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Abstract. We formulate a series of conjectures (and a few theorems) on the quotient of the
polynomial ring Q[Z1 xn, y1,.. . , yn] in two sets of variables by the ideal generated by all Sn

invariant polynomials without constant term. The theory of the corresponding ring in a single set of
variables X = { x 1 , . . . , xn} is classical. Introducing the second set of variables leads to a ring about
which little is yet understood, but for which there is strong evidence of deep connections with many
fundamental results of enumerative combinatorics, as well as with algebraic geometry and Lie theory.

Introduction

It has recently been discovered, mainly on the basis of evidence obtained using
the computer algebra system MACAULAY, that there seem to be unexpected
and profound connections between a certain natural ring and some fundamental
and much-studied aspects of combinatorics and algebraic geometry. The ring in
question is the quotient of the polynomial ring Q[x1, ..., xn, y1, ..., yn] by the
ideal generated by all Sn invariant polynomials without constant term. This paper
is an attempt to treat in a reasonably comprehensive way a series of conjectures
(and a few theorems) concerning the structure of this ring as a doubly graded
Sn module. Besides listing the existing conjectures and the current state of
knowledge about them, I have tried, especially in the later sections, to outline
some of their combinatorial and geometric implications.

A number of people were involved in formulating these conjectures and
exploring various observations about them related here. I have made some
attempt to give credit through notes appended to many sections. I hope I have
not inadvertently shortchanged any of the many contributors to this work.

1. Essential definitions

1.1. Sn action on Q[X1, ..., xn, y 1 . . . , yn]

We will be concerned with the diagonal action of the permutation group Sn

by automorphisms of the polynomial ring Q[X, Y] = Q[X1, ..., xn, y1, . . . , yn] in
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two sets of variables X and Y. By the diagonal action we mean the one given
by a(xi) = xa(i), a(yi) = y^(i) for a € Sn. We call this action diagonal because
it results from combining the double action of Sn x Sn permuting the X and
Y variables separately with the diagonal embedding of Sn into Sn x Sn given
by a -> (a, cr).

We may think of the variables X and Y as coordinates on a 2n-dimensional
vector space V, and regard group actions on Q[X, Y] as arising from actions
on V.

The double action of 5n x 5n on V is a reflection group action: When r is
a transposition (i j) the elements (r, 1) and (1, r) act on V by exchanging two
coordinates and so are reflections. That is, each of them fixes a hyperplane
of codimension 1 and acts as -1 on a complementary 1-dimensional subspace.
Since these elements generate Sn x Sn, the action is, by definition, a reflection
group action.

The diagonal action of Sn on V by contrast is not a reflection group action.
In fact, every element of Sn acts by a transformation with determinant 1 on V,
whereas the determinant of a reflection is -1, so there are no reflections in this
action at all.

We may decompose V as V = U X W, where U and W are the subspaces
defined by X = 0, and Y = 0, respectively. Then U and W each carry the
natural reflection group action of Sn. From this point of view, the diagonal
action of Sn is a special case of the action of a reflection group W on the
coordinate ring Q[U x U], where U carries the reflection action. As we shall
see, the attempt to generalize the conjectures made here to this setting leads to
some interesting phenomena.

From the standpoint of reflection groups, it would seem sensible to use the
irreducible reflection group action U of Sn, which in coordinates is the action on
the space spanned by {x1 - x2, x2 - x3 , . . . , xn

-1 - xn}. However, the object of
our study will be a quotient ring by 5n invariants of positive degree, so we will
always be "modding out" the invariant x1 +...+ xn. As a result we lose nothing
and gain convenience of notation by working with Q[X, Y] instead of Q[U x U].

1.2. Ideal I and quotient ring Rn

We now define the ring Rn, properties of which are described by our conjectures.
Let I be the ideal in Q[X, Y] generated by all Sn invariant polynomials without

constant term. We set
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Note that / is a homogeneous ideal, since if p(X, Y) is an invariant polynomial
without constant term, then so is each of its homogeneous components of various
degrees. In fact, the same is true for homogeneous components of various
bidegrees, where we say that a polynomial has bidegree (i, j) if it has degree
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i in X and j in Y. Thus / is a bihomogeneous ideal, and consequently Rn
has the structure of a doubly graded ring. In other words, Rn is the direct
sum of homogeneous subspaces (Rn)i,j, where (Rn)i,j consists of all images of
polynomials p(X, Y) which are homogeneous of bidegree (i, j). It is immediate
that (R n ) i , j (R n ) i , j C (Rn) i+i, j+j '.

The ideal I is an Sn submodule of the ring Q[X, Y], so the quotient ring
Rn acquires an Sn action. The action preserves bidegree, so the decomposition
Rn = xi,j(Rn)i,j is a decomposition into Sn submodules. All the conjectures
propose answers to the question, what are the characters of these submodules?
At present there is no conjecture giving a complete answer. Instead, there are
conjectures for various marginals of the matrix of characters, which are seen to
be full of wonderful combinatorial surprises.

It is easy to show that any set of homogeneous generators for the subring of
invariants Q[X, Y]Sn generates the ideal /, and conversely. The corresponding
statement in fact holds for any finite group action. In this particular case, the
following theorem of Weyl gives such generators.

PROPOSITION 1.2.1 (Weyl [29]). The ring of invariants Q[X, Y]Sn is generated by
the "polarized power sums" p r , s (X , Y) = ^ixiyi.

This result generalizes to any number of sets of variables X, Y, Z, ..., and has
an analog for the signed permutation group Bn, but not for the other classical
Weyl groups Dn.

We make a trivial observation here whose significance will develop later.

PROPOSITION 1.2.2. The homogeneous subspace (Rn)0,0 affords the trivial represen-
tation of Sn, and this is the only occurrence of the trivial representation in Rn.

Proof. Obviously (Rn)0,0 affords the trivial representation, since it is spanned by
1. If (i, j) ^ (0, 0), then every Sn invariant polynomial homogeneous of bidegree
(i, j) belongs to / by definition, so there are no Sn invariants in (Rn)i,j .

1.3. Diagonal harmonics Hn

There is a useful alternative view of Rn as isomorphic to a space of harmonics,
as we now explain.

Definition. The apolar form (to use Rota's terminology) is the nondegenerate
symmetric bilinear form (., .} on Q[X, Y] defined by
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where 8z denotes the partial derivative operator with respect to z.
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To see that the apolar form is symmetric and nondegenerate, merely observe
that the set of all monomials in X, Y forms an orthogonal basis for it. Note
also that the bihomogeneous subspaces (Q[X, Y])i,j are all mutually orthogonal,
and that (•, •) restricts to a nondegenerate form on each of them. Consequently,
provided we deal with homogenous subspaces, we may generally treat the apolar
form as if it were defined on a finite dimensional vector space, so that we have
I-11- = I, for instance, when / is homogeneous.

PROPOSITION 1.3.1. If I is a homogeneous ideal, then its orthogonal complement
H = I1 is a homogeneous space of polynomials, closed under the taking of arbitrary
partial derivatives. We also have H = {h\ f(8X, 8Y)h = 0 Vf e I}; in other words,
regarding I as a system of polynomial partial differential equations, H is its space
of solutions. If H is any homogeneous space of polynomials closed under partial
derivatives, then I = HL is a homogeneous ideal with H = IL.

Proof. From the definition above of (., .), we see immediately that
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that is, the operator dx is adjoint to multiplication by x. Here x is any variable
from X or Y.

In particular, if h e Ix, then (f, h) = 0 for all f 6 I, and hence (xf, h) =
{f, dxh) = 0, since I is an ideal. Thus dx h e I1. This shows H = IL is closed
under derivatives.

To show H = {h | f ( d X , 8Y)h = 0 V/ e I}, note first that any element
of this set obviously belongs to I1. Conversely, if h e IL, then by definition
f(8X, dY)h |x=y=0 = 0 for all / 6 /. Replacing / by an arbitrary multiple of
itself, we see that the partial derivatives of all orders of f ( d X , 8Y)h vanish at
0, and therefore the polynomial f(dX, 8Y)h vanishes identically.

Finally, let H be an arbitrary homogeneous space of polynomials closed under
differentiation. If / e HL, then {xf, h) = {f, dx h) =0 for all h e H. This
shows I = HL is an ideal, and H = HL1- = IL follows because the spaces are
homogeneous.

Remark. Homogeneity was used only in the last sentence of the proof. The
proposition can be generalized to inhomogeneous ideals if we are willing to admit
a space of formal power series for H.

Definition. The space Hn of diagonal harmonics for Sn is I1, where / is the
ideal defining the ring Rn in (1).

Since the apolar form is 5n invariant, the space Hn is an Sn submodule of
Q[X, Y], as is each of its homogeneous components (Hn)i , j . As Sn module,
(Hn) i , j is clearly isomorphic to (Rn)i,j, since both are complements to (I)i,j in

D



CONJECTURES ON THE QUOTIENT RING BY DIAGONAL INVARIANTS

(Q[X, Y]) i , j. An explicit isomorphism a : Hn -> Rn can be given by simply
letting a(h) be the element of Rn represented modulo I by the polynomial h.

Harmonics can be defined in more generality than we have just done. Namely,
let V be a finite-dimensional vector space equipped with a nondegenerate sym-
metric bilinear form {.,.), and let X = {x1,..., xn} be a basis of coordinates
on V. There is then a unique dual basis of operators du 1 , . . . , dun on Q[X],
where the dui are linear combinations of dxj chosen so that du ix j = (xi,Xj).
The form (•, •) may now be extended to all of Q[X] by a formula like (2), and
the result is independent of the choice of basis.

In particular, if the original form {•, •} is invariant under the action of a group
G on V then the extended form is invariant for the induced action on Q[X].
Proposition 1.3.1 still applies, and we obtain a space of "G-harmonics" orthogonal
to the ideal generated by G invariants without constant term.

All the (real) reflection groups have reflection representations defined over Q
and leaving invariant a suitable form (•, •}, so we can construct harmonics for
their reflection actions and their diagonal actions, just as for Sn.

Our use of Q as a ground field is, incidentally, quite arbitrary. Everything
works identically over R, and can be adapted to Hermitian forms on complex
vector spaces by using antiholomorphic partial derivatives.

Notes. The notion of harmonics considered here is standard in harmonic analysis
on groups, see e.g. [12]. A. Garsia was the first to point out the value of studying
Rn via the diagonal harmonics. The advantages resulting from this perspective
will become evident in Section 5.

1.4. Hilbert series and Frobenius series

Whenever we deal with graded spaces, such as the polynomial ring Q[X, Y] or
any homogeneous ideal, quotient ring, or space of harmonics, it is convenient
to keep track of the dimensions of its homogeneous components by means of a
generating function, known as the Hilbert series.

When our space is graded by a single degree, say A = (A)0 ® (A)1 @ • • •, we
will write a Hilbert series in a single variable q, denoting it by the letter H, as

21

More often, we will have bigraded spaced A = (A)0,0 © (-A)0,1 © (-A)1,0 © • • •, in
which case we write a bivariate Hilbert series such as
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In dealing with graded Sn modules we will generally want to record not only
the dimensions of homogeneous components but their characters. To do this we
combine the notion of Hilbert series with the familiar Frobenius map assigning
to each character x of Sn a symmetric polynomial S (x) so that the irreducible
character xa corresponds to the Schur function sa. (We assume familiarity with
the theory of symmetric functions and their relationship to Sn characters, as
developed for instance in [17].)

Thus to a bigraded Sn module A = (A)0,0 © (A)0,1 © (A)1,0 © • • • we attach a
Frobenius series

where by abuse of notation 0 of a module means s of its character. The
Frobenius series is a symmetric function (in some infinite alphabet Z which we
leave unspecified), with coefficients in the ring of polynomials Z[t, q],

Clearly the Frobenius series determines the Hilbert series. To make this
explicit, note that the degree of the Sn character xa is given by (pn

1, sg), where
(•, •) is here the usual inner product on symmetric functions and pk is the kth
power sum. Therefore we may write

For example, by a well-known computation based on the master theorem of
MacMahon, we have for Q[X],

Here {z1, z2, • • •} is the alphabet of variables in which the symmetric polynomials
are taken.

For the bigraded ring Q[X, Y] we have

and

Here sr * su is the internal product f ( x r ® xu).
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1.5. The case of one set of variables for comparison

In this section, we consider the action of Sn on Q[X], where X = {x 1 , . . . , xn},
and the analogs of Rn and Hn. Everything we say holds, when suitably restated,
for every reflection group, and nearly all of the properties we discuss are actually
characteristic of reflection groups, in that if any one of them holds for a finite
group of linear transformations, then it must be generated by reflections. This
theory is treated in the classical papers of Chevalley, Shephard, Todd, and
Steinberg [4, 21, 24, 25, 26].

In the present situation, we consider the ideal / generated by all invariant poly-
nomials in X without constant term, or equivalently by any set of generators for
the ring of symmetric polynomials in X, such as the power sums p1(X), ..., pn(X).

These generators form a homogeneous system of parameters (abbreviated h.s.o.p.)
in Q[X], that is, a set of n homogeneous and nonconstant polynomials pi such that
Q[X]/(p1, ...,pn) is a 0-dimensional ring (or finite-dimensional vector space).
The elements of an h.s.o.p. are algebraically independent, so Q[X]Sn is isomorphic
to the polynomial ring Q[P1, ...,pn], and the full ring Q[X] is a free module
over this subring.

For this section only, we put Rn = Q[X]/I and Hn = IL, the one set of
variables versions of the quotient ring and harmonics which we defined earlier
for X and Y.

The space Hn, or indeed any space of polynomials mapping isomorphically onto
Rn modulo I, generates Q[X] as a free module over Q[X]Sn, which immediately
gives the equation

23

for the Frobenius series F(q) of Hn (and Rn). This completely solves the
character problem: The polynomial whose coefficients give the multiplicities of
X\ in the various components (Rn) i is

which by the theory of symmetric functions is also equal to

where [k]q means 1 + q + • • • + q k - 1; h(x) is the length of the "hook" of a cell x
in the diagram of A; the sum ranges over standard Young tableaux of shape A;
and n(A) and maj(T) are certain statistics associated with A and T.
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It also follows immediately from our free module situation that the Hilbert
series of Hn (and Rn) is

and consequently that dimQ(Hn) = dimQ(Rn) = n!, the order of the group Sn. In
fact, this space affords the regular representation of Sn, as can be seen from (13).

The space Hn in this case has a simple direct description. It contains the
Vandermonde determinant A(X) = ni<j(xi - xj), and consists exactly of this
polynomial and its partial derivatives of all orders. For other reflection groups
A(X) would be replaced by the discriminant, the product of linear forms vanishing
along the reflecting hyperplanes of all reflections in the group.

2. The main conjectures, roughly in order of increasing strength

In this section we present a series of conjectures about the Hilbert series and
Frobenius series of Rn, or equivalently, of Hn. Using the computer algebra
system MACAULAY, the conjectures on the Hilbert series have been checked
through n = 7 and the conjectures on the Frobenius series through n = 6. Tables
appear in the appendix.

The first (and earliest) conjecture concerns simply the vector space dimension of
Rn and Hn, or Kn(1, 1) in Hilbert series notation.

Conjecture 2.1.1

Combinatorialists will recognize this quantity immediately as the number
of rooted forests on n labeled vertices, or equivalently as the number of un-
rooted trees on n + 1 labeled vertices. It has other interpretations, which will
develop below.

The conjectures in this section and the next concern certain "marginals" of the
Hilbert series. It is convenient to picture the coefficients of Hn(t, q) as entries
of an array, as shown here for n = 3 and in the appendix for all n < 7.
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The diagram expresses the fact that
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Conjecture 2.2.1

In particular, this conjecture requires that ±(n
2) are the extremes of the dif-

ference (degree in X) - (degree in Y). This is a fact, a consequence of
Corollary 3.2.1.

The difference of degrees statistic corresponding to the specialization t = q-1

is the weight for the si2 action which will be discussed further in Section 3.1.
From this point of view, Conjecture 2.1.1 asserts that Rn is a specific si2 module.
A word of warning—the formula (20) does not make H n (q - 1 , q) the character of

Various sums of parts of the diagram can be expressed as specializations of
the Hilbert series. For instance for the leftmost column or bottom row we have
the following.

PROPOSITION 2.2.1

Proof. We are considering the part of degree 0 in Y, say, which reduces to the
Hilbert series (14) for the case of one set of variables. D

Remark. For the same reason, the Frobenius series specialization fn(q, 0) is
given by (11-13).

We now consider the sums along "antidiagonals" leading upward and to the
right in the diagram, which in the example (16) are

Note that by Proposition 2.2.1, the extreme nonzero entries along the first row
and column occur at t® and g©, corresponding to the harmonics A(X) and
A(Y), the Vandermonde determinants.



the (n - l)-st tensor power of some irreducible si2 module. Indeed its (n - l)-st
root q-n/2[n + 1], is not a character at all for n odd, and describes a module
with two irreducible components, of highest weights n/2 and n/2 — 1, for n even.

Notes. Conjecture 2.2.1 was discovered by R. Stanley.

2.3. Inversion enumerator for trees

Next we shall give a conjecture describing the sums along columns, or along
rows, of the diagram (16), or in other words, describing the dimensions of
homogeneous components of Rn by degree in X or Y alone.

First we must define the inversion number for a labeled tree or forest.

Definition. Let T be a spanning tree on the n+1 vertices {0, 1,..., n}. Regarding
0 as the root of the tree, we say that {i < j} C {1,..., n} is an inversion in T if
vertex j is an ancestor of i, i.e., j lies on the path connecting i to the root 0.

Alternatively, we may define an inversion in a rooted forest on {1,..., n} to
be {i < j} such that i and j belong to the same tree and j is an ancestor of
i; clearly the forest will have the same set of inversions as the tree formed by
adjoining 0 and connecting it to the roots of the forest.

Conjecture 2.3.1. Hn(l, q) is the inversion enumerator for trees,
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where T ranges over all spanning trees on {0, 1,..., n} and inv(T) denotes the
number of inversions of T.

A number of interesting observations may be made about this conjecture.
First of all, for q = 0 it corresponds to the fact that there are n! trees with no
inversions, or increasing trees. There are well-known bijections establishing this
(see [23]). It also says that g(n

2) corresponds to the extreme degree and occurs
with coefficient 1, since the unique forest with every possible inversion is a single
chain decreasing from the root. This fact will follow from Proposition 3.2.1.

There are other natural tree statistics with the same distribution as inv(T).
The most interesting is the external activity of Tutte [27], defined as follows. Fix
any total ordering < on the set of edges of the complete graph Kn+1 with vertex
set {0, 1, ..., n}. Given a spanning tree T, an edge e not in T is said to be
externally active if it is less than all edges along the unique path in T connecting
the endpoints of e. The external activity e(T) is by definition the number of
externally active edges.
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More generally, the notion of external activity applies to bases of an arbitrary
matroid, in this case the circuit matroid of the complete graph Kn+1. The
fundamental result of Tutte is that

is the characteristic polynomial of the matroid, which does not depend on the
choice of the ordering < among edges.

The polynomials (21) and (22) are identical because of a relationship between
the inversion enumerator for trees and the enumerator for spanning subgraphs
of Kn+1. Let Jn(q) denote the inversion enumerator given by (21), and let

where G ranges over spanning subgraphs of Kn+1 and E(G) is the number of
edges in G. A spanning subgraph means a subset of the edges which connects
all the vertices, that is, which contains a spanning tree. Then we have by [11,
18]

Since the same identity holds with Jn(q) denoting the characteristic polynomial
(22), (21) and (22) are equal. It is straightforward to write down the exponential
generating function for the sequence Cn(q), yielding the generating function for
Jn(q) as in [18].

Notes. Conjecture 2.3.1 was discovered by both Stanley and myself. I am
indebted to I. Gessel for much of the information about the inversion enumerator
mentioned here.

2.4. The whole Sn module (Zn
n+1/Zn+1)

In this and the next few sections we turn from Hilbert series conjectures to
their Frobenius series analogs, which are of course stronger, but not always as
immediately accessible.

Our first goal will be to determine Fn(1, 1), which is to say, to determine
the whole of Rn as an Sn module, ignoring the grading. Our conjecture is that
Rn is the tensor product of a certain permutation representation by the sign
representation. We will first state the conjecture at the representation level, then
rephrase it in terms of Fn.

Conjecture 2,4.1. Let Vn be the following Sn module. Begin with the finite
abelian group Zn

n+1, where Zn+1 is the integers modulo n + 1, with Sn acting by
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permuting coordinates. The element (1, 1,..., 1) e Zn
n+1 generates a subgroup

isomorphic to Zn+1 whose elements are Sn invariant, so that Sn acts on the
quotient group Zn

n+1/Zn+1. Taking the elements of the finite set Zn
n+1/Zn+1 as

a Q-basis we have a permutation representation of Sn, which is Vn. Then Rn is
isomorphic as Sn module to e ® Vn, where e is the sign representation.

Note that the cardinality of Zn
n+1/Zn+1 is (n + 1)n-1, in agreement with Con-

jecture 2.1.1.
Now let us find the character of Vn. To do so, we first work out the character

of the permutation representation afforded by Zn
n+1, then divide by n + 1. The

group structure of Zn
n+1 has no relevance here, so we regard it as merely the set

{0, ..., n}n of sequences (a1, ..., an) with 0 < ai < n.
Among these sequences, each Sn orbit contains a unique element of the form

(a1 < a2 < ••• < an), for which there are unique integers u1 , . . . , uk such that
a1 = ... = au1 < au1+1 = ... = au1+r2 < • • • . The stabilizer of the element
(a1 < a2 < • • • < an) is the Young subgroup Su1 x • • • x Suk, and the Frobenius
image of the permutation representation afforded by its orbit is the symmetric
function hu — hu1 • • • huk.

A given sequence u1, ..., uk with u1+ ...+uk = n will clearly arise (n+1
k) times

among all orbits. We may group together u's representing the same partition
A = (A1 > A2 > ... > Ak) of n by noting that the number of distinct such
sequences u is (m1(A),km2(A)...), where mi(A) denotes the multiplicity of i as a part
of A.

Let us agree to regard each partition A of n as having enough parts of 0 to
make the total number of parts equal to n + 1, that is, to define m0(A) so that
m0(A) + m1(A) +... + mn(A) = n +1. Then we may express the number of orbits
contributing ha to the Frobenius image simply as ( m0(A),

n+1
m1(A),...,mn(A)).

Adding everything up, dividing by n + 1, and applying the symmetric function
involution w to account for the sign twist, we arrive at the following equivalent
formulation of Conjecture 2.4.1.

Conjecture 2.4.2
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It is possible to express (25) in terms of Schur functions as follows. First note
that the multinomial coefficient

is none other than ma(1, 1,...,1), where mA denotes the monomial symmetric
function, and the argument consists of n + 1 ones. Applying the Cauchy formula
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we transform (25) into

or

where A' denotes the conjugate partition, and the arguments of the Schur functions
in the numerators consist of n + 1 ones.

From (29) we can see that Conjecture 2.4.2 predicts a multiplicity of 1 for the
trivial character (corresponding to S(n)) as it must to agree with Proposition 1.2.2.

2.5. Character refinement of 2.2

Conjecture 2.4.2, once expressed in the form (29), has an evident "q-analog,"
which matches the data for the Frobenius series version of Conjecture 2.2.1.
More precisely, we have the following.

Conjecture 2.5.1

It is not at all obvious that the coefficients

appearing in (30) are even polynomials, let alone polynomials with nonnegative
coefficients. The potential difficulties may be appreciated by observing that
the expression

for arbitrary p is not always a polynomial.
In order to justify Conjecture 2.5.1 as at least reasonable, we will now determine

for which p the expression (32) is a polynomial, and show that it has positive
integer coefficients for those p.
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PROPOSITION 2.5.1. The following are equivalent:

Proof. We'll show (3) => (1) and (2) => (3), since (1) => (2) is trivial.
In (1) we can replace sA by hA without affecting the result, since {sA} and {hA}

are each bases for the symmetric functions of degree n. Regarding (2) note also
that s(n) = hn.

It can be shown without difficulty that hr(1, q,..., qp-1) is equal to the q-
binomial coefficient

The roots of the polynomial 1 + q + • • • + qp-1 are the pth roots of unity,
other than 1. We must show that each occurs as a root of the polynomial
hA(1, q, ..., qp-1). A pth root of unity will be a primitive dth root of unity for
some d > 1 dividing p, and such a root occurs with multiplicity 1 or 0 as a root
of [k]q, depending upon whether d divides k or not.

By counting multiplicities in the numerator and denominator of (33), it can
be seen that for d dividing p, each primitive dth root of unity occurs as a root
of hr(1, q, ..., q p - 1 ) with multiplicity 1 if d J(r, and 0 if d | r.

Now suppose p is relatively prime to n, and consider hA(1, q, ..., qp-1). If
d | p, d > 1, then d / n, and hence d / Ai for some part Aj of A, since Z i Ai = n.
The corresponding factor hAi(1, q, ..., gp-1) will then have the primitive dth
roots of unity as roots. Hence 1 + q + ••• + qp-1 divides hA(1, q, ..., gp-1),
proving (3) => (1).

The same considerations show that 1 + q + • • • qp-1 divides hn(1, q,... , gp-1) if
and only if for every d | p, d > 1, we have d / n. This is the same as saying p
and n are relatively prime, so (2) => (3). D

It remains to show that the polynomials (31) have nonnegative coefficients.
There is an algebraic interpretation which implies this, as follows. As in Sec-
tion 1.5, the initials h.s.o.p. below stand for homogeneous system of parameters.

PROPOSITION 2.5.2. Suppose that Q[X] = Q[x1, . . . ,xn] contains an h.s.o.p.
01, 02, • • • , 0n with the following properties:

(1) 01 has degree 1 and 02, ...,0n have degree p.
(2) 01 is Sn invariant, and 02, • • • , 0n span a subspace affording the irreducible

reflection representation of Sn.
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Then the Frobenius series of Q [ X ] / ( 0 1 , ..., 0n) is given by

Proof. This will be a proof sketch, omitting verification of many details.
The idea is to consider the Koszul resolution of Q[X]/(01, ..., 0n), which is an

exact sequence

In this resolution, Fk is a free Q[X] module with basis indexed by k-subsets of
{01, ..., 0n}. Each Fk is graded by assigning to each basis element a degree based
on the degrees of the 0i. There is an action of Sn on everything, and the maps
(which I will not describe) are homogeneous of degree 0 and Sn equivariant.

It follows from the exactness of (35) that the Frobenius series F(q) for
Q[X]/(01, ...,0n) is given by

Furthermore, the sum on the right is the internal product (the symmetric function
operation corresponding to tensor product of Sn modules) of the Frobenius series
(8) for Q[X] with the sum

where Bi is the Q-linear span of the free module basis for Fi, which is a graded
Sn module. As it happens, the sum (37) works out to

and the internal product of (8) with (38) is exactly (34). D

By Proposition 2.5.1 it is necessary that p be relatively prime to n in order for
an h.s.o.p. satisfying the hypotheses of Proposition 2.5.2 to exist. We now prove
that this condition is also sufficient.

PROPOSITION 2.5.3. An h.s.o.p. satisfying the hypotheses of Proposition 2.5.2 exists
whenever p is relatively prime to n.

Proof. There is no real choice as to 01 — up to a scalar multiple, it must be
x1 + ••• + xn .
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Homogeneous polynomials 01,..., 0n € Q[X] form a system of parameters
just in case the only solution of the equations 0 1 ( X ) = 0, ..., 0 n ( X ) = 0 is
x1 = x2 = ...= xn = 0.

When p is prime and doesn't divide n, the choice 0i = xp
i-1 - x

p
i for 2 < i < n

works. In this case the equations 6i(X) = 0 say that all xp
i are equal and

x1 + • • • + xn - 0. Suppose there is a nonzero solution. Resealing, we can
assume x1 = 1 and hence each xi is a pth root of 1. Let e be a primitive pth
root of 1. Writing Xi as e* we have

Notes. Proposition 2.5.3 was a conjecture in an earlier draft of this paper.
H. Kraft supplied a crucial part of the proof.

2.6. The parking function module

In this section we give a Frobenius series version of Conjecture 2.3.1. There is
no reasonable Sn action on trees preserving the inversion number or external
activity, but there is a related combinatorial structure which serves the purpose,
as we now explain.

Definition. A function f : {1, ..., n} —> {1, ..., n} is a parking function if for all
1 < k < n, the cardinality of f-1 ({1, ..., k}) is at least k.
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Then f ( x ) is a polynomial with integer coefficients, f(1) = n, and f(x) is divisible
by the minimal polynomial of e, namely 1 + x + • • • + xp-1. Setting x = 1, this
forces p to divide n, contrary to assumption.

To complete the proof, we show that if there exist suitable systems of parameters
of degrees p and q, then there is one of degree pq. For this purpose it is best
to work modulo 01, which we always take to be x1 + • • • + xn.

Putting zi = xi - xi-1 our problem concerns h.s.o.p.s {02, • • •, 0n} in Q[Z] which
span a copy of the irreducible reflection representation of Sn (as do the zi's).
Up to a linear transformation among the parameters, we can assume that the 0i

permute exactly as the Zi do, so that the ring homomorphism g0 mapping Zi to
0i is Sn equivariant. Thus g0 defines an equivariant polynomial map from the
irreducible reflection representation V of Sn to itself, and the condition that the
0i form a system of parameters says precisely that the preimage of 0 under this
map is {0}.

But now, given h.s.o.p.s {02, • • •, 0n} and (0'2, ...,0'n} of degrees p and q, the
composite map g0 o g0' again defines an equivariant polynomial map from V to
V, homogeneous of degree pq, and such that the preimage of 0 is {0}. Hence
g0 o g0' carries the Zi onto a suitable h.s.o.p. of degree pq. n



CONJECTURES ON THE QUOTIENT RING BY DIAGONAL INVARIANTS

To motivate this definition, imagine a one-way street with n parking spaces
labeled 1 through n. There are n cars which want to park along the street, and
each car i has a preferred parking space f(i). The cars arrive in succession
at the head of the street and each drives immediately to its preferred parking
space. If the space is unoccupied, the car parks there; otherwise it continues
to the next unoccupied space. If any car reaches the end of the street without
having parked, the parking process fails.

It is obvious that a necessary condition for the parking process to succeed is
that the preference function / be a parking function, and it is easy to prove that
the condition is also sufficient.

Note that the property of being a parking function is invariant under permu-
tation of the cars, that is, under replacement of f by f o a for a e Sn. In this
way Sn acts by permutations on the set of parking functions.

PROPOSITION 2.6.1. The number of parking functions for a given n is (n+ 1)n-1,
and the permutation action of Sn on them is isomorphic to the action on Zn

n+1/Zn+1.

Proof. Consider the parking process on a circular one-way street with parking
spaces 1,..., n + 1. Since the street is circular, the process can't fail, and exactly
one parking place will be left unoccupied. Among the n + 1 distinct rotations of
any given preference functions f : {1, ..., n} —> {1, ..., n + 1}, precisely one is
a parking function—the one that puts the final unoccupied space at n + 1.

By making this informal argument precise (which can be done without too
much trouble) we can conclude that the permutation action of Sn on the set
of all functions f : {1, ..., n} —> {1, ..., n + 1} is isomorphic to n + 1 disjoint
copies of the action on parking functions, which is equivalent to what what we
wanted to show. D

The beauty of parking functions is that they have weights, with the same
distribution as the inversion statistic for trees.

Definition. The weight w(f) of a parking function f is n(n + l)/2 - Ji f(i).

The weight is the total distance driven by all cars while searching for a parking
place, not counting the initial drive to the preferred spot. Note that it is zero if
and only if f is a permutation, and its maximum value (n

2) occurs uniquely for
the constant function f = 1.

PROPOSITION 2.6.2. The sum
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taken over all parking functions for a given n is equal to the inversion enumerator
for trees, (21).
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A bijective proof of this proposition is given in [16]. We will give another
derivation later using Proposition 4.4.1.

We now have enough machinery to state the Frobenius series version of
Conjecture 2.3.1, at least at the representation level. After that, we will work
out what it says at the symmetric function level.

Conjecture 2.6.1. Let Vn be the following graded Sn module. Take the parking
functions f : {1,..., n} —> {1, ..., n} as a Q-basis and grade according to weight.
Then Rn, graded by degree in X ( or Y), is isomorphic as a graded Sn module
to e ® Vn.

Implicit in this conjecture is a value for Fn(1, q) which we now want to make
explicit.

The Sn orbit of a parking function / determines and is determined by the
partition n whose parts are the numbers f(1) - 1,..., f ( n ) - 1, sorted into
nonincreasing order. The defining condition for / to be a parking function
amounts to the requirement that u c sn, where sn is the partition (n — 1, n —
2, ..., 1) of (n

2), and the expression u C sn means the diagram of u is contained
in that of sn, which is merely to say that ui < n - i, for each i.

The weight of / translates into the quantity (n
2) - |u|. The symmetric function

describing the representation on the orbit corresponding to u is hm0(u)hm1(u)) • • •
hmn-1(u), provided we agree to assign u enough zero parts to give it n parts
altogether. Applying w for the sign twist, we arrive at the following equivalent
formulation of Conjecture 2.6.1.

Conjecture 2.6.2

where A(u) is the partition of n whose parts are the multiplicities mi(u), and
m0(u) is defined so that Ji mi(u) = n.

In light of Proposition 2.6.1, the expression (41) must specialize to (25) upon
setting q = 1. In other words, the number of u C sn with a given A(u) = A is
equal to (m0(A),

n+1
...,mn(A))/(n+1), where m0(A) is defined to make J i m i ( A ) = n+1.

We leave it as an exercise for the reader to find a direct proof of this fact.

Notes. Gessel informed me about parking functions and was the first to suggest
they should have some relationship to the module Rn. Parking functions were
first studied by Konheim and Weiss [14].

2.7. t, q-Catalan numbers
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This section contains no new conjectures, just some interesting cases of those
made above. The sign representation appears to play a special role in Rn, as
we shall see more fully in Section 5. Already, we recognize that the conjectures
require the multiplicity of the sign character e to be the number of Sn orbits
among parking functions or in Zn

n+1/Zn+1.

as can be seen in several ways. For instance, we may appeal to (29), where the
coefficient of s(1n) is S(n)(l, 1, ..., l)/(n + 1), with n + 1 ones in the argument,
which is equal to (42). Even more directly, we can observe that orbits in Zn

n+1

correspond to multisubsets of size n from {0,..., n}, and there are (2n
n) of these.

An alternate approach is to use (41), which has one term per orbit. It is well
known that partitions u C sn are counted by the Catalan number Cn. The
outlines of the diagrams of u, can be interpreted as Dyck paths: paths made up
of unit upward and rightward steps in the plane, starting at (0,0) and ending at
(n, n), which do not fall below the diagonal.

If the conjectures hold, then the quantity

must be a t, g-analog of the Catalan number Cn. It would be very interesting to
have a plausible combinatorial conjecture as to its value.

Here is a table of the values through n = 5:

This number is the Catalan number
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2.8. Conjectures for Q[X, Y, Z]; problems for > 4 sets of variables

There is some computational data on the analog of Rn in three and four sets of
variables X, Y, Z, — Since I don't necessarily think there is enough evidence
to justify the word conjecture, I'll state it as follows.

Fact 2.8.1. For n < 5 the dimension of R n (X , Y, Z) as a vector space is
2n(n + l)n-2. The multiplicity of the sign character is

Conjectures 2.5.1 and 2.6.2 lead to one-parameter specializations which must
hold for Cn(t, q). As it turns out, both of these are classical q-analogs of Cn

which are well studied in the literature, so we will take a moment to describe
them. There is even in the literature [5] a three-parameter Catalan number
Cn(x, a, b) which possesses both of the required one-parameter specializations.
Unfortunately, this Cn(x, a, b) apparently has no two-parameter specialization
which agrees with the one-parameter specializations and also with the identity
Cn(t, q) = Cn(q, t), which must certainly hold for (43).

Conjecture 2.5.1 leads to the specialization

The right-hand side is known to be a polynomial with nonnegative coefficients.
It counts Catalan words by major index. A Catalan word is a sequence w1 • • • w2n

of n zeroes and n ones, in which the number of ones in an initial segment is not
allowed to exceed the number of zeroes. The major index is the sum of those i
for which wi = 1 and wi+1 = 0.

Conjecture 2.6.2 leads to

where Cn(q) are the q-Catalan numbers of Carlitz and Riordan [3]. These can
be defined by the recurrence

and count Catalan words by the statistic (n
2) minus the number of inversions, i.e.,

those i < j for which wi = 1 and Wj = 0. From this follows (46), since for u C Sn,
\u\ is the number of inversions of a naturally corresponding Catalan word.

Notes. Stanley first noticed that the multiplicity of the sign character is Cn.
Information about the known one-parameter g-Catalan numbers and some multi-
parameter generalizations can be found in [5],
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The situation for four sets of variables begins to be more problematic. For
what it's worth, here are the dimensions for n < 4.

Large prime factors make a discouraging appearance, e.g., 996 = 22 • 3 • 83.

3. Some theorems

In this section we prove three theorems about Rn. None is extremely deep, but
they do give some information about the Hilbert and Frobenius series.

3.1. s\2 unimodality

There is an action of GLi on Q[X, Y] that commutes with the action of Sn.
This can be understood by thinking of the variables X and Y as the rows of a
2 x n matrix X. Then Sn permutes the columns, in effect multiplying X on the
right by a permutation matrix. At the same time, we may multiply X on the left
by any 2x2 matrix, getting the GL2 action. The GL2 action mixes X and Y but
does leave invariant the homogeneous components 0i+j=d(Q[X, Y]) i , j of each
total degree d.

Since GL2 commutes with Sn it leaves the ideal I invariant, so there is an
induced action on Rn. As we shall see in Section 5, GL2 also leaves invariant the
space of diagonal harmonics, so we have corresponding actions on Hn and Rn.

To analyze Hn as a GL2 module we look at the infinitesimal action of the Lie
algebra a12. Recall that s12 has a basis {E, F, H} such that [E, F] = H, [H, E] =
2E, and [F, H] = 2F. In our situation, these are given explicitly as derivations
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A weight space is an eigenspace of the operator H; its eigenvalue is called the
weight. For H given by (49), it is easy to see that the bihomogeneous components
of Hn are weight spaces, with the weight of (Hn)i,j given by j - i.

If V is a finite-dimensional s12 module, we write down a Laurent polynomial
called the formal character of V,

where mk(V) is the dimension of the weight space with weight k. The formal
character contains full information about V as a sum of irreducible sl2 modules,
since there is one such module Vm for each integer m > 0, with character

Because the SL2 and Sn actions commute, Hn decomposes as a direct sum of
irreducible SL2 x Sn modules, which take the form Vm ® WA, where Vm is an
irreducible sl2 module, as just described, and WA is an irreducible Sn module.
This has the following implications for the Hilbert and Frobenius series.

PROPOSITION 3.1.1. The Frobenius series specialization

is a sum of irreducible SL2 x Sn characters of the form

The same is true separately in each total degree. In particular, if we extract those
terms from Fn(t, q) of a given total degree d in t, q, then set t = q-1, the coefficient
of each s\ in the result is a Laurent polynomial with symmetric and unimodal
coefficient sequence. A similar statement holds for the Hilbert series Hn(t, q); in
other words, the diagonals corresponding to constant total degree in the diagram (16)
are symmetric and unimodal.

Observe, by way of example, that these diagonals in (16) for n = 3 are 1, coming
from the trivial character, 2 2, where each 2 comes from the two-dimensional
character of S3 (corresponding to the irreducible reflection representation), 232,
consisting of a two-dimensional character in each spot plus the sign character in
the middle, and 1111, coming from the sign character in each spot.

It should be noted that Proposition 3.1.1 does not say that Hn(q - 1 , q) has
unimodal coefficient sequence, only that the odd degree and even degree parts
of it separately have unimodal coefficients. Thus the value for Hn (q-1, q)
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predicted by Conjecture 2.2.1, which does have unimodal coefficients, remains
completely unexplained.

3.2. Top degree (n
2)

It follows from the observations made in the previous section that in total degree
(2) we have, at a minimum, one copy of the sign character in every bidegree.
The tables suggest that there is nothing more in degree (n

2), and that there is
nothing at all in higher degrees. In this section we will prove these two facts.

Our technique is to find "straightening" relations which enable us to reduce
everything modulo / to certain monomials, and then to show that in each
bidegree of total degree (n

2) these monomials are all congruent to each other.
The following lemma provides us with the relations we require.

LEMMA 3.2.1. The polynomials

(1 < k < n, r + s = k) belong to I, where hk is the complete homogeneous symmetric
function of degree k, and the notation \arBs means to extract the coefficient of arBs.

Proof. Given any homogeneous polynomial p(X), the polynomials p(aX +
BY)\arBs, called polarizations of p, can be gotten by repeatedly applying the
operator E = Z iy idx i of (49). Therefore if p(X) belongs to /, its polarizations
do also, and it suffices to prove hk(xk, ..., xn) e I.

Consider the equation

Modulo I, the right-hand side is 1, so we have

Since the coefficient of tk is zero on the left-hand side, it is zero (mod /) on the
right, proving the result. D

To use the polynomials (54) as straightening relations, we impose a lexicographic
order on all monomials in X, Y. In this order, we first compare two monomials
by their total degree in x1, y1, then x2, y2, and so forth. For our purposes it
doesn't matter how we choose to break ties when all total degrees agree.

In this ordering, the leading, or lexicographically largest, term of (54) is xr
ky

s
k.

We can use (54) to replace any monomial containing xr
ky

s
k by a combination of

lexicographically lesser monomials, modulo I. This proves the following.
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COROLLARY 3.2.1. The set of all monomials m(X, Y) with the property that m(X, Y)
has total degree less than k in xk, yk for each k spans Rn. In particular, the
homogeneous components (Rn) i , j with i + j > (n

2) are all zero.

The corollary also yields an upper bound on Hn(1, 1) of n!(n + l)!/2", which
unfortunately is a good deal larger than (n + 1)n-1.

We can say a little more about monomials which vanish modulo I.

COROLLARY 3.2.2. If m(X, Y) is a monomial whose total degree in xk, yk, • • •, xn, yn

exceeds (k - 1) + • • • + (n - 1) then m(X, Y) = 0 (mod I).

Proof. Such a monomial is always subject to straightening, and all monomials
resulting after a straightening step have the same property. Hence we will
eventually reduce the monomial to zero. D

By a more delicate application of straightening, we obtain the following theo-
rem.

PROPOSITION 3.2.1. For i + j = (n
2), (Rn)i,j is one-dimensional.

Proof. What we shall do is prove that all the monomials of bidegree (i, j)
admitted by Corollary 3.2.1 are actually congruent to each other modulo I.
Since i + j = (n

2), the admissible monomials have total degree exactly k — 1 in
xk, yk for each k. That is, they have the form

where rk + sk = k - 1, £k rk = i, and £k sk = j.
Our first step is to apply a transposition a - (k, k + 1) to a monomial of this

form and use straightening to express the result. For convenience, let us isolate
the kth and (k + l)-st variables by writing our monomial as

Applying a we get

Now xt
ky

u
k is the leading term of the straightening relation

Of the remaining terms in (60), all those involving xi or yi for l > k + 1 as
well as all those of degree exceeding 1 in xk+1, yk+1 kill the factor xr

k+1yk+1P
in am(X, Y), modulo I. This is a consequence of Corollary 3.2.2. As a result,
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if we multiply the 'tail' xr
k+1y

s
k+1P by (60), we obtain the following congruence

modulo /:

or

This even holds for t = 0 or u = 0, since the term involving a negative exponent
has vanishing coefficient.

Now comes a trick: we'll apply the formula (62) twice to get an expression for
(a2m(X, Y) - m(X, Y). The result is

Notice that each monomial in this expression has the form x a
k y b

k x c
k + 1 P, where

a + b = k — 1, c + d = k, a + c = f, say, and b + d — g, where f = r +t and
g = s + u are the same for all the monomials. Let us fix f and g such that
f + g = (k - 1) + k, and also fix P, so that all the rest is determined by a, that
is, we restrict our attention to monomials of the form

for the range a0 = max(0, f - k) < a < min(k - 1, f) = a1 (note this range is
nonempty since 0 < f < (k — 1) + k).

In this notation, the equation (63) becomes

This can also be written

in matrix notation, where M is seen to be a square tridiagonal matrix in which
all entries on the three diagonals are strictly positive and each column sums to
1. It follows from the elementary theory of Markov processes, applied to the
random walk with transition matrix M, that M has a one-dimensional eigenspace
with eigenvalue 1, and hence that the only solutions of (66) are multiples of
[1 • • • 1]. In other words, the monomials ma are all conguent modulo I.
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These congruences mean that given a monomial xr
ky

s
kx

t
k+1y

u
k+1P as in (58), we

are free to redistribute the exponents so as to put all the x's before all the y's.
That is, we can arrange to have either no yk's (if r + t > k — 1) or no zk+1's (if
r +t < k - 1). Applying this repeatedly for various k, we reduce to a monomial,
still admissible by Corollary 3.2.2, which contains no Xky1 with l < k. Since there
is clearly only one such monomial of bidegree (i, j), the proof is complete. D

Notes. The proof of Lemma 3.2.1 is due to Garsia. The proof given here of
Proposition 3.2.1 is due jointly to Garsia and myself. A somewhat simpler proof
of the part of Corollary 3.2.1 asserting that (Rn) i , j = 0 for i + j > (n

2)) had been
found earlier by N. Wallach.

3.3. Bi-degrees (-, 1)

Conjecture 2.6.2 predicts that the space (Hn)-,1 of diagonal harmonics linear in
the Y variables should have dimension (n — l)n!/2, and that after twisting by
the sign character, it should be isomorphic as an Sn module to n - 1 copies of
the induced representation 1 tSn, that is, of the permutation representation on
cosets of the subgroup 52.

Here I will sketch a proof of this due to J. Alfano and N. Wallach. More
detail will be given in a separate publication by them. The result gives a little
more: the character of (Hn)d , 1 for every d.

THEOREM 3.3.1. The Frobenius series

is equal to

where u = (2, 1n-2), and KAu(t) are the "t-Kostka coefficients" expanding the Schur
function sA in terms of Hall-Littlewood polynomials Pu(t) (cf. [17]).

Note that since KAu(1) are the ordinary Kostka coefficients, (68) with t = 1
reduces to (n - 1)h2,1n-2, in agreement with Conjecture 2.6.2.

Proof of Theorem 3.3.1. In Section 5 we shall find a family of operators which
carry diagonal harmonics into diagonal harmonics; these include
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from (49) and

The Vandermonde determinant A(X) = T i < j ( x i - x j ) is harmonic, so EA(X), Dk

EA(X) for all k, and all their x derivatives belong to (Hn)_, 1.
Now D n - 2 E A ( X ) is readily computed to be (apart from a constant factor)

and it follows from the results of [2, 7] that the space of all x derivatives of this
alternating polynomial has Frobenius series

Let Ak (0 < k < n-2) be the space of all x derivatives of DkEA(X). The operator
D induces an Sn equivariant surjection Ak/(Ak n Ak+1) —> Ak+1/(Ak+1 n Ak+2)
which lowers x degree by 1. This implies that the Frobenius series of the space
A = Zk Ak C (Hn) - , 1 is coefficientwise at least that given by (68), with equality
if dim A < (n - l)n!/2.

Now consider the space T of all polynomials Ziyifi, where each fi is a
harmonic polynomial in X and Zifi = 0. Obviously dim T = (n - l)n!, and we
have A C (Hn)-,1 C T.

Let B be the orthogonal complement of A in T, with respect to the apolar
form. Apart from a constant factor, DkEA(X) = E k + 1 A(X) , where

Applying the adjoints of the operators Ek, one shows that Ji yifi € B if and
only if

Since the fi are harmonic, we may write fi = g i(dx1 , ..., dxn)A(X). The
gi(X) may be taken harmonic, and the expression for fi is then unique. Now
Si yifi is diagonal harmonic just in case the operators Z idy idxk

i kill it for k > 0,
that is, just in case
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Comparing (74) and (75) shows that the spaces B and (Hn)-,1 have the same
dimension, and this dimension is at least (n - l)n!/2, since B + (Hn)-,1 = T.
Equivalently, the dimension of A is at most (n- l)n!/2, which as we have already
seen implies dim A = (n-l)n!/2 and hence dim B = dim(Hn)-,1 = (n-l)n!/2.
Therefore (Hn)-,1 = A and the Frobenius series of this space is given by (68). D

4. Lagrange inversion

There is a remarkable relationship between the conjectures for the Frobenius
series of Rn and certain q-analogs of the Lagrange inversion formula, which we
discuss in this section.

4.1 Ordinary Lagrange inversion and 2.4.

Our first observation is that Conjecture 2.4.2 for the "ungraded" Frobenius series
.Fn(l, 1) reduces in a certain sense to the classical Lagrange inversion formula.

To explain this we must place Lagrange inversion in a symmetric function
setting. For this purpose, we think of the ring of symmetric functions abstractly
as the polynomial ring

where the hk's, normally understood to be the complete homogeneous symmetric
functions, are now understood formally as indeterminates.

From this point of view, we can express a generic formal power series of one
variable with zero constant term and unit linear term, in the form

with the usual convention h0 = 1. Relative to (77), the elementary symmetric
functions become the coefficients of

The Lagrange inversion formula gives the coefficients of the functional com-
position inverse of (77). We shall write it in a form giving

where H*(w) is defined by the functional inverse relationship
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Given (79) and (80), the Lagrange inversion formula is

where the vertical bar indicates taking a coefficient. Applying (78), this becomes
in terms of elementary symmetric functions

where Zimi(A) = n + 1. This is exactly the value proposed by Conjecture 2.4.2
for Fn(1, 1).

Notes. I. Macdonald was the first to point out that the quantity (82) conjectured
for Fn(1, 1) is the same as h*n.

4.2. 'Trivial' q-Lagrange inversion and 2.2, 2.5, 2.7

Once it is seen that Conjecture 2.4.2 takes the form .Fn(1, 1) = h*n, it is natural
to ask whether Conjectures 2.5.1 and 2.6.2 might reflect reasonable q-analogs of
Lagrange inversion. They do, as we now explain. First we treat Conjecture 2.5.1.
Recall that the conjecture asserts

The Cauchy formula

can be written, in the notation of (78), as

Letting X = {1, q, . . . , qn}, we see that the right-hand side of (83) becomes the
following straightforward q-analog of the Lagrange inversion formula (81).

At present, equation (86), however striking, has not proven very useful. It
would be nice, for instance, if the q-analog relationship between (86) and (81)
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could somehow explain the fact that the coefficient of sa in (83) is a polynomial
with nonnegative coefficients.

One pleasant application that can be made of (86) is to show that the Frobenius
series Conjecture 2.5.1 does in fact generalize the corresponding Hilbert series
Conjecture 2.2.1, as it should.

To convert from Frobenius to Hilbert series, we must replace eA by (nA), which
is the same as specializing ek to 1/(k!) for all k and then multiplying by n!.
Putting ek = 1/(k!), we have 1 / H ( - z ) = ez, so (86) becomes

in accord with Conjecture 2.2.1.
The Catalan number formula (43) is another interesting specialization of (86).

Every eA contains s(1n) with coefficient 1, so the specialization we require is ek = 1
for all k, or 1/H(-z) = 1/(1 - z). With this, (86) reduces to

This q-Lagrange formula for the q-Catalan numbers given by (43) is the same as
the one considered in [5].

4.3. A-G-G Lagrange inversion

When we consider Conjecture 2.6.1, we arrive at a q-analog of Lagrange inversion
much deeper and more satisfactory than that given by (86). This is the theory of
Andrews, Garsia, and Gessel, [1, 6, 10], which was discovered in different forms
by each of these three people, and shown to be all one theory by Garsia. In
this section we review the A-G-G theory, essentially in the formulation of [6].

The key is to introduce a q-analog of the functional composition inverse
relationship (79-80). The operation of q-functional composition is defined by

A fundamental theorem of [6] justifies this as natural by showing that for F and
G without constant term, the two inverse relationships

are equivalent to one another and also to
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In addition Garsia gives a q-Lagrange inversion formula to find either of F
or G from the other. This formula will not be stated here; instead a more
combinatorially explicit formula will be given in the next section.

What we will do here is use (90) to define a q-analog h*n(q) of the h*n defined
by (79-80). For this we put

and require F and G to be related by (89). Equivalently, h*k(q) is defined by the
single equation

4.4. Solution of A-G-G inversion problem and 2.3, 2.6, 2.7

It happens that (92-93) can be solved explicitly and that the solution is none
other than the value proposed by Conjecture 2.6.2 for Fn(1, q).

PROPOSITION 4.4.1. The q-Lagrange inversion coefficients h*n(q) given implicitly by
(92-93) are given explicitly by

where 1 / H ( - z ) - Zk>0ekz
k, as in (78), and A(u) is the partition whose parts are

the multiplicities mi(u), 0 < i < n - 1, mo being defined so that |A| = n.

Proof. Divide (93) by zH(-z) and replace z with qz, obtaining

Applying (91) with S = H*(z; q) gives

Comparing coefficients of zn we arrive at the following recurrence for h*n(q), n > 0:
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It remains to verify that (94) solves the recurrence (97). We will only say how
to associate with each u C sn numbers k and n1, ..., nk leaving it to the reader
to check in detail that those terms in (94) belonging to a given k and n1,..., nk,
are precisely accounted for by the term in (97) for that k and n1 , . . . , nk.

The rules are as follows. First of all, k is the number of 0 parts in u, that
is, un-k is the last positive part of u, and k = n if u = (0, 0, ..., 0). For each
1 < i < k, let pi be the largest index for which upi is positive and upi > n — i—pi,
or zero if there is no such index. In pictorial terms, the pith row of u is the last
one that does not fit inside the diagram of sn-i.

Obviously p1 < p2 < • • • < Pk, since the condition uB > n - i - pi becomes
weaker as i increases. Also it is clear that pk = n - k. Now define ni by setting

for each i, so the ni are nonnegative integers and n1 +...+nk = n-k, as required.
Now it is only necessary to check that as we sum over partitions u with fixed k

and n1, ..., nk, the contribution to q(n)-|u|eA(u) due to parts up with pi-1 <p<pi

is correctly accounted for by the factor q(i-1)nih*ni(q). Since the contribution due
to the k zero parts un-k+1 , ..., un is q(k)ek, this completes the proof. D

Proposition 4.4.1 may be applied to derive Proposition 2.6.2, using a result of
Gessel [10]. Letting

be the inversion enumerator for trees on {0,1,..., n}, Proposition 2.6.2 asserts,
in effect, that when ek = 1/(k!), we have

To prove (100), consider the generating function

Using q-Lagrange inversion and the Mallows-Riordan generating function for
Jn(q), Gessel obtains a formula [10, (14.3)] which in the notation used here be-
comes

In this equation, we may replace z by qz and compare with (96), taking H(z) = ez,
to see that for the specialization ek=1/(k!),
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This is the generating function version of (100).
It is also interesting to apply Proposition 4.4.1 using the Catalan number

specialization ek, = 1, H(z) = (1 + z). Equation (93) becomes

and using Proposition 4.4.1 for h*k, we obtain

where C*(q) are the Carlitz-Riordan q-Catalan numbers from (46-47). It can be
shown directly that (105) and (47) have the same solution. This is done in [5],
where (105) is taken as the definition of the Carlitz-Riordan q-Catalan numbers.

Notes. Proposition 4.4.1 or something like it has apparently been known to
Garsia and possibly other people for some time, but it has not previously
appeared in the literature. D. Singer has just introduced in his Ph.D. thesis a
far-reaching generalization of A-G-G Lagrange inversion that also includes the
novel q-Lagrange inversion of Garsia and Remmel [8]. There is a hope that
in Singer's framework it may be possible to define a (t, q)-Lagrange inversion
which could account for the full Frobenius series Fn(t, q).

4.5. A conjectured exact sequence; abstract existence for n < 6

Using Proposition 4.4.1, Conjecture 2.6.2 takes the form

Equating coefficients of zn+1 we obtain

where Fn(q) = q(n)fn(1, q - 1) . Apart from the sign (-1)k, each term in the
sum is the Frobenius series of a graded Sn module. This suggests that (107)
might be explained by an appropriate exact sequence of graded Sn modules. In
this section we describe the modules which ought to form the supposed exact
sequence. We do not, however, find any maps. To give suitable maps and prove
exactness would, of course, establish Conjecture 2.6.2.

PROPOSITION 4.5.1. Given n and k < n, consider a graded Sn module constructed
as follows. Grade the Sn-k module Rn-k by the complement of degree in X,
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so its Frobenius series is F n - k (q) . Tensor this with the Sk module Q[x1, ..., xk]/
(x 1

n + 1 - k , ..., xk
n+1-k), graded in the normal way. Finally induce the resulting S kxSn - k

module to Sn. The module so constructed has Frobenius series

Proof. All we need to prove is that the Frobenius series of Q[X1, ...,xk]/
(x1

n+1-k , ..., xk
n+1-k) is given by

In this situation, xn+1-k, ..., xk
n+1-k is an h.s.o.p., and we can evaluate the

Frobenius series in question from the Koszul resolution, as in the proof of
Proposition 2.5.2. Omitting details, what results is the internal product of

with

and this works out to (109). D

COROLLARY 4.5.1. Suppose there exists an exact sequence

of graded Sn modules, where Rn
(k) is as described in the preceding proposition. Then

Conjecture 2.6.2 holds for n.

Given the Frobenius series of the modules Rk
n, one can decide using only

numerology whether or not an exact sequence of the form (112) exists. The
condition is that

must have nonnegative coefficients for all 0 < m < n. This condition has been
verified for n < 6. The computations even suggest that the coefficient of each
sA in (113) is a polynomial in q with unimodal (but not symmetric) coefficients.

Of course, to give a formula defining explicit maps is another matter entirely.

Notes. The idea of interpreting (107) as an exact sequence was first suggested
by Stanley.
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5. Structure of Hn

Recall from Section 1.5 that for the ordinary action of a reflection group, the
space of harmonics is spanned by the discriminant (for Sn, the Vandermonde
determinant) and its partial derivatives of all orders. In this section we explore
to what extent the diagonal harmonics have a similar structure.

Our method is to introduce certain invariant differential operators which
transform harmonics into harmonics. By applying these to the discriminant in
one set of variables and its derivatives, we generate a large space of harmonics.
In the case of Sn, we conjecture that the space so generated exhausts all
the harmonics, a situation which if true would have a number of interesting
consequences.

For reflection groups in general, it is not true that all harmonics can be gener-
ated in the manner just described. Some discussion of the possible significance
of this failure can be found in Section 7.

5.1. Operators Ep and operator conjecture

Recall that a polynomial is diagonal harmonic if it is killed by the operators

or more generally, by any Sn invariant differential operator homogeneous of
strictly negative total degree (dx i and dyi have degree -1).

For p > 0, define

In particular, the E of (49) is E1. We have the commutator

which immediately implies that Ep carries the space Hn into itself. The operators
Ep raise y degree and lower x degree. The unique (up to constant factor) diagonal
harmonic of minimal y degree and maximal x degree is the Vandermonde A(X),
suggesting the following conjecture.

Conjecture 5.1.1 (operator conjecture). The space Hn is the smallest space
containing A(X) and closed under the action of the operators Ep for all p and
dxi for all i.

Note that the operators in question commute with each other and that Ep kills
A(X) for p > n - 1. Thus the conjecture would mean that the space Hn consists
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of all derivatives of harmonics of the form Ee1
1 • • • Een-1

n-1A. These must then be all
the alternating harmonic polynomials; by Conjecture 2.4.1 the number of linearly
independent ones should be the Catalan number Cn.

The operator conjecture 5.1.1 has been verified by computer for n < 6. The
space considered in the conjecture clearly coincides with the harmonics in degrees
(-, 0), and the proof of Theorem 3.3.1 shows that these spaces also coincide in
degrees (-, 1). Corollary 3.2.1 and Proposition 3.2.1 may also be regarded as
evidence supporting the conjecture, since it explains both of them.

Limited computational evidence suggests that analogs of the operator conjecture
hold for more than two sets of variables.

5.2. Full Lie algebra of operators generated by Ep and dX

The operators Ep belong to a larger Lie algebra spanned by operators of the form

or a similar form with x and y interchanged. Here / is any diagonally sn-1
invariant homogeneous polynomial and we require h + k + deg(f) > 0. Indeed,
(117) represents the general term of an Sn invariant polynomial differential
operator linear in the xi and yi and homogeneous of nonpositive degree. The
commutator of two such operators is another, so they form a Lie algebra. Also,
the commutator of any such operator with an sn invariant pure differential
operator of negative degree is again an Sn invariant pure differential operator of
negative degree, which implies that these operators carry the space Hn into itself.
The sl2 operators E, F, H of (49) and the operator D of (70) are examples of
operators of the form (117).

To study Conjecture 5.1.1, we are free to use all operators of the form (117),
by the following proposition.

PROPOSITION 5.2.1. The smallest space containing A(X) and closed under the
action of all operators of the form (117) and all derivatives is the same as the space
considered in Conjecture 5.1.1.

Proof. To begin with, one can show that the algebra generated by the operators
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together with the operators Ph,k of (114) is the same as that generated by the
Ph,k and all operators of the form (117). Since the Ph,k kill all harmonics, we
need only apply to A(X) products of operators of the form (118) and pure
differential operators. The commutator of two operators (118) is again a linear
combination of such operators, and the commutator of an operator (118) with
a pure differential operator is pure differential. Thus the space L spanned by
pure differential operators and operators (118) is a Lie algebra which generates
the algebra of operators we intend to apply to A(X).

By the Poincare-Birkhoff-Witt theorem it suffices to consider operator products

where p(dX) is a monomial in the dx i , q(dY) is a monomial in the dy i, and the
order in which the factors involving Ei

h,k appear is fixed in some suitably chosen
way. In particular, we may put any factors Ei

h,k with k>0 or h>n-1 and any
factors E1

h,0 after all other factors. But these factors, as well as q(dY), represent
operators which either kill A(X) or have A(X) as an eigenfunction; thus we
may omit them entirely, and consider only products

Since E0
p,0 is the same as Ep, the proof is complete. o

Among other things, the above proposition implies that the operator conjecture
is more symmetric than it first appears.

COROLLARY 5.2.1. The space generated by the operators Ep and dxi applied to
A(X) is the same as the space generated by the operators Fp and dyi applied to
A(Y), where Fp is Ep with x and y interchanged.

Proof. The first space contains A(Y), since apart from a scalar factor A(Y) =
E1 A(X). By Proposition 5.2.1 the first space is closed under the operators
generating the second space and hence contains the second space. By symmetry
the second space also contains the first. D

5.3. fa approach

An alternative statement of the operator conjecture would say that the ideal /
defining Rn coincides with the orthogonal complement J of the space considered
in the conjecture. The ideal J admits the following nice description which may
be useful for studying the conjecture.

PROPOSITION 5.3.1. The ideal J orthogonal to the space considered in Conjec-
ture 5.1.1 consists of all f ( X , Y) such that
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for all polynomials fa(x) = a1x + a2x2 + ••• + an-1xn-1.

Note that there are no y's in (121) so the / appearing there may be understood
as the classical ideal generated by symmetric polynomials in Q[X]. The operator
conjecture then asserts that f(X, Y) e I if and only if f(X, £a(X)) belongs to
this classical ideal for all values of the coefficients a.

Proof of Proposition 5.3.1. Recall that multiplication by Xi is adjoint to dxi, so
the adjoint of Ep is given by

Therefore f(X, Y) belongs to J if and only if for all e1 , . . . , en-1, (E*1)
e1...

(E*n-1)en-1 f is orthogonal to A(X) and its derivatives, that is, if and only if
(E*1)e1...(E*n-1)en-1f|Y=0

 € I. Now (E*1)
e1...(E*n-1)

en-1f is the coefficient of
ae1

1• • • aen-1/e1! • • • en-1! in exp(a1E*1 +...+ an-1E*n-1)f, and this last expression is
equal to f(x1,..., xn, y1 + AO(x1), • • •, yn + ta(xn)), since exp(E*p) is the operator
translating yi by xp

i. Setting all yi = 0, the result follows. D

Notes. Proposition 5.3.1 is a joint result of Garsia and myself.

5.4 Consequences: socle; monomials in I; Fi(aixi + Biyi)

The operator conjecture has some implications which might be of interest to
prove in and of themselves. I will discuss a couple of these, which have not
been proven yet.

Definition. The sock of Rn (or more generally of any module over a polynomial
ring) consists of those elements annihilated by all xi and yi.

An important consequence of the operator conjecture for the structure of the
ring Rn is the following.

Conjecture 5.4.1. The socle of Rn consists exactly of its alternating polynomials.

The fact that the operator conjecture implies this is easy to deduce using the
adjointness of differentiation and multiplication.

Another consequence of the operator conjecture is that it determines exactly
which monomials in Q[X, Y] belong to the ideal I. They are just the monomials
which do not appear in any diagonal harmonic. By the operator conjecture
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the monomials that do appear in some diagonal harmonic are exactly those
obtained from monomials appearing in the Vandermonde determinant A(X) by
replacing x1

i with some xh
iy

k
i for each i, where h + k < 1 But the monomials

appearing in A(X) are simply permutations of x0
1x

1
2 • • • x n

n - 1 , so we arrive at the
following restatement.

Conjecture 5.4.2. A monomial belongs to the ideal I if and only if for some k
there are more than n - k indices i for which the exponents of xi and yi total
at least k.

As a particular case, when k = 1 this says monomials involving every index i
with nonzero exponent belong to I, or in other words

The above identity has been proven by J. Alfano, using an explicit straightening
technique in the spirit of the results in Section 3.2. The full conjecture remains
open at present.

5.5. Relation to the conjectures for q = t-1

Assuming the operator conjecture, we can relate the Frobenius series of the
harmonics Hn and the Hilbert series of its alternating part to two new commutative
rings arising from the application of operators to the Vandermonde A(X). This
is done as follows.

Definition. Let J be the ideal in Q[x1,..., xn, e1,..., en-1] consisting of all
polynomials p(X, E) such that the operator p (dx 1 , . . . , dxn, E1,..., En-1) kills
A(X). Define rings

and

These rings are Sn modules, where we let Sn permute the xi and fix the ek.
They are also doubly graded if we assign degree (1, 0) to each xi and degree
(k, 1) to each ek. The operator conjecture then gives the Frobenius series in
terms of that of Hn, as follows.

Conjecture 5.5.1. The Frobenius series of Tn is t(n
2)wFn(t

-1),q), where w is the
canonical involution on symmetric functions corresponding to tensoring with



56 HAIMAN

the sign character. The Hilbert series of Un is t(n2)Cn(t
-1, q), where Cn is the

conjectured t, q-Catalan number defined by (43).

The rings Tn and Un can be given a direct description, which is at least
superficially independent of their definition in terms of operators.

PROPOSITION 5.5.1. Let N be the ring Q[X, Y]/(p1(X), ..., pn(X)), where p i ( X )
are the power sums (or any other set of fundamental invariants for Sn). Then Tn

is isomorphic to the subring of N generated by the xi and ek = Ziyixi
k, and Un is

isomorphic to the subring generated by the ek alone.

Proof. An operator which is a polynomial in yi and dxi kills A(X) if and only
if its coefficient of each y monomial belongs to the ideal in Q[x] generated by
the pk(X), which is to say, if and only if the corresponding polynomial in yi and
xi vanishes in N. Since the ek in the statement correspond to the operators Ek

and the xi correspond to the dxi, the result follows immediately. D

An interesting fact is that for the single grading of Un and Tn by total
degree (corresponding to the q = t-1 specialization for Hn), the conjectured
Frobenius series resemble those of polynomial rings modulo ideals generated by
homogeneous systems of parameters.

PROPOSITION 5.5.2. Suppose Un - Q[e1, ..., en-1]/(01 0n-1), where the degree
of ek is defined to be k + 1, and (0i) is an h.s.o.p. with 0i of degree n + i + 1. Then
the Hilbert series of Un is the one conjectured for Un, i.e., it is given by (45).

PROPOSITION 5.5.3. Suppose Tn = Q[x1 xn, e 1 , . . . en-1]/ (01,.... 02n-1),
where xi has degree 1, ek has degree k + 1, (0i) is an h.s.o.p., 01,..., 0n are Sn

invariants of degrees 1 through n, and 0n+1,..., 02n-1 on of degree n + 1 and span
an irreducible reflection representation of Sn. Then the Frobenius series of Tn is the
one conjectured for Tn, i.e., it is given by u applied to (30).

Proofs. Proposition 5.5.2 is immediate—just write (45) as

Proposition 5.5.3 follows from Proposition 2.5.2, since the contribution of the
invariant variables e1 , . . . , en-1 exactly cancels that of the invariant parameters
02, • • •, 0n. D

One might hope that the rings Tn and Un themselves are defined by h.s.o.p.s in
the manner of Tn and Un (that is, are complete intersection rings). Unfortunately,
this is false; neither ring is even Gorenstein for n > 2. Nevertheless it is
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possible that the ideals defining Tn and Un occur via some sort of grading of
nonbihomogeneous ideals defining rings of the form Tn and Un.

6. Geometric interpretation

Let Mn be the set of n x n matrices, considered as an algebraic variety; its
coordinate ring consists of all polynomial functions in the entries xi,j of the
general matrix X e Mn. We let GLn act on Mn by conjugation: g sends X to
Xg = g - 1 X g . The polynomials pk(X) = tr(Xk) are GLn invariant. Restricted
to the diagonal matrices X = diag(x1, ..., xn) they become the power sums
P k(x1 , ..., xn), which are fundamental invariants for the reflection action of Sn.

The polynomials pk(X) vanish when the matrix X is nilpotent, and it turns
out that they generate the ideal I (N) of all polynomials vanishing on the variety
N C Mn of nilpotent matrices. By the celebrated results of Kostant [15],
analogous statements hold when GLn is replaced by any semisimple complex Lie
group, Mn by its Lie algebra, N by the set of nilpotent elements in the Lie
algebra, the diagonal matrices by a Cartan subalgebra, and Sn by the Weyl group.

In this section we consider a geometrical setup parallel to the classical one
just described which relates Rn to the variety of pairs of commuting nilpotent
matrices. All the material in this section grows out of discussions with H. Kraft.

6.1. The commuting variety

Definition. The commuting variety C is the subvariety of Mn x Mn consisting of
pairs of matrices (X, Y) such that XY = YX.

Remarkably little is known about the commuting variety. It is not even known
whether the defining equations XY = YX generate its ideal. (This is really a
system of n2 equations, one for each matrix entry.) Hochster has raised the
question whether the commuting variety is Cohen-Macaulay. This is known to
be true for n < 3.

At present, the only nontrivial theorem about the commuting variety is the
following.

PROPOSITION 6.1.1 (Gerstenhaber [9]). The commuting variety is irreducible, of
dimension n2 + n.

Proposition 6.1.1 is equivalent to the statement that the set of pairs (X, Y) with
X and Y regular semisimple is dense in C. This means X and Y are conjugates
(by the same g) of diagonal matrices with distinct eigenvalues. The statement
is equivalent to the proposition because the set in question is easily seen to be
open, irreducible, and of the correct dimension.
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6.2. Joint eigenvalues and diagonal action of Sn

Let b denote the set of diagonal matrices. Since diagonal matrices commute
with each other, we have h x h C C C Mn x Mn. Writing elements of h x h as
(diag(x1, ..., xn), diag(y1, ..., yn)), we identify the coordinate ring of h x h) with
Q[X, Y] = Q[x1,..., xn, y 1 , . . . , yn].

Any GLn invariant polynomial function on C restricts to an sn invariant
polynomial on h x h since the action of sn on diagonal matrices can be realized
by conjugating with permutation matrices g.

Proposition 6.1.1 has the following consequence.

PROPOSITION 6.2.1. The map j sending each GLn invariant polynomial on C to
its restriction to h x h is an isomorphism from O(C)GLn to Q[X, Y]Sn. Here O(C)
denotes the coordinate ring of C, and O(C)GLn its subring of GLn invariants.

Proof. First, we show the map t is injective. By Proposition 6.1.1, a function on
C is determined by its values on conjugates of pairs of diagonal matrices. If the
function is GLn invariant, it is therefore determined by its values on diagonal
matrices themselves, that is, by its restriction to h x h.

Second, we show that j is surjective. By Proposition 1.2.1, Q[X, Y] sn is
generated by the power sums ph,k = Six

h
iy

k
i. But ph,k is the restriction to h x h

of the GLn invariant polynomial t r (X hY k ) on C. D

Remark. Richardson [20] shows that Proposition 6.1.1 holds with GLn replaced
by any semisimple complex Lie group. Proposition 6.2.1 is also conjectured to
hold in all cases. For types G2 and Bn, essentially the same proof applies. For
types F4 and Dn, Weyl's theorem (Proposition 1.2.1) fails, but Wallach [28] has
been able to obtain the result using something weaker. The conjecture remains
unproven for types E6, E7, and E8.

It is clear from the preceding discussion that when X and Y commute the
function tr(XhYk) is the polarized power sum Ph ,k(a1 , • • •, an, B1, • • • , Bn) where
{(ai, Bi)} are the joint eigenvalues of X and Y. Thus Proposition 6.2.1 says
that the GLn invariant polynomials on C are precisely the symmetric polynomials
(under the diagonal action of Sn) in the joint eigenvalues of X and Y.

6.3. Rn = commuting nilpotents n diagonal

Since X and Y are both nilpotent just in case their joint eigenvalues are all zero,
we have immediately the following corollary to Proposition 6.2.1.

COROLLARY 6.3.1. The restriction to h x h of the ideal generated by GLn invariant
functions on C which vanish on the commuting nullcone (N x N) n C is the ideal
In defining Rn.
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We conjecture, but do not know how to prove, that the ideal I ( (N x N) n C)
is generated by its GLn invariant elements, that is, by polynomials tr(XhYk) for
h + k > 0. Then we have:

COROLLARY 6.3.2. // the ideal of the commuting nullcone (as a subvariety of the
commuting variety) is generated by GLn invariants, then the restriction of this ideal
to h x h is In.

The conclusion may also be phrased geometrically: Both the commuting
nullcone and h x h are subvarieties of C. Set-theoretically, their intersection is
{(0, 0)} since a nilpotent diagonal matrix must be zero. But their intersection
as subschemes of C is by definition the subscheme defined by the sum of their
defining ideals. The conclusion of Corollary 6.3.2 amounts to the assertion that
Rn is the coordinate ring of this subscheme.

Although the conjecture that the ideal of the commuting nullcone is generated
by GLn invariants seems as hard to prove as anything else about the commuting
variety, it turns out that for the consequence of it given by Corollary 6.3.2, the
operator conjecture suffices.

PROPOSITION 6.3.1. // the operator conjecture holds, then the restriction of the ideal
of the commuting nullcone to h x h is In.

Proof. Consider the following three ideals in Q[X, Y]:

the orthogonal complement of the space of harmonics figuring in the operator
conjecture,

and

We will prove

Since the operator conjecture is J1 = J3 it follows that all three ideals are the
same if it holds.

We have already seen that the polarized power sums ph,k are restrictions of
polynomials vanishing on (N x N) n C, so J2 D J3. The problem is to show
J2 C J1.

If f ( X , Y) belongs to J2 there is a matrix polynomial g(X, Y) which vanishes
on the commuting nullcone and restricts to f on h x h. If X is a nilpotent matrix,
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then ja(X) is a nilpotent matrix commuting with X, so (X, ja(X)) € (N x N) n C
and g(X, j a (X)) - 0 for all polynomials la(z) = a1z + • • • + an-1zn-1.

As we noted in the introductory remarks to this section, a matrix polynomial
h(X) which vanishes on N belongs to the ideal generated by the polynomials
tr(Xk). In particular this is true of g(X, ja(X)). Restricting to h x h we find
that f ( X , ta(X)) € (P1, ..., pn), hence f e J1 by Proposition 5.3.1. D

7. Other Coxeter and Weyl groups

In this section we consider analogs of the ring Rn and our conjectures about it for
general reflection groups. Data from the computer suggest how the conjectures
should extend, but a curious phenomenon occurs—the data do not actually satisfy
the extended conjectures, but only approximate them. Below we indicate in detail
what happens and speculate somewhat on a possible explanation.

Throughout what follows I assume considerable familiarity with the theory of
reflection groups. A good general reference is the recent book by Humphreys [13].

7.1. Analogs of 2.1, 2.2

Let W be a reflection group, acting by its irreducible reflection representation
on a vector space U. The coordinate ring Q[U ® U] carries an action of W
which generalizes our diagonal action of Sn. The dimension of U is called the
rank of W, which for Sn is n - 1. (Sn is usually referred to in this context
as the reflection group of type An-1 using a subscript that corresponds to the
rank.) There is a W invariant h.s.o.p. in Q[U] whose elements generate all the
W invariants. Such an h.s.o.p. is called a set of fundamental invariants. The
degrees of fundamental invariants are uniquely determined by W; the numbers
which are 1 less than the degrees are called the exponents. The largest degree
is called the Coxeter number.

In terms of the above statistics, the value (n + l)n-1 proposed by Conjecture
2.1.1 for the dimension of Rn can be expressed as (h +1)1 where h is the Coxeter
number and l is the rank. As we shall see below there are reasons to expect
the quantity (h + 1)l to possess special significance, at least for Weyl groups. A
little wishful thinking then suggests the following.

Guess 7.1.1. (Incorrect, but see 7.1.1). The quotient of Q[U @ U] by the ideal
generated by W invariants without constant term has dimension (h + 1)l.

Guess 7.1.1 is correct for the dihedral groups (see Section 7.5) and for B3.
For Sn it is Conjecture 2.1.1. The following groups W are counterexamples, but
as the table indicates, they appear to be the proverbial "exceptions that prove
the rule."
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Since the numbers seem too striking to be mere coincidence, we propose the
following genuine conjecture.

Conjecture 7.1.1. For each reflection group W, or at least for each Weyl group,
there is a "natural" quotient ring RW of Q[U © U] by some doubly homogenous
ideal containing the invariants without constant term, such that dim(Rw) =
(h + 1)l. The ideal should be sl2 invariant and its restriction to Q[U] should be
the classical one generated by the fundamental invariants.

For B4, B5, and D4 suitable ideals do exist. Computations by J. Alfano show
that they can be chosen (uniquely, in these cases) so that the rings Rw satisfy
further conjectures, including the following analog of Conjecture 2.2.1.

Conjecture 7.1.2. The natural RW of Conjecture 7.1.1. has Hilbert series Hw(t, q)
satisfying

Note that hl/2 is an integer—it is the degree of the discriminant AW, the sum
of the exponents, and the number of reflections in W.

7.2. Failure of operator conjecture for B4

The operators Ep defined by (115) can be given an intrinsic definition which
applies to any reflection group.

For this we first introduce a W invariant positive definite form <.,.> on U.
Since U is irreducible, the form is unique up to a scalar multiple. It extends to
a W invariant apolar form on Q[U ® U] as explained at the end of Section 1.3.

Let x1 , . . . , xl be a basis of U, and let y1 , . . . , yl be the dual basis, i.e.,
(xi,yj) = gij for all i, j. We regard the ring Q[U ® U] as a polynomial ring
Q[x 1 , . . . , xl, y1,..., y l], using the basis {xi} for the first summand of U®U and
{yi} for the second.

Note that the derivations dyi, which by definition satisfy dyi(yj) = sij, transform
dually to the yi under change of basis. In other words, they transform the same
as the xi and the same as the differential forms dx i.

Now let p1, ..., pl be a system of fundamental invariants for W, written as
polynomials in the xi. Their differentials dpk have unique expansions
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and we define operators E*k by substituting dyi for dx i:

By the remarks made above, this definition is independent of the choice of
basis Xi. In particular this implies the operators E*k are W invariant. Finally
we define Ek to be the adjoint of El with respect to the apolar form. Thus Ek

is an invariant operator, linear in the yi and polynomial in the dxi, of bidegree
(—e k , 1) where ek is the exponent deg(pk) - 1. One proves just as in Section 5.1
that these operators carry the space of harmonics into itself.

For the case W = Sn it is easy to see that this construction agrees with the
definition (5.1.2) of Ek.

The analog of the operator conjecture 5.1.1 would now be the following.

Guess 7.2.1. (Incorrect but see Fact 7.2.1. and Conjecture 7.2.1). Let Hw be
the space of diagonal harmonics for W, i.e., the orthogonal complement under
the invariant apolar form of the ideal generated by invariants without constant
term in Q[U ® U]. Then Hw is the smallest space containing the discriminant
A(X) and closed under the action of the operators dxi and E1,...,El.

A counterexample to this is W = B4, but again it seems to be an exception
that proves the rule, because of the following.

Fact 7.2.1. For W = B4, the space of harmonics generated by the operators
E1, ..., E4 and the dxi applied to the discriminant A(X) has dimension 94 - 1.

Recall the proof of Proposition 6.3, in which we considered three ideals: J1, the
ideal orthogonal to the space of harmonics considered in the operator conjecture;
J2, the restriction to h x h of the ideal of the commuting nullcone; and J3, the
ideal generated by diagonal invariants without constant term. The proof that
J1 > J2 > J3 generalizes to any semisimple complex Lie algebra and its Weyl
group.

In the case of B4, the dimension of the quotient by J1 is 94 - 1, while the
dimension of the quotient by J3, is 94 + 1. We make the following conjecture,
admittedly on the basis of little more than hope for justice in the mathematical
universe.

Conjecture 7.2.1. Let 0 be a semisimple complex Lie algebra, h a Cartan sub-
algebra, and W the Weyl group. Let CN be the commuting nullcone, i.e., the set
of pairs (X, Y) e g x g such that X and Y commute and are nilpotent. Let Iw
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be the restriction to Q[U © U] (which is the coordinate ring of h x h) of I(CN).
Then RW = Q[U&U]/Iw is the natural quotient ring satisfying Conjectures 7.1.1
and 7.1.2.

For clarity, let us work out the example W = B4 in a little more detail. The
group B4 is the group of signed permutations of four letters. It acts diagonally on
Q[X1, ..., x4, y1, ..., y4] in the obvious way. The invariants are the S4 invariants
whose monomials are of even total degree in xi and yi for each i, so that the
simultaneous sign change xi -> -xi, yi-> -yi has no effect. They are generated
by the polarized power sums p h , k (X , Y) for h + k even. The discriminant A(X) is
the product of the variables times the Vandermonde determinant in their squares:

The operators Ek are the operators Ep given by (115) for p = 1, 3, 5, 7. The
analog of Proposition 5.5.1 holds, with the same proof; this is how the dimension
94 - 1 for the space of harmonics appearing in the operator conjecture was
computed.

We may take 0 to be the Lie algebra 609 of skew-symmetric 9x9 matrices
(alternatively, the Lie algebra spg has the same Weyl group, but its description is
more complicated). The commuting nullcone consists of pairs of such matrices
which commute with each other and are nilpotent. The Cartan subalgebra h can
be taken to consist of the antidiagonal matrices

Thus J2 will be the ideal of polynomials in Q[x1 , ..., x4, y1 ..., y4] obtained
by restricting to pairs (X, Y) of matrices of the form (136) arbitrary matrix
polynomials which vanish on all pairs of commuting skew-symmetric 9x9 matrices.
In particular, this includes the matrix polynomials tr(XHYk), whose restriction
to h x h is ph,k if h + k is even, and zero if h + k is odd. In this way we see
explicitly how J3 C J2.

If Conjecture 7.2.1 is correct, there must be an "extra" polynomial vanishing
on all pairs of commuting skew-symmetric 9x9 matrices, whose restriction to
pairs of the form (136) is the extra element of J2, modulo J3. By Alfano's
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computations, we know what this restriction must be: modulo the B4 diagonal
invariants it is

This polynomial is interesting for another reason. It represents the sole D4

diagonal invariant not in the ideal generated by polarizations of the fundamental
invariants.

Unfortunately, it is infeasible to compute the ideal of the commuting nullcone
for eo9 by brute force, so for the moment there is little hope of testing the B4

case of Conjecture 7.2.1 by direct computation.

7.3. Reduction of the root lattice (compare 2.4)

What we wish to do next is establish, when W is a Weyl group, an analog of
Conjecture 2.4.1 for the putative RW satisfying Conjectures 7.1.1 and 7.1.2. We
are unavoidably on shaky ground here, since even our proposed definition of RW

in Conjecture 7.2.1 is uncertain.
Nevertheless, we have explicit candidates for RW in the cases B4, B5, and D4

from Alfano's computations, and for B2 and B3 the quotient ring by diagonal
invariants works as RW. In these cases all our conjectures hold for the proposed
RW (except that we are unable to determine whether this RW is the one given by
Conjecture 7.2.1). In addition, although what we do makes sense only for Weyl
groups, it leads to predictions that make sense for arbitrary Coxeter groups, and
these predictions have been verified for the dihedral groups.

Also, as we shall see, the process of deriving predictions that tend to confirm the
conjecture leads to surprising and beautiful formulas whose very unexpectedness
supports the idea that the conjecture is somehow fundamentally natural.

In this section and the following ones I assume familiarity with Weyl groups
and affine Weyl groups, roots, weights, the fundamental alcove, and so on. The
following conjecture reduces to Conjecture 2.4.1 when W = Sn.

Conjecture 7.3.1. Let W be a Weyl group with coxeter number h, Q its root
lattice, and Y the permutation representation of W on elements of the finite
group Q/pQ, where p = h + 1. Then the representation of W on the natural RW

of Conjecture 7.1.1 is isomorphic to e ® Y, where e is the sign representation.

Note that this conjecture implies Conjecture 7.1.1., since Q/pQ has (h + l)l

elements.
Given the way Conjecture 2.4.1 is stated, it might seem more natural to replace

the root lattice Q with the weight lattice A in Conjecture 7.3.1. The following
proposition shows that the choice doesn't matter as far as the conclusions are
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concerned. For technical reasons, however, the use of the root lattice will be
essential in the next section.

PROPOSITION 7.3.1. Let W be a Weyl group, Q the mot lattice, and Av the coweight
lattice. Then for any p, the permutation representation of W on Av/pAv has the
same character as the representation on Q/pQ.

Proof. The character of the permutation representation at w e W is given by
the number of fixed points of W.

By definition we have (Av
i, aj) = sij for the fundamental weights \i and simple

roots otj. Thus the matrix entries of w with respect to the basis {ai} are given by
(AV

i, wa j). This is the same as (w - 1A v
i , aj), so the matrix of w on Av is (M-1

w)T,
where Mw is the matrix of w on Q.

The fixed points of w in Q/pQ correspond to solutions modulo p of the
equation (Mw - I)x = 0. We claim that for any square integer matrix A the
equations Ax = 0 and ATx = 0 have the same number of solutions modulo p,
which clearly implies the result.

For the claim, observe that the number of solutions is unchanged when A is
multiplied on either the left or right by any integer matrix with unit determinant.
Hence we are free to replace A by its Smith canonical form, which is a diagonal
matrix. D

7.4. Orbit enumeration and the affine fundamental chamber

We shall now explore in detail the orbit structure of W on Q/pQ, in order to
arrive at consequences of Conjecture 7.3.1 which can serve at least to test its
plausibility. Our procedure will be to let p vary arbitrarily, although eventually
we will want p relatively prime to h for some of our conclusions.

Throughout we let W be the Weyl group of a root system 0 in a Euclidean
space V, with simple roots a1, ..., al and root lattice Q = L(s). The dual root
system is sv, with simple coroots av

1 , . . . , av
l. The highest coroot we denote av

0.
The simple reflections (along the roots ai) are s1, ..., sl, and the reflection along
the highest coroot is S0. A subgroup of W generated by a subset of {S0, ..., sl}
is called quasi-parabolic.

The affine weyl group Wa is generated by W and translations by elements of
Q. (Note that this is dual to the formulation in [13].) The fundamental alcove
is the open simplex

Its closure A0 is a fundamental domain for Wa: every Wa orbit meets A0 in a
unique point.

Let us define pWa to be the subgroup of Wa generated by W and pQ. If
x € Q, then the pWa orbit of x is the union of all pQ cosets w(x + pQ) for
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w € W. Thus we have a natural correspondence between W orbits in Q/pQ in
pWa orbits in Q.

In turn, every pWa orbit in Q meets the simplex pAo in a unique element of
Q, Thus we have proved most of the following lemma.

LEMMA 7.4.1. There are natural bijective correspondences between the following three
things:

(1) W orbits in Q/pQ,
(2) pWa orbits in Q, and
(3) Elements of Q n pAo.

Furthermore, the stabilizer of an element of Q/pQ represented by x € Q n pAo is the
quasi-parabolic subgroup of W generated by the reflections si corresponding to walls
of pAo which contain x. In particular this stabilizer is trivial if and only if x lies in
the interior pAo.

Proof. Only the "furthermore" still requires proof.
The statement is unchanged if we replace pWa by Wa, pAo by A0, and the

coset x + pQ by x + Q, and do not require x e Q. For simplicity we prove it in
this form.

The stabilizer of x in Wa is generated by the reflections in those walls of A0

which contain x. (This is a general theorem which applies to any reflection
group, finite or infinite.)

Suppose w e W stabilizes x + Q. Thus wx = yx for y some translation in
Q, so y-1w e Wa fixes x. By the preceding observation, y-1w is a product of
reflections in walls of A0 which contain x.

The image of each such reflection under the natural map Wn —> W = Wa/Q is
the corresponding reflection si, while the image of y-1w is w. Hence w belongs
to the subgroup in question (and this subgroup clearly stabilizes x + Q). D

By the lemma, each nonregular W orbit in Q/pQ is isomorphic to the per-
mutation representation on cosets W/R for a nontrivial reflection subgroup R.
In particular, this implies that the sign representation does not occur for these
orbits. Hence the multiplicity of the sign representation is the number of regular
orbits in Q/pQ. If Conjecture 7.3.1 is to hold, this multiplicity must be 1 for
p = h + 1, since RW has only one invariant. Moreover, the total number of
orbits in Q/(h + 1)Q must be the multiplicity of the sign representation in RW.

We shall now derive formulas for the number of orbits and of regular orbits
in Q/pQ, valid for certain p including p = h + 1. In this way we explain why
for p = h + 1 there is just one regular orbit, as there should be, and obtain a
formula predicting the multiplicity of e in Rw.

Definition. A function f(n) defined for n e N is a quasi-polynomial with period
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h if for each i modulo h there is a polynomial pi(n) such that f(n) = pi(n) for
all n = i (mod h).

For a proof of the following theorem, see Stanley [23]. The function e(P, n)
is called the Ehrhart quasi-polynomial of P.

THEOREM 7.4.1. Let P be a convex polytope in Rl whose vertices have rational
coordinates. Let e(P, n) = \nP n Zl| be the number of integer points in nP. Let h
be such that hP has integer vertices. Then e(P, n) is a quasi-polynomial with period
h. Extending the definition of e(P, n) to negative n by quasi-pofynomiality we have

(-l)de(P, -n) = e(P, n), (139)

where e(P, n) is the number of integer points in the interior of nP, and d is the
dimension of P.

PROPOSITION 7.4.1. Fix a root system s. The following table gives_a period h (not
the best possible, in general) for the Ehrhart quasi-polynomial e(A0, n), taking the
integer points to be the root lattice.

Proof. Let av
0 = c1a

v
1 + • • • + cla

v
l. Let f be the connection constant (the index

of the root lattice as a subgroup of the weight lattice). The vertices of A0 are
the origin and the points A i/C i where A 1 , . . . , Al are the fundamental weights.
In particular, if c is the least common multiple of the Ci, then cA0 has vertices
in the weight lattice. This implies that c/Ao has vertices in the root lattice and
hence cf is a period for e(A0, n).

The table gives the value of cf in each case. (See [13, p. 98] for a table of
the values of ci and f). D
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THEOREM 7.4.2. Fix a root system s with Weyl group W. Let p be relatively prime
to the period given in table (140). In particular, it suffices that p be relatively prime
to the Coxeter number h. Then the number of regular W orbits in Q/pQ is given by

and the total number of W orbits by

where e1, ..., el are the exponents.

Proof. By Lemma 7.4.1, the number of orbits is e(A0, p) and the number of
regular orbits is e(A0, p). Using (139) we see that it suffices to prove either
formula. Furthermore, since for i relatively prime to a period g, there are
infinitely many primes in the congruence class of i modulo g, it suffices to prove
the formula only for p prime and sufficiently large.

The formula we choose to prove is (142). By Polya's theorem the number of
orbits is given by

In characteristic 0, we have the Shephard-Todd formula [21], [13, p. 63]

where c(w) is the codimension of the subspace fixed by w in V = Rl, that is, the
rank of the matrix Tw -I, where Tw is the matrix of w. Relative to the basis
of simple roots, this is an integer matrix, and the rank of its reduction modulo
p is the same as its rank over R for all sufficiently large primes p. Thus for
these primes we have |Fix(w)| = pl-c(w). Setting t = p-1 and multiplying p l/|W|
in (144) we get the equality of (142) with (143).

For the claim about p relatively prime to the Coxeter number, we have only to
observe case by case that the Coxeter number is divisible by each prime factor
of the period given by table (140). D

Remark. What happens if we alternatively try to prove the formula (141) is quite
interesting. The number of regular orbits is 1/\W\ times the number of points not
on any reflecting hyperplane, modulo p. For p sufficiently large all intersections
of reflecting hyperplanes have the same dimension as in characteristic zero, and
the number of points on such an intersection F is pdim(F).

By Mobius inversion on the lattice of intersections £ we arrive at the formula
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for the number of regular orbits. The equality of this with (141) is an identity due
to Orlik and Solomon [19]. Thus we see that via the combinatorial reciprocity
theorem for Ehrhart polynomials we may derive either the Shephard-Todd or the
Orlik-Solomon identity from the other.

Let us now evaluate (141) with p = h + 1.

COROLLARY 7.4.1. There is exactly one regular W orbit in Q/pQ for p = h + 1.

Proof. The exponents ei are symmetric with respect to the Coxeter number, i.e.,
the list of numbers h - ei reproduces the exponents again. Hence for p = h + 1
formula (141) becomes F(1 + e i)/|W| = 1. D

Remark. The symmetry of the exponents means that replacing p by p + h in (141)
yields (142). Thus for p relatively prime to h, the number of all root lattice
points in pAo equals the number of interior root lattice points in (p + h)A0.

Although it seems to have no direct bearing on Conjecture 7.3.1, there is
another context in which the number (h + 1)l arises in connection with the affine
Weyl group Wa. Namely, for each root a let Ha and Ja be the two affine
reflecting hyperplanes which are perpendicular to a and lie nearest to A0 on
either side. The complement of the union of all these hyperplanes falls into open
convex regions. In the case of At, these regions are the connected components
of the Kazhdan-Lusztig left cells for Wa. In every case, the number of them is
(h + 1)l. See Shi [22] for these results and further details.

7.5. Alfano-Reiner results for dihedral groups (all conjectures hold)

J. Alfano and E. Reiner have determined exactly the Frobenius series of R(m) =
RW when W = I2m), the dihedral group of order 2m. In a nutshell, they
prove that the s\2 strings extending from degree (0, k) to degree (k, 0) for each
k account for everything, except for one copy of the sign representation in
degree (1, 1).

Here we indicate how their results agree with extrapolations of the conjectures
made in Section 7 for Weyl groups.

First of all, Conjectures 7.1.1 and 7.1.2 transfer directly to I2(m), which has
rank l = 2 and Coxeter number h = m. Thus the conjectures predict
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Alfano-Reiner gives

which is easily seen to match (146).
Conjecture 7.2.1 makes no sense if W = I2(m) since there is no Lie algebra

present. The operator conjecture does hold, however.
On its face, Conjecture 7.3.1 makes no sense for W = I2(m) either, but there

is a reasonable way to extrapolate it. By the results of Section 7.4, in the Weyl
group case the permutation representation on Q/pQ is a sum of orbits of the
form 1 w

p, where P is a quasi-parabolic subgroup. These orbits correspond to
points of Q in pA0.

When m = 3, 4, or 6, so I2(m) is a Weyl group, pAo is a triangle whose
intersection with Q consists of the following: (1) an interior point, giving a regular
orbit 1 tW

1; (2) the origin, giving a trivial orbit 1w, and (3) m points along the
sides. For even m (4 and 6) the m points along the sides consist of m/2 each along
the sides corresponding to simple reflections s1 and s2, giving m/2 orbits each of
the form 1 |w<s1> and 1 w

<s2>,. For odd m (that is, for m = 3), there is a point along
the side corresponding to s0. Although the quasi-parabolic ( S 0 ) has no meaning
in I2(m) for general m, when m is odd all reflections are conjugate, so all induced
characters 1 Tw

<s> are the same. The natural extrapolation of Conjecture 7.3.1 to
I2(m), then, involves replacing Q/pQ by the permutation representation

Alfano and Reiner have verified that Conjecture 7.3.1 in this form agrees with
their determination of the character of R(m).
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Appendix: Frobenius and Hilbert series tables

On the following pages are tables of the Hilbert series and Frobenius series of
Rn, for n up to 7 for the Hilbert series and 4 for the Frobenius series. The
Hilbert series tables have the same format as Table (16). The Frobenius series
tables are organized similarly, but instead of a number, the total dimension, each
entry is now a formal sum of Ferrers diagrams, which stand for the corresponding
Schur functions, or irreducible characters.
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