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Abstract Deligne has defined a category which interpolates among the represen-
tations of the various symmetric groups. In this paper we show Deligne’s category
admits a unique nontrivial family of modified trace functions. Such modified trace
functions have already proven to be interesting in both low-dimensional topology
and representation theory. We also introduce a graded variant of Deligne’s category,
lift the modified trace functions to the graded setting, and use them to recover the
well-known invariant of framed knots known as the writhe.

Keywords Ribbon category · Deligne’s category · Symmetric groups · Modified
traces

1 Introduction

1.1 Deligne’s category

Let F denote a field of characteristic zero and let t ∈ F . Recently Deligne gave a
definition of a category, Rep(St ), which interpolates among the representations over
F of the various symmetric groups [6]. Somewhat more precisely: when t is not a
nonnegative integer, the category Rep(St ) is semisimple and when t is a nonnegative
integer, then a natural quotient of Rep(St ) is equivalent to the category of represen-
tations over F of the symmetric group on t letters.
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Axiomatizing Deligne’s construction, Knop gave a number of additional examples
of interpolating categories, including representations of finite general linear groups
and of wreath products [16, 17]. More recently Etingof defined interpolating cate-
gories in other settings which include degenerate affine Hecke algebras and rational
Cherednik algebras [8]. Most recently Mathew provided an algebro-geometric setup
for studying these categories when the parameter is generic [18]. Comes and Wilson
study Deligne’s analogously defined Rep(GLt) and use it to completely describe the
indecomposable summands of tensor products of the natural module and its dual for
general linear supergroups [5].

We will be interested in Deligne’s Rep(St ). Besides motivating the new direction
of research in representation theory discussed above, it is an object of study in its own
right. Comes and Ostrik completely describe the indecomposable objects and blocks
in Rep(St ) in [4], and classify tensor ideals along the way to proving a conjecture
of Deligne in [3]. Recently, Del Padrone used Deligne’s category to answer several
questions which arose out of the work of Kahn in studying the rationality of certain
zeta functions [7].

1.2 Modified traces in ribbon categories

In this paper we will be interested in the tensor and duality structure of Deligne’s cat-
egory. It is well understood that categories with a tensor and duality structure play an
important role in low-dimensional topology. The basic idea is to start with some suit-
able category (called a ribbon category) which admits a tensor product and braiding
isomorphisms

cV,W : V ⊗ W → W ⊗ V

for all V and W in the category. One uses the category to create invariants of knots,
links, 3-manifolds, etc. by interpreting the relevant knot or link as a morphism in the
category using the braiding to represent crossings in the knot or link diagram. See,
for example, [1, 14, 20] where these constructions are made precise.

A reoccurring difficulty in this approach are the objects with categorical dimen-
sion zero. These objects necessarily give trivial topological invariants. Tackling this
problem Geer and Patureau-Mirand defined modified trace and dimension functions
for typical representations of quantum groups associated to Lie superalgebras [11].
With Turaev they generalized this construction to include, for example, the quantum
group for sl(2) at a root of unity [13]. Along with various coauthors, they have gone
on to vastly generalize their construction and use it to obtain new topological invari-
ants. In particular, they have shown how to use modified traces to give generalized
Kashaev and Turaev-Viro-type 3-manifold invariants, to show that these invariants
coincide, and that they extend to a relative Homotopy Quantum Field Theory. Espe-
cially intriguing, they also show how to use this theory to generalize the quantum
dilogarithmic invariant of links appearing in the well-known Volume Conjecture. See
[10, 12] and references therein.

On the algebra side of the picture the second author worked jointly with Geer and
Patureau-Mirand to provide a ribbon categorical framework for modified trace and di-
mension functions and considered a number of examples coming from representation
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theory [9]. They showed that these functions generalize well-known results from rep-
resentation theory as well as giving entirely new insights. For example, this point of
view leads to a natural generalization of a conjecture by Kac and Wakimoto for com-
plex Lie superalgebras. Recently Serganova proved the original Kac–Wakimoto con-
jecture for the basic classical Lie superalgebras and the generalized Kac–Wakimoto
conjecture for gl(m|n) [19]. The generalized Kac–Wakimoto conjecture is in turn
used to compute the complexity of the finite dimensional simple supermodules for
gl(m|n) by Boe, Nakano, and the second author [2].

Despite the success of this program, it remains mysterious when these modified
dimension functions exist. In [9] the authors provide examples which show that rather
elementary categories in representation theory (e.g. certain representations of the Lie
algebra sl2(k) over field of characteristic p) can fail to have modified dimensions.
Motivated by this gap in our understanding and by the aforementioned applications
within low-dimensional topology and representation theory, in this paper we investi-
gate modified trace and dimension functions within Deligne’s category Rep(St ).

1.3 The existence of modified traces

Our main result (Theorem 5.9) proves that when t is a nonnegative integer the
only nontrivial ideal in Rep(St ) always admits a modified trace. It is worth noting
that Deligne’s category, which is only abelian when t is not a nonnegative integer,
provides the first example of a nonabelian ribbon category which admits modified
traces.

A second interesting outcome of our investigation is the following observation.
In [9] if C is a F -linear category and X is an object with EndC (X)/Rad(EndC (X)) ∼=
F , then X is called ambidextrous if the canonical map

EndC (X) → EndC (X)/Rad (EndC (X)) ∼= F

defines a modified trace function. In loc. cit. many results about modified trace and
dimension functions are most naturally stated for ambidextrous objects. One might
then expect that if an object with a local endomorphism ring admits a modified trace
function that it should be the canonical map and, hence, X should be ambidextrous.
It turns out that this is not the case (see Remark 4.2). This example illustrates the
subtlety of the theory of modified traces.

1.4 A graded variant

Aside from vanishing categorical dimension, the second main obstacle to using a
ribbon category to construct nontrivial topological invariants is when the category
has a symmetric braiding. That is,

cW,V ◦ cV,W = IdV ⊗W

for all objects V and W . Knot theoretically, this corresponds to over- and under-
crossings being equal. Such categories yield only trivial topological invariants.
Deligne’s category has a symmetric braiding. This motivates the search for categories
with nonsymmetric braiding arising from Rep(St ).
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In Sect. 6.1 we define a graded variant of Deligne’s category, grRep(St )q , and
prove that there is a “degrading” functor F : grRep(St )q → Rep(St ). Using this func-
tor we can lift the modified trace functions on Rep(St ) to grRep(St )q . In particular,
the graded category has a nonsymmetric braiding and the modified trace function de-
fines a nontrivial knot invariant. In this way we can use Deligne’s category to recover
the well-known invariant of framed knots known as the writhe.

1.5 Further questions

The results of this paper raise a number of intriguing questions. As mentioned above,
Deligne’s construction naturally generalizes to a wide variety of settings within repre-
sentation theory. We expect that modified traces should exist for many of these other
categories and it would be interesting to investigate this question. Deligne’s category
Rep(St ) has a relatively elementary structure (for example, it has a single nontrivial
tensor ideal) and we expect that studying modified traces in these other settings will
be significantly more involved.

2 Ribbon categories and traces

The authors of [9] define modified trace functions for ideals in ribbon categories.
In this section we give a brief overview of this theory but refer the reader to the above
paper for further details and proofs.

2.1 Ribbon categories

For notation and the general setup of ribbon categories our references are [20] and
[14]. A tensor category C is a category equipped with a covariant bifunctor

⊗ : C × C → C
called the tensor product, a unit object 1, an associativity constraint, and left and right
unit constraints such that the Triangle and Pentagon Axioms hold (see [14, XI.2]).
In particular, for any V in C , 1 ⊗ V and V ⊗ 1 are canonically isomorphic to V .

A braiding on a tensor category C consists of a family of isomorphisms

{cV,W : V ⊗ W → W ⊗ V },
defined for each pair of objects V,W which satisfy the Hexagon Axiom [14, XIII.1
(1.3–1.4)] as well as the naturality condition expressed in the commutative diagram
[14, (XIII.1.2)]. We say a tensor category is braided if it has a braiding. We call the
braiding symmetric if

cW,V ◦ cV,W = IdV ⊗W

for all V and W in C .
A tensor category C has duality if for each object V in C there exits an object V ∗

and coevaluation and evaluation morphisms1

coevV : 1 → V ⊗ V ∗ and evV : V ∗ ⊗ V → 1

satisfying relations [14, XIV.2 (2.1)].

1In [9] these maps are denoted bV and dV , respectively.
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A twist in a braided tensor category C with duality is a family

{θV : V → V }
of natural isomorphisms defined for each object V of C satisfying relations [14,
(XIV.3.1–3.2)]. Let us point out that the existence of twists is equivalent to having

functorial isomorphisms V
∼=→ V ∗∗ for all V in C (cf. [1, Sect. 2.2]).

A ribbon category is a braided tensor category with duality and twists. A funda-
mental feature of ribbon categories is the fact that morphisms in the category can be
represented diagrammatically and that isotopic diagrams correspond to equal mor-
phisms. For the sake of brevity, we do not give the graphical calculus here but en-
courage the interested reader to refer to [14].

In a ribbon category it is convenient to also define the morphisms

coev′
V : 1 → V ∗ ⊗ V and ev′

V : V ⊗ V ∗ → 1

which are given by

coev′
V = (IdV ∗ ⊗ θV ) ◦ cV,V ∗ ◦ coevV and ev′

V = evV ◦cV,V ∗ ◦ (θV ⊗ IdV ∗).

Finally, the ground ring of a ribbon category C is

K = EndC (1).

We assume K is a field, that the category is K-linear, and that the tensor product is
bilinear. Later references to linearity will always be with respect to K . Ultimately the
ground ring will be a fixed field F of characteristic zero and the categories in question
will be F -linear.

2.2 Ideals in C

There are two closely related notions of an ideal within a ribbon category. The first
we discuss is used in [9] and defined via objects. We discuss the second notion in
Sect. 2.4. Note that here and elsewhere if f and g are morphisms, then we write fg

for the composition f ◦ g.

Definition 2.1 We say a full subcategory I of a ribbon category C is an ideal if the
following two conditions are met:

(1) If V is an object of I and W is any object of C , then V ⊗ W is an object of I .
(2) I is closed under retracts; that is, if V is an object of I , W an object of C , and if

there exists morphisms f : W → V , g : V → W such that gf = IdW , then W is
an object of I .

Trivially, if I consists of just the zero object or I = C , then I is an ideal of the
category. We say an ideal I is a proper ideal if it contains a nonzero object and is not
all of C .
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2.3 Traces in ribbon categories

For any objects V,W of C and f ∈ EndC (V ⊗ W), set

trL(f ) = (evV ⊗ IdW)(IdV ∗ ⊗f )(coev′
V ⊗ IdW) ∈ EndC (W), (2.1)

and

trR(f ) = (IdV ⊗ ev′
W)(f ⊗ IdW ∗)(IdV ⊗ coevW) ∈ EndC (V ). (2.2)

Definition 2.2 If I is an ideal in C , then a trace on I is a family of linear functions

t = {tV : EndC (V ) → K}
where V runs over all objects of I and such that following two conditions hold:

(1) If U ∈ I and W ∈ Ob(C) then for any f ∈ EndC (U ⊗ W) we have

tU⊗W (f ) = tU (trR(f )) . (2.3)

(2) If U,V ∈ I then for any morphisms f : V → U and g : U → V in C we have

tV (gf ) = tU(fg). (2.4)

Using the trace on I introduced above, we define a modified dimension function
on objects in I . Namely, we define the modified dimension function

dt : Ob(I) → K

by the formula

dt(V ) = tV (IdV ) .

Example 2.3 If C is a ribbon category, then C itself is an ideal and the well-known
categorical trace function

trC : EndC (V ) → K

given by

trC (f ) = ev′
V (f ⊗ 1) coevV

defines a trace on C . The modified dimension function then coincides with the famil-
iar categorical dimension function.

The following theorem from [9] gives a convenient way of creating ideals with
traces. Assume that J in C admits a linear map

tJ : EndC (J ) → K

which satisfies

tJ (trL(h)) = tJ (trR(h)) ,

for all h ∈ EndC (J ⊗ J ). Such a linear map is called an ambidextrous trace on J .
For an object J , let IJ denote the ideal whose objects are all objects which are

retracts of J ⊗ X for some X in C .
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Theorem 2.4 If J is an object of C which admits an ambidextrous trace t, then there
is a unique trace on IJ determined by that ambidextrous trace.

As it will be used in later calculations, we give the construction of the trace on IJ .
If U is an object of IJ , then by definition there is an object X and morphisms α :
U → J ⊗ X and β : J ⊗ X → U such that βα = IdU . We define tU : EndC (U) → K

by

tU(f ) = t
(
(1 ⊗ ev′

X)(α ⊗ 1)(f ⊗ 1)(β ⊗ 1)(1J ⊗ coevX)
)
.

That this defines a trace on IJ and is independent of the choice of X, α, and β is
proven in [9, Theorem 3.3.2].

2.4 Tensor ideals in a ribbon category

A somewhat different notion of ideal is used in [3, 4]. As we need both, we define
it here and discuss the relationship with the earlier definition. To distinguish the two
we call these tensor ideals. They are defined via morphisms as follows.

Definition 2.5 A tensor ideal, J , of C is a family of subspaces

J (X,Y ) ⊆ HomC (X,Y )

for all pairs of objects X,Y in C subject to the following two conditions:

(1) ghk ∈ J (X,W) for each k ∈ HomC (X,Y ), h ∈ J (Y,Z), and g ∈ HomC (Z,W).
(2) g ⊗ IdZ ∈ J (X ⊗ Z,Y ⊗ Z) for every object Z and every g ∈ J (X,Y ).

Trivially, for every pair of objects X and Y one can take J (X,Y ) = 0 and obtain a
tensor ideal; similarly, for every pair of objects one can take J (X,Y ) = HomC (X,Y ).
A tensor ideal J is called proper if J (X,Y ) is a proper nonzero subspace of
HomC (X,Y ) for at least one pair of objects X and Y in C .

2.5 Relating the two notions of ideals

If I is an ideal of C in the sense of Definition 2.1, then one can define subspaces

J (X,Y ) = {
f ∈ HomC (X,Y ) | there exists Z in I, g : X → Z,

h : Z → Y so that f = hg
}
.

Then J forms a tensor ideal and we write J (I) for this tensor ideal.
Conversely, if J is a tensor ideal, then one can define I to be the full subcategory

consisting of all objects V in C such that IdV ∈ J (V,V ). This is an ideal of C and we
write I(J ) for this ideal.

In the following lemma we record the basic properties relating these two notions
of an ideal. The proofs are elementary arguments using the definitions and previous
parts of the lemma.

Lemma 2.6 Let C be a ribbon category.

(1) If I is an ideal of C , then I = I(J (I)).
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(2) If J is a tensor ideal of C , then J (I(J )) ⊆ J . That is,

J (I(J ))(X,Y ) ⊆ J (X,Y )

for all pairs of objects X,Y .
(3) The ideal I is the zero ideal if and only if J (I) is the zero tensor ideal.
(4) The ideal I is the entire category C if and only if

J (I)(X,Y ) = HomC (X,Y )

for all pairs of objects X,Y in C .
(5) If C has a unique proper tensor ideal, say J , and I is a proper ideal of C , then I

is the unique proper ideal and I = I(J ).

2.6 Negligibles

A fundamental example of a tensor ideal is the so-called negligible morphisms.
Namely, let C be a ribbon category and call a morphism g : X → Y negligible if
for all h ∈ HomC (Y,X), one has

trC (gh) = 0,

where trC denotes the categorical trace. Setting N (X,Y ) to be the subspace of
HomC (X,Y ) of all negligible morphisms, one can check that N is a tensor ideal.
For short we call an object negligible if it is an object in I(N ).

When t ∈ Z≥0, N is a proper tensor ideal of Deligne’s category Rep(St ). The quo-
tient of Rep(St ) by this tensor ideal is equivalent to the category of finite dimensional
representations over F of the symmetric group St (see [4, Theorem 3.24]). It is in this
sense that Deligne’s category interpolates among the representations of the various
symmetric groups.

3 Deligne’s category Rep(St )

Fix a field F of characteristic zero and fix t ∈ F . For n ≥ 0 we write Pn for the
set of partition diagrams with vertex set {1, . . . , n,1′, . . . , n′} and FPn = FPn(t) for
the partition algebra spanned by Pn with parameter t ∈ F . In particular, note that
the symmetric group on n letters, Sn, can canonically be identified with a subset
of Pn and, moreover, the group algebra FSn can be identified as a subalgebra of
FPn. We use this identification without comment in what follows. More generally, for
a, b ∈ Z≥0 we write FPa,b = FPa,b(t) for the vector space spanned by the partition
diagrams with vertex set {1, . . . , a,1′, . . . , b′}.

Following the notation in [4], we write Rep(St ;F) = Rep(St ) for the category
defined by Deligne which interpolates among the representations of the symmetric
groups. This is an additive (not necessarily abelian) ribbon category with a symmet-
ric braiding. For a precise definition of Rep(St ) and its ribbon category structure, we
refer the reader to [4, Sect. 2.2]. Regardless of t , the isomorphism classes of inde-
composable objects in Rep(St ) are in bijective correspondence with Young diagrams
of arbitrary size (see [4, Theorem 3.7]). Following loc. cit., we will write L(λ) for
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the indecomposable object (defined up to isomorphism) in Rep(St ) corresponding to
Young diagram λ.

To avoid potential confusion, it is important to point out that morphisms in
Rep(St ) are given by pictures which are a priori unrelated to the graphical calculus
of ribbon categories. More precisely, the morphisms in Rep(St ) are linear combina-
tions of so-called partition diagrams and, as such, are usually given via pictures. We
follow this convention in what follows. Fortunately, the pictures which represent the
morphisms of a ribbon category (e.g. the evaluation, coevaluation, and braiding mor-
phisms) are very similar to the pictures for these morphisms in the graphical calculus
of ribbon categories. And the rules for tensor product and composition (horizontal and
vertical concatenation, respectively) are the same in both settings.2 The differences
between the two graphical settings are minor and, consequently, the reader should not
have any difficulty using context to make clear what is meant in what follows.

4 A trace on the ideal of negligibles in Rep(S0)

We first work out the easiest example when the category is Rep(S0). In this case
everything can be computed explicitly.

4.1 Defining the trace function

Consider the indecomposable object L(�) in the category Rep(S0). We will define
a trace on the ideal IL(�) by verifying by explicit computation that L(�) admits an
ambidextrous trace.

In order to define such a trace, we study the endomorphisms of the object L(�) ⊗
L(�). By [4, Proposition 6.1] we can identify End(L(�)) with the partition algebra
FP1(0). Hence End(L(�) ⊗ L(�)) = FP2(0). Consider the following table:

From the table above we have the following: A linear map t : End(L(�)) → F satis-
fies

for all partition diagrams π ∈ FP2(0) if and only if t is constant on the two partition
diagrams in FP1(0). Therefore there is a unique ambidextrous trace function for

2Note, however, that we follow [4] and “compose down the page” so that the diagram for fg has g placed
atop f .
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L(�) up to a constant multiple. Hence by Theorem 2.4 there is a unique trace on
IL(�) up to constant multiple. We normalize by setting t to be the trace function with
t(IdL(�)) = 1. By Theorem 2.4, the map t uniquely extends to a trace on IL(�). In
summary, we have the following result.

Theorem 4.1 There is a unique trace t = {tV }V ∈IL(�)
on IL(�) such that

tL(�)(IdL(�)) = 1.

We note that by the classification of tensor ideals in Rep(S0) in [3] there is a
unique proper tensor ideal in the category and it contains all indecomposable objects
except L(∅). This is the tensor ideal N of negligible morphisms. Using Lemma 2.6
it follows that there is a unique proper ideal. That is, IL(�) is the unique proper ideal
and it equals I(N ).

Remark 4.2 In Sect. 1.3 we noted that one outcome of our calculations is an ex-
ample of an object with a local endomorphism ring which admits a modified trace
function, but the trace function is not the canonical quotient map. Notice that L(�)

in Rep(S0) is precisely such an example. Indeed, EndRep(S0)(L(�)) = FP1(0) is a
local ring whose radical is generated by the partition diagram with no edge. Hence
the quotient map FP1(0) → FP1(0)/Rad(FP1(0)) = F is not constant on the two
partition diagrams in FP1(0) and thus does not coincide with tL(�) from Theorem
4.1.

4.2 Dimensions in the non-semisimple block

By [4, Theorem 6.4] the category Rep(S0) has a unique nontrivial block. The in-
decomposables in this block can be described explicitly and are denoted by Ln =
L((1n)) for n ∈ Z≥0. In this section we compute the modified dimensions dt(Ln) for
all n > 0.

Recall that any indecomposable object in Rep(S0) is of the form ([n], e) for
some primitive idempotent e ∈ FPn(0) (see [4, Proposition 2.20(2)]). Moreover,
A := ([n], e) is the direct summand of B := ([n], Idn) = L(�) ⊗ ([n − 1], Idn−1)

where the inclusion map A → B and the projection map B → A are both given by e.
Hence

.

Let Sn be the symmetric group on n letters whose elements are viewed as endo-
morphisms in Deligne’s category [4, Remark 2.14], and let sgn : Sn → {±1} be the
usual sign function. Recall from [4, Proposition 6.1] that Ln

∼= ([n], sn) where

sn = 1

n!
∑

σ∈Sn

sgn(σ )σ. (4.5)

In particular,

.
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For example,

so that

.

More generally, given σ ∈ Sn,

.

Hence

dt(Ln) = (−1)n+1 (number of n-cycles in Sn)

n! = (−1)n+1

n
.

5 A trace on the ideal of negligibles in Rep(St ) when t ∈ Z≥0

We now consider the general case when t is a nonnegative integer. Let N be the
tensor ideal of negligible morphisms and let I = I(N ). Recall that by definition we
call the objects of I negligible. In this section we show there exists a nonzero trace
on I in Rep(St ) when t is a nonnegative integer.

5.1 Notation

Given σ ∈ Sn and I ⊂ {1, . . . , n}, let σI denote the partition diagram obtained from
the partition diagram for σ by removing all edges adjacent to top vertices labeled by
elements of I . Also, for i ∈ {1, . . . , n} we write σi = σ{i}. For example, if

.

Given n ∈ N, write xn = (1Sn)n where 1Sn is the identity permutation in Sn. Finally,
let S−

n := {σi | σ ∈ Sn,1 ≤ i ≤ n}.

5.2 The object Mn

Let Mn := ([n], sn) ∈ Rep(St ) where sn is as in (4.5).

Proposition 5.1 We have the following results for Mn.

(1) Mn = L((1n)) in Rep(S0) for all n ≥ 0.
(2) Mn = L((1n)) ⊕ L((1n−1)) in Rep(St ) for all n > 0 whenever t �= 0.
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Proof (1) This is [4, Proposition 6.1].
(2) Notice Liftt (Mn) = ([n], sn) for all t ∈ F (see [4, Sect. 3.2]). In particular,

Liftt (Mn) = Lift0(Mn) for all t ∈ F . Hence, by part (1) along with [4, Example
5.10(1), Lemma 5.20(2)], Liftt (Mn) = L((1n))⊕L((1n−1)) for all t ∈ F . Notice that
P(1n)(x) = 1

n!
∏n

k=1(x − k) for all n > 0 (see [4, Sect. 3.5]). Hence L((1n)) is in a
nontrivial block of Rep(St ) if and only if t is a nonnegative integer with t /∈ {1, . . . , n}
(see [4, Proposition 5.11]). If t is an integer greater than n, then L((1n)) is the min-
imal object in a nontrivial block of Rep(St ) (see [4, Corollary 5.9]). Hence, by [4,
Lemma 5.20(1)], Liftt (L((1n))) = L((1n)) for all n > 0, t �= 0. Therefore, by [4,
Proposition 3.12(3)], Mn = L((1n)) ⊕ L((1n−1)) in Rep(St ) for all n > 0, t �= 0. �

Corollary 5.2 Suppose t and n are nonnegative integers with t < n. Then Mn is a
negligible object in Rep(St ).

Proof Mn is negligible if and only if the image of Mn is zero under the functor
Rep(St ) → Rep(St ) (see for instance [4, Theorem 3.24]). The result now follows
from Proposition 5.1 along with [4, Proposition 3.25]. �

In the remainder of this section we examine the endomorphisms of Mn.

Proposition 5.3 We have the following equalities.

(1) σsn = snσ = sgn(σ )sn for all σ ∈ Sn.
(2) snπsn = 0 for all partition diagrams π /∈ Sn � S−

n .
(3) snσisn = sgn(σ )snxnsn for all σ ∈ Sn,1 ≤ i ≤ n.

Proof Part (1) is clear.
(2) If π /∈ Sn � S−

n then one of the following is true: (i) two of the top vertices
of π are in the same part; (ii) two of the top vertices of π are in parts of size one;
(iii) two of the bottom vertices of π are in the same part; (iv) two of the bottom
vertices of π are in parts of size one. If (i) or (ii) (respectively, (iii) or (iv)) is true,
then there exists a transposition τ ∈ Sn with πτ = π (resp τπ = π ). By part (1) τsn
(respectively, snτ ) is equal to −sn, hence we have snπsn = snπτsn = −snπsn (resp.,
snπsn = snτπsn = −snπsn). The result follows since F is not of characteristic 2.

(3) Suppose σ ∈ Sn and i ∈ {1, . . . , n}. If we let τ ∈ Sn denote the transposition
i ↔ n, then τσ−1σiτ = xn. Hence, by part (1), snσisn = sgn(σ−1)snτσ−1σiτ sn =
sgn(σ )snxnsn. �

Corollary 5.4 The set {sn, snxnsn} is a basis of EndRep(St )(Mn) for all t ∈ F , n > 0.

5.3 An ambidextrous trace on Mn

Suppose t ∈ F and n > 0. By Corollary 5.4, to define a linear functional on
EndRep(St )(Mn) it suffices to give the values of the linear functional on sn and snxnsn.
Let tn be the following linear map:

tn : EndRep(St )(Mn) → F

sn �→ 1
snxnsn �→ 1
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Notice that t1 is the ambidextrous trace on M1 = L(�) in Rep(S0) studied in Sect. 4.
In this section we will show that tn is an ambidextrous trace on Mn in Rep(St ) for all
t ∈ F , n > 0. To do so, we must examine the endomorphism ring EndRep(St )(Mn ⊗
Mn) = (sn ⊗ sn)FP2n(t)(sn ⊗ sn).

For the remainder of this section assume n > 0. Given a partition diagram π ∈
P2n, write πL (respectively, πR) for the partition diagram in Pn obtained by re-
stricting the partition π to the vertices {1,1′, . . . , n, n′} (respectively, {n + 1, (n +
1)′, . . . ,2n, (2n)′}). For example,

.

Finally, let 	1,	2 : P2n → EndRep(St )(Mn) be the maps given by

.

The following lemma is the first of three lemmas concerning 	1 and 	2 which
will be used to show that tn is an ambidextrous trace.

Lemma 5.5 Suppose π ∈ P2n is a partition diagram such that πL /∈ Sn � S−
n or

πR /∈ Sn � S−
n . Then 	1(π) = 0 = 	2(π).

Proof If πL /∈ Sn � S−
n then (arguing as in the proof of Proposition 5.3) there exists a

transposition τ ∈ Sn with π(τ ⊗ Idn) = π or (τ ⊗ Idn)π = π . Thus

In either case, by Proposition 5.3(1), 	1(π) = −	1(π) and hence 	1(π) = 0 as the
characteristic of F is not 2. Moreover,

Using Proposition 5.3(1) again, we have 	2(π) = −	2(π) so that 	2(π) = 0. The
proof when πR /∈ Sn � S−

n is similar. �

Now for the second lemma concerning 	1 and 	2. In this lemma, the symbol ≥
refers to the partial order on partition diagrams found in [4, Sect. 2.1].
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Lemma 5.6 Suppose π ∈ P2n is such that πL,πR ∈ Sn �S−
n . If πL (respectively, πR)

is in S−
n then there exists a partition diagram π ′ ∈ P2n with π ′

L (respectively, π ′
R)

in Sn such that π ′
R ≥ πR (respectively, π ′

L ≥ πL) and tn(	i(π
′)) = tn(	i(π)) for

i = 1,2.

Proof Suppose πL ∈ S−
n so that πL = σi for some σ ∈ Sn and i ∈ {1, . . . , n}. Let

π ′ ∈ P2n be the partition diagram obtained from π by adding an edge between the
vertices labeled i and σ(i)′. Then π ′ ≥ π which implies π ′

R ≥ πR . Also, π ′
L = σ ∈

Sn. Moreover, given τ ∈ Sn, the connected components of the graph

(5.6)

are all cycles. Hence, as the graph of

(5.7)

is obtained from (5.6) by deleting one edge, the partitions of {1,1′, . . . , n, n′} corre-
sponding to the connected components of (5.6) and (5.7) are equal. Therefore,

for every τ ∈ Sn. Hence

which implies 	2(π
′) = 	2(π).

Now, fix ρ ∈ Sn and let μρ,μ′
ρ ∈ Pn, �(ρ), �(ρ)′ ∈ Z≥0 be such that

.

Notice that �(ρ) (respectively, �(ρ)′) is the number of connected components of the
partition diagram π(Idn ⊗ρ) (respectively, π ′(Idn ⊗ρ)) which only contain vertices
labeled by integers greater than n. The connected components of π and π ′ (and hence
of π(Idn ⊗ρ) and π ′(Idn ⊗ρ)) which only contain vertices labeled by integers greater
than n are identical. Hence �(ρ) = �(ρ)′. Also, it is easy to see that μρ ≥ πL. Thus,
as πL ∈ S−

n , there are three cases: (i) μρ = πL, (ii) μρ = π ′
L, (iii) μρ /∈ Sn �S−

n . Next,
we show that tn(snμρsn) = tn(snμ′

ρsn) in each of the three cases above:
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(i) If μρ = πL = σi then it is easy to see that μ′
ρ = π ′

L = σ . Hence, by Proposi-
tion 5.3(1)&(3) and the definition of tn, tn(snμρsn) = sgn(σ ) = tn(snμ′

ρsn).
(ii) If μρ = π ′

L then μ′
ρ = π ′

L too. Hence tn(snμρsn) = tn(snμ′
ρsn).

(iii) If μρ /∈ Sn � S−
n then μ′

ρ /∈ Sn � S−
n too. Therefore, by Proposition 5.3(2),

tn(snμρsn) = 0 = tn(snμ′
ρsn).

As ρ was an arbitrary element of Sn, we have

tn(	1(π)) =
∑

ρ∈Sn

sgn(ρ)t�(ρ) tn(snμρsn)

=
∑

ρ∈Sn

sgn(ρ)t�(ρ)′ tn(snμ
′
ρsn) = tn(	1(π

′)).

The statement of the lemma with πL ∈ S−
n follows. The proof when πR ∈ S−

n is
similar. �

Before proving the third and final lemma concerning 	1 and 	2 we need to
introduce a bit more notation. Suppose π ∈ P2n is such that πL,πR ∈ Sn. Let
I = Iπ ⊂ {1, . . . , n} denote the set of all i ∈ {1, . . . , n} which correspond to vertices
in π whose parts are of size two. Now let πL−R = σI where σ ∈ Sn is any permuta-
tion with σ(i) = j whenever the top vertices labeled by i and n + j are in the same
part of π . For example,

.

The following proposition concerning πL−R will be used in the proof of the final
lemma concerning 	1 and 	2.

Proposition 5.7 Suppose π ∈ P2n is such that πL,πR ∈ Sn. If π ′ ∈ P2n has π ′
L = πL,

π ′
R = πR , and π ′

L−R = πL−R , then π ′ = π .

Proof Since πL,πR ∈ Sn, each part of π is of one of the following three types:
(i) {i, j ′} with 1 ≤ i, j ≤ n; (ii) {i, j ′} with n < i, j ≤ 2n; (iii) {i, j ′, k, l′} with
1 ≤ i, j ≤ n and n < k, l ≤ 2n. Hence π is completely determined by πL,πR , and
πL−R . �

Lemma 5.8 If π ∈ P2n is such that πL,πR ∈ Sn, then 	1(π) = 	2(π).

Proof Write I = Iπ as above and let σ ∈ Sn be any permutation with πL−R = σI .
Let μ,μ′ ∈ P2n be the following partition diagrams

.
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It is easy to check that μL = πR = μ′
L, μR = πL = μ′

R , and μL−R = (σ−1)J =
μ′

L−R where J = {σ(i) | i ∈ I }. Hence, by Proposition 5.7, μ = μ′. Also, by Propo-
sition 5.3(1), 	1(π) = 	1(μ). Therefore 	1(π) = 	1(μ) = 	1(μ

′) = 	2(π). �

Now we prove the main result of this section.

Theorem 5.9 tn is a nonzero ambidextrous trace on Mn in Rep(St ) for all t ∈ F ,
n > 0.

Proof Given h ∈ EndRep(St )(Mn ⊗ Mn) = (sn ⊗ sn)FP2n(t)(sn ⊗ sn) we can write

h =
∑

π∈P2n

hπ (sn ⊗ sn)π(sn ⊗ sn)

for some hπ ∈ F . Hence

(where the right equality uses the fact that sn is an idempotent). A similar calculation
shows trL(h) = ∑

π∈P2n
hπ	2(π). Thus, it suffices to show tn(	1(π)) = tn(	2(π))

for all π ∈ P2n.
If either πL or πR is not in Sn � S−

n then the result follows from Lemma 5.5.
Hence we can assume πL,πR ∈ Sn � S−

n . If πL ∈ S−
n then by Lemma 5.6 there exists

π ′ ∈ P2n with π ′
L ∈ Sn and tn(	i(π

′)) = tn(	i(π)) for i = 1,2. If π ′
R /∈ Sn � S−

n

then by Lemma 5.5 we have tn(	i(π)) = tn(	i(π
′)) = 0 for i = 1,2; hence we can

assume π ′
R ∈ Sn � S−

n . If π ′
R ∈ S−

n then by Lemma 5.6 there exists π ′′ ∈ P2n with
π ′′

R ∈ Sn, π ′′
L ≥ π ′

L, and tn(	i(π
′′)) = tn(	i(π

′)) for i = 1,2. If π ′′
L /∈ Sn �S−

n then by
Lemma 5.5 we have tn(	i(π)) = tn(	i(π

′′)) = 0 for i = 1,2; hence we can assume
π ′′

L ∈ Sn � S−
n . Also, since π ′′

L ≥ π ′
L and π ′

L ∈ Sn it follows that π ′′
L /∈ S−

n . Thus,
we can assume π ′′

L ∈ Sn. In this case, by Lemma 5.8, tn(	1(π)) = tn(	1(π
′′)) =

tn(	2(π
′′)) = tn(	2(π)). �

Corollary 5.10 If t ∈ Z≥0 then there exists a nonzero trace on the ideal of negligible
objects in Rep(St ).

Proof This follows from Theorem 2.4 and Theorem 5.9 that there is a nonzero trace
on IMn . By Corollary 5.2 we see that Mn is an object in I = I(N ) and, hence,
IMn ⊆ I . By Lemma 2.6 we have J (IMn) is not the zero ideal and J (IMn) ⊆ J (I).
By the classification of tensor ideals in Rep(St ), N is the unique proper tensor ideal
of Rep(St ). Thus J (IMn) = J (I) and by Lemma 2.6 IMn = I . This proves the trace
function is in fact defined on the entire ideal of negligible objects in Rep(St ). �

Remark 5.11 When t /∈ Z≥0 then Rep(St ) is a semisimple category [6, Théorème
2.18]. Consequently, there are no proper ideals in Rep(St ) and the categorical trace
is the only nontrivial trace.
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6 A graded variation on Deligne’s category

For the purposes of defining topological invariants, it is of interest to find ribbon
categories with a nonsymmetric braiding. One approach is to apply the “double”
construction of Kassel and Turaev [15] (a categorical analogue of the Drinfeld double
of a Hopf algebra) to Deligne’s category. However, calculations in small examples
suggest that this fails to provide interesting nonsymmetric braidings. Instead, we take
a more naive approach. Namely, in this section we briefly examine a graded version
of Deligne’s category and show that it can be used to recover the writhe of a knot—a
well-known invariant of framed knots.

6.1 A graded variant

Fix t, q ∈ F with q �= 0. We then let grRep0(St ) = grRep0(St )q be the category
defined as follows. The objects are all pairs [a, b] for all a, b ∈ Z≥0. We put a Z-
grading on the objects of the category by setting the degree of [a, b] to be a − b.

The morphisms are given by

HomgrRep0(St ) ([a, b], [c, d]) =
{

FPa+b,c+d , when a − b = c − d;
0, else.

The composition of morphisms is given by the same vertical concatenation of di-
agrams rule as in the definition of Deligne’s category Rep0(St ). By definition the
morphisms preserve the Z-grading.

Define the tensor product on grRep0(St ) by

[a, b] ⊗ [c, d] = [a + c, b + d]
and on morphisms by horizontal concatenation of diagrams just as in Deligne’s cate-
gory Rep0(St ). The associativity constraint is given by the identity.

The unit object is then 1 = [0,0] and the unit constraints [0,0] ⊗ [a, b] → [a, b]
and [a, b] ⊗ [0,0] → [a, b] are given by the identity.

The dual of the object [a, b] is given by

[a, b]∗ = [b, a].
The evaluation morphism ev : [a, b]∗⊗[a, b] → 1 is given by a diagram in FP2a+2b,0
which gives the evaluation morphism [a + b]∗ ⊗ [a + b] → 1 in Rep0(St ). Similarly,
the coevaluation morphism coev : 1 → [a, b] ⊗ [a, b]∗ is given by the coevaluation
in Rep0(St ).

Let βn,m : [n] ⊗ [m] → [m] ⊗ [n] be the diagram in FPm+n,m+n which gives the
braiding in Rep0(St ). The braiding on grRep0(St ),

c[a,b],[c,d] : [a, b] ⊗ [c, d] → [c, d] ⊗ [a, b],
is then given by

c[a,b],[c,d] = q(a−b)(c−d)βa+b,c+d .

The fact that this gives a braiding on the category follows from the calculation which
shows that the β’s define a braiding in Rep0(St ) along with the fact that morphisms
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in grRep0(St ) are grading preserving. Also note that this braiding is usually not sym-
metric.

Finally, the twist morphisms θ[a,b] : [a, b] → [a, b] are given by

θ[a,b] = q(a−b)2
Ida+b,

where Ida+b is the identity in FPa+b .
A direct verification of the axioms shows that the above tensor product, unit, du-

ality, braiding, and twists make grRep0(St ) into a ribbon category.
Write grRep(St ) for the Karoubian envelope of the additive envelope of

grRep0(St ). The ribbon category structure on grRep0(St ) defines a ribbon category
structure on grRep(St ) just as it does going from Rep0(St ) to Rep(St ). We also note
that using the definition of the additive and Karoubian envelopes we see that the
category grRep(St ) inherits a Z-grading and all morphisms are grading preserving.

We have the following “degrading” functor between the graded and ungraded ver-
sions of Deligne’s category.

Proposition 6.1 Let q ∈ F\{0}. Then there is a faithful functor

F : grRep(St )q → Rep(St ).

This functor is induced by the functor

F0 : grRep0(St )q → Rep0(St )

given by setting

F0([a, b]) = [a + b]
for all a, b ∈ Z≥0. On morphisms, F0 is the identity; that is, for

f ∈ HomgrRep0(St )([a, b], [c, d]) ⊆ FPa+b,c+d ,

we set

F0(f ) = f : [a + b] → [c + d].

Proof The construction of the additive and Karoubian envelopes shows that F0 in-
duces a functor F : grRep(St )q → Rep(St ). The statement about injectivity on mor-
phisms follows from the fact that F0 is injective on morphisms and the construction
of F . �

Remark 6.2 It is straightforward to verify that F is a tensor functor (i.e. F (X ⊗Y) =
F (X) ⊗ F (Y ) for all objects X and Y , F (1) = 1, and preserves the associativity and
unit constraints) and that it preserves duals (i.e. F (X∗) = F (X)∗ for all objects X

and preserves the evaluation and coevaluation morphisms). If V,W are homogeneous
objects in grRep(St )q with V of degree r ∈ Z and W of degree s ∈ Z, then

F (cV,W ) = qrscF (V ),F (W),

where cF (V ),F (W) is the braiding in the category Rep(St ). Similarly,

F (θV ) = qr2
θF (V ),

where θF (V ) is the twist in the category Rep(St ).
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Thus the functor F preserves braidings and twists if and only if q = 1 but, as we
will soon see, it is close enough for our purposes.

Theorem 6.3 Let V be an object of grRep(St )q such that F (V ) admits an ambidex-
trous trace

tF (V ) : EndRep(St )(F (V )) → F.

Then the map

t : EndgrRep(St )q (V ) → F

given by g �→ tF (V )(F (g)) defines an ambidextrous trace on V .

Proof Since both F and tF (V ) are linear, the map t is linear and so without
loss of generality we may assume V is homogeneous of degree d ∈ Z. Let h ∈
EndgrRep(St )q (V ⊗ V ) and consider the morphism TrR(h) : V → V . Since F is a ten-
sor functor, preserves evaluation and coevaluation, and takes the braiding and twist
to a q multiple of the braiding and twist, it follows that F (TrR(h)) is a q-multiple
of TrR(F (h)). A calculation using Remark 6.2 shows that in fact F (TrR(h)) =
TrR(F (h)). Similarly, F (TrL(h)) = TrL(F (h)). From this it is immediate that t de-
fines an ambidextrous trace. �

Remark 6.4 Fix a nonnegative integer n and fix a, b ∈ Z≥0 such that a + b = n. Let
sn ∈ FPn,n be as in (4.5). Then Ma,b := ([a, b], sn) is an object of grRep(St )q and
F (Ma,b) = Mn, the object of Rep(St ) defined in Sect. 5.2 and shown to admit an am-
bidextrous trace in Sect. 5.3. By the previous theorem, the object Ma,b in grRep(St )q
admits an ambidextrous trace. In particular, say we fix a, b so that a − b �= 0 and fix
q ∈ F not a root of unity.3 Then Ma,b is homogeneous of degree a − b and it is not
difficult to see that if K is an oriented framed knot, then the invariant obtained by
labeling K by Ma,b is the function

K �→ q(a−b)2ω,

where ω ∈ Z is the writhe of K .
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