕ(C′))| = 2 (here ϕ−1 stands for the inverse image of a mapping) for each
chamber C′.

To every wall Hi is associated a unique folding ϕi such that ϕi(C) = siC. In-
tuitively, it fixes the half-space (or root) containing siC and reflects the half-space
containing C. Its action on a chamber wC is specified by the formula

ϕi(wC) =
{

siwC if l(w) < l(siw);
wC if l(w) > l(siw).

It now follows immediately that Hn is isomorphic to the monoid generated by the
foldings ϕi , with i ∈ N′, with the action on chambers being isomorphic to the regular
action of Hn on itself. In fact, the labeled Cayley graph Γ of Sn can be obtained from
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the Cayley digraph of Hn by removing the loop edges and forgetting the orientation.
Thus the action of Hn on Γ is essentially its natural action on its labeled Cayley
digraph.

The action of the generators of Hn on the Coxeter complex Σ(Sn) is easy to
describe. If F = (F1, . . . ,Fk) is an ordered set partition, then ϕi fixes F unless i and
i +1 are in different blocks of F and the block of i comes before the block of i +1. In
this case, one transposes i and i +1. For example, ϕ1({1,3}, {2,4}) = ({2,3}, {1,4}).

The observation that the 0-Hecke monoid acts on the Coxeter complex can essen-
tially be found in [15] where it is phrased in the language of root systems and Tits
cones (note that in this realization the action of the 0-Hecke monoid in not linear).

3 Double Catalan monoids

3.1 Binary relations and Boolean matrices

Denote by Bn the semigroup of binary relations on N. This is an ordered monoid
(with respect to inclusion). The semigroup Bn can be identified with the semigroup
Mn({0,1}) of all n × n-matrices over the Boolean semiring {0,1} in the following
way: to ξ ∈ Bn there correspond a matrix (ξi,j ), where ξi,j = 1 if and only if (i, j) ∈
ξ . This identification equips Bn with the structure of a semiring. In what follows, we
will freely use this identification and refer to elements of Bn both as relations and as
boolean matrices, depending on which is more convenient. Denote by Φ : Sn → Bn

the usual embedding and by (·)t : Mn({0,1}) → Mn({0,1}) the transpose map.
For ξ ∈ Bn and j ∈ N we set ξ(j) = {i : (i, j) ∈ ξ} ⊆ N. A binary relation ξ is

called convex provided that it is reflexive and for every i ∈ N the sets ξ(j) and ξ t (j)

are intervals of N (we will call this condition the interval condition). Let CBn denote
the set of all convex binary relations. The following statement is easy to check:

Proposition 3 The set CBn is a submonoid of Bn.

Clearly, the submonoid CBn is stable under transpose.

3.2 Definition of the double Catalan monoids

The idea of the following definition comes from an attempt of “booleanization” of
Proposition 1. For i ∈ N′ consider the element εi := Φ(id) + Φ(si) ∈ Bn (see the
example in Fig. 1). Denote by D Cn the submonoid of Bn generated by εi , i ∈ N′.
We will call D Cn the double Catalan monoid (our motivation for this name should
become clear by the end of this section). Note that each εi is convex and hence D Cn

ε1 =

⎛
⎜⎜⎝

1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , ε2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎞
⎟⎟⎠ , ε3 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 1

⎞
⎟⎟⎠

Fig. 1 The elements ε1, ε2, ε3 ∈ B4
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is a submonoid of CBn. As εt
i = εi , the involution (·)t restricts to an involution on

D Cn. From the definition it follows that D Cn is a submonoid of the factor power of
the symmetric group, studied in [10].

Remark 4 It is often useful to remember the following combinatorial description of
the action of generators of D Cn: If ξ ∈ Bn, then the matrix εiξ (resp., ξεi ) is obtained
from ξ by replacing the ith and the (i + 1)st rows (resp., columns) of ξ by their sum
(over the Boolean semiring {0,1}).

3.3 Catalan quotients of 0-Hecke monoids

Denote by C+
n and C−

n the quotients of Hn modulo the additional relations eiei+1ei =
ei+1ei and eiei+1ei = eiei+1 (for all appropriate i), respectively. We call these
monoids Catalan quotients of Hn, as |C+

n | = |C−
n | = Cn = 1

n+1

(2n
n

)
is the nth Catalan

number (see [26] and [12]). There is a more general family of the so-called Kiselman
quotients of Hn, studied in [12].

3.4 The enveloping Catalan monoid

Recall that a transformation ξ : N → N is called non-decreasing (resp., non-
increasing) provided that for all i ∈ N we have i ≤ ξ(i) (resp., i ≥ ξ(i)). Denote
by C+

n (resp., C−
n ) the classical Catalan monoid of all order preserving and non-

decreasing (resp., non-increasing) transformations on N. The monoid C+
n is ordered

with respect to the pointwise ordering on functions. Dually, the monoid C−
n is or-

dered with respect to the opposite of the pointwise ordering on functions. We have
C+

n
∼= C−

n
∼= C+

n
∼= C−

n , see [26] and [12]. Define the enveloping Catalan monoid Cn

as C+
n × C−

n . This is an ordered monoid with the product order.
Let P T n be the submonoid of Bn consisting of all partial transformations (i.e.,

ξ ∈ Bn such that |ξ(i)| ≤ 1 for all i ∈ N, see [11]). Define the maps max : Bn → P T n

and min : Bn → P T n as follows: the relation max(ξ) (resp., min(ξ)) contains (i, j)

if and only if i = max(ξ(j)) (resp., i = min(ξ(j))). An example of how this works is
given in Fig. 2. Our first essential observation is the following:

Theorem 5 The map Θ : CBn → Cn, ξ �→ (max(ξ),min(ξ)), is an isomorphism of
ordered monoids.

Proof Every ξ ∈ CBn is reflexive, which implies that, on the one hand, both max(ξ)

and min(ξ) are total transformations of N and, on the other hand, that max(ξ) is
non-decreasing and min(ξ) is non-increasing. Now the facts that max(ξ) ∈ C+

n and
min(ξ) ∈ C−

n follow easily from the interval condition. Therefore, Θ is well-defined.

ξ =

⎛
⎜⎜⎝

1 1 1 0
1 1 1 0
0 1 1 0
0 0 1 1

⎞
⎟⎟⎠ , max(ξ) =

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 1

⎞
⎟⎟⎠ , min(ξ) =

⎛
⎜⎜⎝

1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠

Fig. 2 The transformations max and min
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To show that Θ is bijective, we construct the inverse as follows: Given α ∈ C+
n

and β ∈ C−
n , we have α(i) ≥ i ≥ β(i) for all i ∈ N. Define ψ((α,β)) ∈ Bn as the

unique binary relation such that (i, j) ∈ ξ if and only if α(j) ≥ i ≥ β(j). It is easy to
check that ξ is, in fact, an element of CBn and that ψ is the inverse of Θ .

It is routine to verify that both Θ and ψ are order preserving, so it is left to check
that Θ is a homomorphism. This amounts to checking that the maps max and min are
homomorphisms when restricted to CBn. We will check it for max; for min one can
use similar arguments. Since for ξ ∈ CBn the element max(ξ) is a total transforma-
tion, it is enough to check that every (i, j) ∈ max(ξ)max(η), ξ, η ∈ CBn, belongs to
max(ξη). Let s ∈ N be such that (i, s) ∈ max(ξ) and (s, j) ∈ max(η). then (i, s) ∈ ξ

and (s, j) ∈ η and thus (i, j) ∈ ξη. Assume (i′, j) ∈ ξη. Then there is t ∈ N such
that (i′, t) ∈ ξ and (t, j) ∈ η. Then t ≤ s since s = max(η)(j). As max(ξ) is order
preserving, we get i′ ≤ i. The claim follows. �

3.5 Double Catalan monoids via 0-Hecke monoids

The following statement relates Hn to D Cn:

Proposition 6 There is a unique surjective homomorphism Ψ : Hn → D Cn of or-
dered monoids such that Ψ (ei) = εi for all i ∈ N′.

Proof The map Φ : Sn → Bn extends to a semiring homomorphism Φ : P (Sn) → Bn

(here P (Sn) is equipped with the obvious structure of a semiring with the union as
addition). Then Φ({id, si}) = εi and the claim follows from Proposition 1. �

From Proposition 6 and Sect. 3.4, it follows that the monoid D Cn can be under-
stood as the “diagonal” image of Hn in the enveloping Catalan monoid Cn. In par-
ticular, the monoid D Cn is the quotient of Hn modulo the intersection of the kernels
of canonical maps from Hn to C+

n and C−
n . Note that the mapping in Proposition 6

respects the canonical involutions.
For w ∈ Sn define the left-to-right maximum transformation αw and the right-to-

left minimum transformation βw of N for i ∈ N as follows (cf. [3]):

αw(i) = max
{
w(j) : j = 1,2, . . . , i

}
,

βw(i) = min
{
w(j) : j = i, i + 1, . . . , n

}
.

Obviously, we have αw(i) ≥ i ≥ βw(i) for all i ∈ N and αw ∈ C+
n , βw ∈ C−

n . The
next statement describes Ψ (zw) for all w ∈ Sn.

Proposition 7 For every w ∈ Sn the binary relation Ψ (zw) is the unique element in
CBn satisfying max(Ψ (zw)) = αw and min(Ψ (zw)) = βw .

Proof We prove this by induction on the length l(w) of w. If l(w) = 0, then w is the
identity transformation of N and Ψ (zw) is the identity binary relation. In this case,
the claim is easy to check.
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Assume now that the claim is true for some w and i ∈ N′ is such that l(wsi) >

l(w). The latter is equivalent to w(i) < w(i + 1). Define u := wsi . Then αw and αu

agree for all j �= i and βw and βu agree for all j �= i + 1. We claim that

αu(i) = αu(i + 1) = max
{
αw(i),αw(i + 1)

} = αw(i + 1); (3)

βu(i) = βu(i + 1) = min
{
βw(i), βw(i + 1)

} = βw(i). (4)

Indeed, if αw(i) > w(i +1), then αw(i) = αw(i +1) = αu(i) = αu(i +1). If αw(i) <

w(i + 1), then

αu(i) = αu(i + 1) = w(i + 1) = αw(i + 1) > αw(i).

This implies the formula (3) in both cases and the formula (4) is proved similarly.
Now the induction step follows from the inductive assumption and Remark 4. �

In particular, it follows that the natural map from Hn to C+
n (resp., C−

n ) takes zw

to αw (resp., βw).

4 Combinatorics of double Catalan monoids

4.1 Projection onto the Catalan quotient

Let us consider the natural projection p : Cn → C+
n . Define p := p ◦ Θ ◦ Ψ : Hn →

C+
n . For α ∈ C+

n set pα := {w ∈ Sn : p(zw) = α}.

Proposition 8

(a) The map p is surjective.
(b) For every α ∈ C+

n the set pα contains a unique 321-avoiding permutation πα .
(c) The element πα is the unique minimal element of pα with respect to the Bruhat

order.
(d) For every α ∈ C+

n the set pα contains a unique 312-avoiding permutation π ′
α .

(e) The element π ′
α is the unique maximal element of pα with respect to the Bruhat

order.
(f) The set pα is the Bruhat interval between πα and π ′

α .

Proof Given α ∈ C+
n define the value of πα on i ∈ N recursively as follows:

πα(i) =
{

α(i) if α(i) > α(i − 1);
min(N \ {πα(j) : j < i}) otherwise.

It is easy to check that πα ∈ Sn and that p(πα) = α, which proves claim (a). From the
construction it also follows directly that πα is 321-avoiding, which gives the existence
part of claim (b). The uniqueness part of claim (b) is proved as in [6, 4.2]. Claim (d)
follows from the bijection described in [6, Lemma 4.3].
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Assume that w ∈ pα . If the element w is not 321-avoiding (resp., 312-avoiding),
we can choose the corresponding 321-pattern (resp., 312-pattern) w(i),w(j),w(k)

for some i < j < k such that

either w(s) < min
(
w(j),w(k)

)
or w(s) > max

(
w(j),w(k)

)

for all s such that j < s < k. Then, swapping w(j) and w(k) changes the 321-pattern
into a 312-pattern, and vice versa. At the same time, going from the 321-pattern to
a 312-pattern we produce a smaller element with respect to the Bruhat order, and
vice versa. Moreover, this transformation clearly does not affect αw . This implies
claims (c) and (e). Claim (f) follows from the fact that all our homomorphisms are
order preserving. �

Some parts of Proposition 8 were observed in [8].

4.2 Projection onto the double Catalan monoid

For α ∈ D Cn define Ψα := {w ∈ Sn : Ψ (zw) = α}. Recall that a subset of a poset is
convex if it contains the intervals between all comparable points from this subset. The
main combinatorial result on double Catalan monoids is the following:

Proposition 9 Let α ∈ D Cn.

(a) The set Ψα contains a unique 4321-avoiding permutation τα .
(b) The element τα is the unique Bruhat minimal element in Ψα .
(c) An element w ∈ Ψα is Bruhat maximal if and only if it is 4231-avoiding.
(d) The set Ψα is Bruhat convex.

Proof Using Proposition 7, the proof of claim (a) is similar to the proof of [6,
Lemma 4.21]. The rest is similar to the proof of Proposition 8. �

Proposition 9 reduces enumeration of double Catalan monoids to that of 4321-
avoiding permutations. There are several formulae (due to I. Gessel [13]), enumer-
ating the latter, see [6, 4.4.3] for details. Note that the set Ψα might contain several
Bruhat maximal elements in general, see [6, Theorem 4.18].

4.3 First derivative of the Kreweras involution

Denote by Dn the set of all Dyck paths of semilength n (i.e., all lattice paths from
(0,0) to (2n,0), with steps (1,1) or (1,−1), that never go below the x-axis). Let
Δ : C+

n → Dn be the usual bijection defined by outlining, from below, the entries “1”
in the matrix of an element in C+

n and then rotating the path clockwise by 135◦, as
shown in Fig. 3.

Define the map i : Dn → Dn as follows: for α ∈ C+
n set

i
(
Δ(α)

) := Δ
(
p(z

π−1
α

)
)
. (5)
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Fig. 3 The map Δ

Fig. 4 First derivative of the
Kreweras involution

Note that πα was defined to be 321-avoiding (see Sect. 4.1). It follows that the inverse
π−1

α is 321-avoiding as well (and hence coincides with πβ for some β ∈ C+
n ).

An element α ∈ C+
n corresponds, via Δ, to an irreducible Dyck path if and only if it

has no fixed-point other than n. This in turn is equivalent to πα not having an invariant
subset of the form {1,2, . . . , k} for k < n. In particular, πα has no fixed-point. For
such α the fact that πα is 321-avoiding can be reformulated as follows: given i, j ∈ N,
i < j , then πα(i) < i and πα(j) < j imply πα(i) < πα(j) (and, similarly, πα(i) > i

and πα(j) > j imply πα(i) < πα(j)). This yields that on irreducible Dyck paths
the map i defined in (5) coincides with the first derivative of the involution on Dn

constructed by Kreweras in [18]. This extends to reducible Dyck paths is the obvious
way. The derivative appears, for example, in [3]. Thus (5) gives a nice interpretation
of this derivative via inversion of 321-avoiding permutations. An example of how this
works is given in Fig. 4.

4.4 Admissible pairs of Dyck paths

An element ξ ∈ C Bn is determined by a pair of Dyck paths corresponding to max(ξ)

and max(ξ t ). It is natural to ask which pairs of Dyck paths correspond to elements
of the double Catalan monoid. Equivalently, given w ∈ Sn we have the pair of Dyck
paths defined as follows:

Δw := (
Δ

(
p(zw)

)
,Δ

(
p(zw−1)

))
.

A pair of Dyck paths of the form Δw is called admissible. Admissible pairs of Dyck
paths were recently described in [3] in terms of the first derivative of the Kreweras
involution and a certain partial order on C+

n . In the previous subsection, we gave
an algebraic interpretation of the first derivative of the Kreweras involution. In this
subsection, we give an algebraic interpretation of the partial order on C+

n used in [3]
and hence provide an algebraic interpretation of the main result of [3].

Denote by ≺ the order on C+
n defined as follows: for α,β ∈ C+

n we set α ≺ β if
and only if there exist γ1, γ2 ∈ C+

n such that β = γ1α and β = αγ2. This is the dual
of what is classically called the H-order in the semigroup theory literature (here H
stands for the corresponding Green’s relation).

Every map f : X → Y defines an equivalence relation ρf on X, called the kernel
partition of f , as follows; for a, b ∈ X we have (a, b) ∈ ρf if and only if f (a) =
f (b).
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Fig. 5 A cover δ′ of δ with
respect to ≤

Fig. 6 First part of the proof of
Proposition 10

Fig. 7 Second part of the proof
of Proposition 10

Denote by ≺′ the preimage under Δ of the transitive closure of the relation ≤ on
Dn defined in [3] as follows: Let δ be a Dyck path (take, for example, the left path
in Fig. 5). The bullet points, as in Fig. 5, are called valleys. To get a cover of δ with
respect to ≤ one is allowed to choose an arbitrary (in particular, empty) collection
of consecutive valleys of δ and “rectangularly complete” them to peaks as shown on
the right hand side of Fig. 5 (for the second and the third valleys from the left). Our
principal observation here is the following:

Proposition 10 The relations ≺ and ≺′ coincide.

Proof Let α ∈ C+
n . Consider the corresponding Dyck path Δ(α) (schematically

shown as the solid path in Fig. 6). Assume that α ≺ β for some β ∈ C+
n . Observe

that the image of any element αγ ∈ C+
n is a subset of the image of α. This means

that every ascent of Δ(β) either overlaps with an ascent of Δ(α) or belongs to a
dotted line as shown in Fig. 6. Similarly, the kernel partition defined by any element
γ α ∈ C+

n is coarser than the kernel partition of α. This means that every descent of
Δ(β) either overlaps with a descent of Δ(α) or belongs to a dashed line as shown in
Fig. 6. Hence Δ(β) can be obtained from Δ(α) by a sequence of operations of rect-
angular completion as described above in the definition of ≺′. In particular, α ≺′ β .

Let α ∈ C+
n . For i = 1, . . . , n − 1 set γi := p(ei). Assume that Δ(α) is given

schematically as shown by the solid path in Fig. 7. It is easy to check that either
Δ(γiα) = Δ(α) or Δ(γiα) is obtained by replacing the solid part of the path beneath
the dashed path on Fig. 7 with this dashed path. Similarly, either Δ(αγi) = Δ(α) or
Δ(αγi) is obtained by replacing the solid part of the path beneath the dotted path on
Fig. 7 with this dotted path.

Now let δ and δ′ be two Dyck paths such that δ ≤ δ′, α = Δ−1(δ), and β =
Δ−1(δ′). By an inductive application of the previous paragraph, we can find γ, γ ′ ∈
C+

n such that β = γ α and β = αγ ′, which implies that α ≺ β . As ≺′ is a transitive
closure of the preimage of ≤ under Δ, it follows that α ≺′ β implies α ≺ β , complet-
ing the proof. �

As a corollary we can reformulate [3, Theorem 6] as follows:
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Corollary 11 A pair (δ, δ′) of Dyck paths is admissible if and only if Δ−1(i(δ)) ≺
Δ−1(δ′) and Δ−1(i(δ′)) ≺ Δ−1(δ).

4.5 Self-dual elements

It turns out that self-dual elements of D Cn also admit a very nice combinatorial inter-
pretation. Note that the involution on D Cn is the restriction of the matrix transpose,
and hence the self-dual elements of D Cn are exactly those given by symmetric matri-
ces. In particular, this includes the 2n−1 idempotents. Note that idempotents of D Cn

are exactly direct sums of matrices consisting entirely of 1s.

Proposition 12 Let w ∈ Sn be a 4321-avoiding permutation. Then Ψ (zw)t = Ψ (zw)

if and only if w is an involution.

Proof The “if” statement follows directly from the fact that Ψ is a homomorphism
of involutive semigroups. The “only if” statement follows from the same fact and
the additional observation that the inverse of a 4321-avoiding permutation is 4321-
avoiding. �

It is well-known (see, e.g., [2] and references therein), that 4321-avoiding involu-
tions in Sn are in bijection with Motzkin paths of length n (i.e., all lattice paths from
(0,0) to (n,0), with steps (1,1), (1,−1) or (1,0), that never go below the x-axis).
In particular, it follows from Proposition 12 that the number of self-dual elements of
D Cn equals the nth Motzkin number Mn (sequence A001006 in [25]).

5 A presentation of the double Catalan monoids

Our goal in this section is to give a finite presentation of the double Catalan monoid
D Cn. To do this, we will take advantage of a result of Tenner in [29], generalizing a
celebrated result in [4]. To state her result, we need to introduce some notation. Let
si1si2 · · · sir be a reduced decomposition of a permutation w. Then if m ≥ 0, define the
m-shift of w to be the permutation with reduced decomposition si1+msi2+m · · · sir+m

(this may be defined in a larger symmetric group). For example, the permutation 4321
has reduced decomposition

s1s2s3s1s2s1. (6)

Its 2-shift is the permutation with reduced decomposition

s3s4s5s3s4s3,

which is 126543.
A permutation is called vexillary if it is 2143-avoiding. For example, the permu-

tations 321 and 4321 are vexillary. Tenner established the following characterization
of vexillary permutations [29, Theorem 3.8].
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Theorem 13 A permutation w is vexillary if and only if, for any permutation v con-
taining w as a pattern, some reduced decomposition of v contains an m-shift (for
some m ≥ 0) of some reduced decomposition of w as a factor.

For example, the vexillary permutation 321 has reduced decomposition s1s2s1. It
follows from Theorem 13 that a permutation is 321-avoiding if and only if it has no
reduced decomposition containing a factor of the form sisi+1si , a result first proved
in [4]. A reduced decomposition of the vexillary permutation 4321 is given in (6). We
deduce that a permutation is 4321-avoiding if and only it has no reduced decomposi-
tion containing a factor of the form

sisi+1si+2sisi+1si . (7)

We are now in a position to provide our presentation for the double Catalan
monoid.

Theorem 14 The monoid DCn admits a presentation with generating set fi , i ∈ N′,
and defining relations (for all appropriate i, j )

f 2
i = fi; (8)

fifj = fjfi, i �= j ± 1; (9)

fifi+1fi = fi+1fifi+1; (10)

fifi+1fi+2fi+1fi = fifi+1fi+2fifi+1fi. (11)

Proof Let M be the monoid with the above presentation. Consider the assignment
mapping the generators fi to εi . We already know that the elements εi satisfy (8)–
(10). It remains to check that they satisfy (11). Observe that sisi+1si+2si+1si is a
reduced decomposition of the transposition u = (i, i +3), whereas sisi+1si+2sisi+1si
is a reduced decomposition of the permutation w = (i, i +3)(i +1, i +2). Therefore,
αu = αw as both functions send i, i +1, i +2, i +3 to i +3 and fix all other elements.
Similarly, βu = βw as both functions send i, i + 1, i + 2, i + 3 to i and fix all other
elements. Proposition 7 now yields that the εi satisfy (11). Thus the quotient map
Hn → D Cn factors through M .

In light of Proposition 9(a), to prove the theorem, it suffices to prove the following:
if λ : Hn → M denotes the projection, then for each zw ∈ Hn there is a 4321-avoiding
permutation u with λ(zu) = λ(zw). We prove this by induction on length, the case
l(w) = 0 being trivial. If w is 4321-avoiding, there is nothing to prove. Otherwise,
Theorem 13 implies that w has a reduced decomposition containing as a factor a shift
of some reduced decomposition of 4321. Applying braid relations, we may assume
it contains a factor of the form (7). Application of a relation of the form (11) yields a
shorter length permutation w′ such that λ(zw′) = λ(zw). The claim follows. �

Note that in the presence of relations (9)–(10) one has that (11) is self-dual since
the right hand side can be changed to its reversal using braid relations.
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6 Generalization to other Coxeter groups

6.1 0-Hecke monoid

Let (W,S) be a Coxeter system; so W is a Coxeter group and S is the set of simple
reflections or Coxeter generators. The corresponding 0-Hecke monoid H(W,S) is
the monoid generated by a set of idempotents es , indexed by s ∈ S, subject to the
braid relations of W . For example, we have Hn

∼= H(Sn, {s1, . . . , sn−1}). We often
write H(W) if S is understood. One calls |S| the rank of W and denotes it by r(W).

There are realizations of H(W) as the monoid of principal Bruhat ideals and the
monoid generated by foldings along the walls of the fundamental chamber of the
Coxeter complex Σ(W), exactly as in the case of type A Coxeter groups (see Sect. 2).
Also we have the canonical bijection w �→ zw between W and H(W), as in the case
of type A. We denote by l the length function for W . We shall frequently use that

eszw =
{

zsw if l(sw) > l(w);
zw if l(sw) < l(w); (12)

and dually for right multiplication.
If J ⊆ S, it will be convenient to denote by WJ the corresponding parabolic sub-

group of W generated by J . In the case that WJ is finite, it has a longest element,
denoted wJ , which moreover is an involution. The corresponding element zwJ

is an
idempotent that we write eJ and all idempotents of H(W) are of this form. In par-
ticular, when W is finite, then there are 2r(W) idempotents in H(W). It is usual to
denote the longest element of a finite Coxeter group by w0. Let us therefore denote
the corresponding idempotent of H(W) by e0. Notice that e0 is the zero of H(W).
Observe that eJ ≤ eK if and only if K ⊆ J , where we recall that idempotents in a
semigroup are ordered by e ≤ f if and only if ef = e = f e.

If w ∈ W , then the left and right descent sets of w are the respective sets

DL(w) = {
s ∈ S : l(sw) < l(w)

} = {s ∈ S : eszw = zw},
DR(w) = {

s ∈ S : l(ws) < l(w)
} = {s ∈ S : zwes = zw}.

Notice that when W is finite, one has that DL(w) = J if and only if eJ is the unique
minimal idempotent stabilizing zw on the left (and similarly for the right).

6.2 Analogues of the Catalan and double Catalan monoids

Let (W,S) be a Coxeter system. Let us set (s) := S \ {s} for s ∈ S. We associate
analogues of the Catalan monoid to each finite parabolic subgroup WJ of W . Let us
fix such a finite parabolic for the course of this subsection.

It is well known that each coset wWJ in W/WJ contains a unique element wJ

of maximum length. The set of all such longest coset representatives is denoted WJ .
One has that w ∈ WJ if and only if DR(w) ⊇ J (see [5, Corollary 2.4.5]). One there-
fore has the following reformulation of this combinatorics in the language of 0-Hecke
monoids.
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Proposition 15 Let J ⊆ S. Then H(W)eJ = {zw : w ∈ WJ }. More precisely, one has
that zweJ = zwJ .

Proof Suppose that zweJ = zu. Then clearly DR(u) ⊇ J and so u ∈ WJ . On the
other hand, from the dual of (12) it is immediate that u ∈ wWJ . �

As usual, we view H(W) as an ordered monoid where zu ≤ zv if u ≤ v in the
Bruhat order. Since the Bruhat order is compatible with multiplication, one immedi-
ately recovers from Proposition 15 the well-known fact that the mapping w �→ wJ

is order preserving (see [5, Chap. 2, Exercise 16]). The Bruhat order on the quotient
W/WJ is usually defined via the bijection with minimal coset representatives (which
are ordered by the Bruhat order), see [5, 2.5]. However, in the case that WJ is finite,
one can instead use the Bruhat ordering on maximal coset representatives and obtain
the same poset structure [5, Chap. 2, Exercise 16]. Thus as a poset we can identify
W/WJ and H(W)eJ .

The action of H(W) on the left ideal H(W)eJ is by order preserving and non-
decreasing functions. This follows immediately from the fact that H(W) is an ordered
monoid in which the identity is minimal.

For example, if W = Sn and J = (sn−1), then the corresponding parabolic is
Sn−1 and the maximal coset representatives are the permutations of the form kn(n −
1) · · · k̂ · · ·1 where k̂ means omit k. Identifying k with the coset of kn(n−1) · · · k̂ · · ·1,
we find that the Bruhat ordering is the usual ordering on N. The action of H(Sn) on
Sn/Sn−1 thus factors through the Catalan quotient. Let us therefore define the gen-
eralized Catalan quotient C(W)J of H(W) to be the quotient acting effectively on
H(W)eJ

∼= W/WJ by order preserving and non-decreasing functions. One has, for
example, that C+

n
∼= C(Sn)(sn−1).

To construct analogues of the double Catalan monoids, let us consider the fol-
lowing general situation. Let ρ : W → Sn be any permutation representation. Then
composing with the standard homomorphism Φ : Sn → Bn yields a representation
Φρ of W by binary relations. This induces a semiring homomorphism P (W) → Bn,
which can then be restricted to a homomorphism of ordered monoids H(W) → Bn.
The image of a generator es is Φρ(id) + Φρ(s).

Of particular interest is the case when ρ is associated to the action of a finite
Coxeter group W on the cosets W/WJ . For example, the double Catalan monoid
arises from considering the permutation representation of Sn on N, which can be
identified with the action of Sn on the cosets of its parabolic subgroup Sn−1. Hence
there is in general a double Catalan quotient D C(W)J associated to a finite Coxeter
group W and a parabolic subgroup WJ by applying the above construction to the
permutation representation associated to the action of W on WJ . With this notation
D Cn = D C(Sn)(sn−1).

There is an alternative, more conceptual, viewpoint on this construction. We have
identified H(W) with a submonoid of P (W). But also, W is a subgroup of P (W) by
identifying elements of W with singleton subsets (in fact, W is the group of invertible
elements of P (W)). Therefore, H(W) acts on the left of P (W) and WJ acts on the
right of P (W) by endomorphisms of the additive structure of P (W), and these actions
commute. Thus P (W)/WJ = P (W/WJ ) is acted upon by H(W) by endomorphisms
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preserving the additive structure. This yields a representation of H(W) in Bn where
n = [W : WJ ]. The corresponding effective quotient is D C(W)J . This construction
works also in the case of infinite W .

7 Minimal dimension of an effective representation

7.1 0-Hecke monoid

From now on, we assume that W , and hence H(W), is finite. Fix a field k. Our
goal is to compute the minimal degree (dimension) of an effective (i.e., injective)
linear representation of H(W) over k. In fact, we show that there is a unique minimal
effective H(W)-module in the sense that it appears as a submodule of every effective
module. Note that an effective representation of a semigroup does not have to give a
faithful representation of the corresponding semigroup algebra.

To provide the intuition for the answer for the monoid H(W), let us define

v(W) =
∑
s∈S

[W : W(s)].

Note that v(W) is the number of vertices of the Coxeter complex Σ(W). Since H(W)

acts effectively by type-preserving simplicial maps on Σ(W), it follows that it acts
effectively on the vertex set of Σ(W). If F(s) is the vertex of the fundamental chamber
with stabilizer W(s), then it is easy to see that the opposite vertex w0F(s) = e0F(s) is
fixed by H(W). This fixed element provides a direct summand of the kH(W)-module
k[W/W(s)] isomorphic to the trivial representation. Killing off this trivial summand
yields a module of dimension [W : W(s)] − 1. The direct sum of these modules over
all s ∈ S is an effective H(W)-module of dimension v(W) − r(V ). For example, we
saw that the vertices of Σ(Sn) are the non-empty proper subsets of N and so the
corresponding representation of Hn has dimension 2n − n − 1.

Our main result of this section shows that the module constructed in the previ-
ous paragraph is a submodule of all other effective modules and hence the minimal
dimension of an effective H(W)-module is v(W) − r(V ).

The key ingredient of the proof is the following lemma used by Kim and Roush in
[17], which they attribute to George Bergman.

Lemma 16 Let M be a monoid and X ⊆ M . Let L be a left ideal of kM with sim-
ple socle and suppose that the socle of L contains a non-zero element of the form
x − y with x, y ∈ X. Then any kM-module V that affords a representation whose
restriction to X is injective contains L as a submodule.

Proof As x − y does not annihilate V , there is an element v ∈ V such that (x −
y)v �= 0. The module homomorphism L → kMv given by a �→ av must be injective
because it does not annihilate the simple socle kM(x − y) of L. �

Next we rephrase the effective action of H(W) on the vertices of the Coxeter
complex in the language of left ideals.
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Corollary 17 The action of H(W) on the left ideal
⋃
s∈S

H(W)e(s)

is effective.

Proof First note that, for v,w ∈ W , one has v = w if and only if vW(s) = wW(s)

for all s ∈ S because only the identity belongs to every maximal parabolic subgroup.
Proposition 15 thus yields zv = zw if and only if zve(s) = zwe(s) for all s ∈ S. This
establishes the corollary. �

The following proposition is elementary.

Proposition 18 Let J ⊆ S. If w ∈ WJ and s ∈ S with swWJ �= wWJ , then sw ∈ WJ .

Proof Clearly, if l(sw) > l(w) with w ∈ WJ , then zsw = eszw ∈ H(W)eJ and so
Proposition 15 implies sw ∈ WJ . Conversely, suppose that l(sw) < l(w). Then sw <

w in the Bruhat order. Thus (sw)J ≤ wJ = w by the remark after Proposition 15.
The inequality is, in fact, strict by the hypothesis. Thus we have l(w) − 1 = l(sw) ≤
l((sw)J ) < l(w) and so sw = (sw)J . �

Recall that in a finite Coxeter group one has w0Sw0 = S (it is easy to see that
l(w0sw0) = 1 for any s ∈ S).

Proposition 19 Let s ∈ S. Then w0s is the unique element of W(s) covered by w0 in
the Bruhat order. Moreover, DL(w0s) = (w0sw0).

Proof The elements covered by w0 in the Bruhat order are the w0t with t ∈ S.
But if t �= s, then w0W(s) = w0tW(s) yielding the first statement. For the second,
if l(tw0s) > l(w0s), t ∈ S, then tw0s = w0 and so t = w0sw0. �

Let us put P(s) := kH(W)e(s). This is a projective kH(W)-module. It contains the
trivial submodule ke0 as a direct summand and we have

P(s) = kH(W)(e(s) − e0) ⊕ ke0. (13)

As the idempotent e(s) is 0-minimal, the idempotent e(s) − e0 is primitive. Set
P ′

(s)
:= kH(W)(e(s) − e0); it is a projective indecomposable module of dimension

[W : W(s)] − 1.
The irreducible representations of H(W) are well known. For each J ⊆ S there is

an irreducible representation θJ : H(W) → Endk(k) given by

θJ (zw) =
{

id if w ∈ WJ ;
0 otherwise;

and these are all the irreducible representations (see [7, 22] for details). In particular,
the irreducible representations do not help to find an effective representation.
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The main technical result of this section is the following theorem.

Theorem 20 The module P ′
(s)

has simple socle k(zw0s − e0) isomorphic to θ(w0sw0).

The proof of this theorem proceeds via several lemmas.

Lemma 21 The span of the vector zw0s − e0 is isomorphic to θ(w0sw0).

Proof Proposition 19 implies that for t ∈ S one has

et (zw0s − e0) =
{

zw0s − e0 if t �= w0sw0;
0 if t = w0sw0;

as required. �

By the direct sum decomposition (13), it suffices to prove that the socle of P(s)

is k(zw0s − e0) ⊕ ke0. To do this, we need to perform a detailed analysis of the
eigenspaces of the elements et , t ∈ S. For an element

v =
∑

w∈W(s)

cwzw ∈ P(s),

let supp(v) be the support of v (i.e., the set of w with cw �= 0).

Lemma 22 Let t ∈ T and v ∈ P(s). Then:

(i) etv = v if and only if t ∈ DL(w) for all w ∈ supp(v);
(ii) etv = 0 if and only if the following two conditions are satisfied:

(a) {wW(s) : w ∈ supp(v)} is a union of two-element orbits of t ;
(b) if {wW(s), twW(s)} is a two-element orbit, then cw(s) = −c(tw)(s) .

Proof Claim (i) is clear since the eigenspace of 1 for et is the subspace ket H(W)e(s),
which has basis consisting of the zw such that w ∈ W(s) and t ∈ DL(w).

For claim (ii), we know that the eigenspace of 0 has a basis consisting of all dif-
ferences zw − et zw such that zw �= et zw . Equivalently, it has a basis consisting of all
elements of the form zw − ztw such that l(tw) > l(w) with w, tw ∈ W(s). Claim (ii)
is now immediate from Proposition 18. �

We can now prove Theorem 20.

Proof of Theorem 20 Suppose that v ∈ P(s) generates the irreducible representation
θJ . Then v is fixed by each et , t ∈ J , and annihilated by each et , t /∈ J . Thus the set X

of cosets of the form wW(s) with w ∈ supp(v) is WS\J -invariant by Lemma 22(iia).
Suppose that O is a WS\J -orbit on X and that w ∈ W(s) is maximal with respect to
the Bruhat order such that wW(s) ∈ O. Then by Lemma 22(i) one has J ⊆ DL(w).
On the other hand, since twW(s) ∈ O for all t ∈ S \ J , by the maximality of w we
have S \ J ⊆ DL(w) and so w = w0. In particular, it follows that O is always the



352 J Algebr Comb (2012) 36:333–354

orbit of w0 and hence is unique. If J = S, it then follows that v ∈ ke0 and we are
done. Otherwise, we must have J = (w0sw0) because if t ∈ S \ J then, according
to Lemma 22(iia), w0WJ is not fixed by t and so t = w0sw0 as a consequence of
Propositions 18 and 19. An application of Lemma 22(iib) yields v ∈ k(zw0s − e0), as
required. �

We are now in a position to prove the main result of this subsection. Recall that
r(V ) = |S| and v(W) is the number of vertices of the Coxeter complex of W , i.e., the
sum of the indices of the maximal parabolics.

Theorem 23 Let W be a finite Coxeter group with set S of Coxeter generators and
let M be an effective H(W)-module over a field k. Then M contains a submodule
isomorphic to the projective module

P =
⊕
s∈S

kH(W)(e(s) − e0).

Consequently, the minimal dimension of an effective linear representation of H(W)

is v(W) − r(V ).

Proof By Lemma 16 and Theorem 20, each module P ′
(s) is isomorphic to a submod-

ule of M . Moreover, since the simple socles of the P ′
(s), s ∈ S, are pairwise non-

isomorphic, it follows that the intersection of P ′
(s) and P ′

(t) is trivial, for s �= t , and so
P is a submodule of M .

It thus remains to show that P is effective. But this follows from Corollary 17. �

As a consequence of Corollary 17 and Theorem 23, we may deduce that the mini-
mum degree of an effective action of H(W) on a set is v(W) − r(V ) + 1.

Specializing to the case W = Sn, we obtain the following result.

Corollary 24 The minimal degree of an effective linear representation of Hn is 2n −
n − 1.

Proof For i ∈ N and s = si we have [Sn : (Sn)(si )] = (
n
i

)
. The rank of Sn is n − 1. �

7.2 Double Catalan monoid

Theorem 20 also permits us to compute the minimal degree of an effective represen-
tation of the double Catalan monoid DCn over a field k.

Proposition 7 implies that the image of an element zw of the 0-Hecke monoid Hn

in DCn is determined by its images in C+
n and C−

n . These are, in turn, the effective
quotients of Hn coming from its respective actions on the left ideals Hne(s1) and
Hne(sn−1). Thus one can identify DCn with the effective quotient of the action of Hn

on the left ideal Hne(s1) ∪ Hne(sn−1). Notice that this left ideal acts effectively on
itself and so projects injectively into DCn. The action of DCn on this left ideal can
be understood easily in terms of its representation by boolean matrices. Namely, let
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vj be the characteristic vector of the subset {1, . . . , j} and let v′
j be the characteristic

vector of {j, . . . , n}. Then the elements {v1, v2, . . . , vn} form an invariant subset on
which DCn acts as C+

n and the elements {v′
1, v

′
2, . . . , v

′
n} form an invariant subset on

which DCn acts as C−
n . The two subsets intersect in the vector vn = v′

1.
In summary, retaining the notation of the previous subsection, we can view P =

P ′
(s1)

⊕ P ′
(sn−1)

as an effective DCn-module over k of dimension 2n − 2. We claim P

is the unique minimal effective DCn-module.

Theorem 25 Let k be a field. Then the minimal dimension of an effective linear
representation of DCn over k is 2n − 2. The unique minimal effective DCn-module
is P (defined above).

Proof Any effective DCn-module M yields a representation of Hn that is injective on
the left ideal Hne(s1) ∪ Hne(sn−1). Lemma 16 and Theorem 20 now imply that P ′

(s1)

and P ′
(sn−1)

are submodules of M . The argument in the proof of Theorem 23 then
shows that their direct sum P is a submodule of M . Thus P is the unique minimal
effective DCn-module. As it has dimension 2n − 2, this completes the proof. �
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