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Abstract. Each matrix representation P: G —> GLn(K) of a finite Group G over a field K induces
an action of G on the module An over the polynomial algebra A = K [ x 1 , . . . , xn]. The graded
A-submodule M(P) of An generated by the orbit of (x1, ..., xn) is studied. A decomposition of
MO) into generic modules is given. Relations between the numerical invariants of P and those of
M(P), the latter being efficiently computable by Grobner bases methods, are examined. It is shown
that if P is multiplicity-free, then the dimensions of the irreducible constituents of P can be read off
from the Hilbert series of M(P). It is proved that determinantal relations form Grobner bases for
the syzygies on generic matrices with respect to any lexicographic order. Grobner bases for generic
modules are also constructed, and their Hilbert series are derived. Consequently, the Hilbert series
of M(P) is obtained for an arbitrary representation.
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1. Introduction

Each matrix representation P : G —> GLn(K) of a finite group G over a field
K induces an action of G on the free N-graded module An over the algebra
A = K [ X 1 , . . . , xn] of polynomials. In this article we consider the graded A-
submodule of An generated by the orbit

When K, is algebraically closed and its characteristic does not divide the group
order, we give a decomposition (Theorem 5.1) of this module M(P), which reflects
the decomposition of P into irreducible representations. The basic components
of this decomposition are certain generic modules, an up-to-date exposition about
which can be found in the monograph [3].
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nell University, and by the Center for Discrete Mathematics and Theoretical Computer Science at Rutgers
University.
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We are interested in the possibility of recovering numerical invariants of the rep-
resentation P—the multiplicities and dimensions of its irreducible constituents —
from numerical invariants of the module M(P) —its Hilbert series and Betti
numbers. Since the latter can be computed quite efficiently by Grobner bases
methods, this may provide a way of computing the representation invariants as
well. We use our decomposition theorem to derive expressions for the rank
rk(P), the first and second Betti numbers B0(P), B1(P), and the Hilbert series
H(P, t) of M(P). We show that, if the representation is multiplicity-free, then the
Hilbert series suffices to recover the dimensions of the irreducible constituents
of P.

Then we turn to study generic modules, those generated by the columns of a
generic matrix, from a Grobner bases perspective. We prove that determinantal
relations form a Grobner basis for the syzygies on a generic matrix with respect
to any lexicographic order, and construct Grobner bases for the generic modules
themselves as well. As a by-product of our consideration of initial modules, we
obtain the Hilbert series of a generic module. While the Hilbert series could
be also computed from the free resolution (See [5] and [3, Section 2]), our
derivation is direct and self-contained. As a result, we obtain the expression for
the Hilbert series H(P, t) of an arbitrary representation P.

The study of the module generated by the orbit P(G)(x) is interesting also
from a geometric point of view. If F is an extension field of K. then a point
in Fn is generic if its coordinates are algebraically independent over K.. The
module structure of P(G)(x) gives information on the structure of the orbit
(under the induced action of G on .Fn) of any generic point. In this respect it
is desirable, though will not be carried here, to study (for example, the rank of)
the .A-submodules generated by arbitrary subsets of the orbit P(G)(x). These
submodules arise in the study of matroids and other objects defined on the
G-orbits and in the study of the stratifications of Fn induced by them [11].

Though we assume here that the field K is algebraically closed, we note that
in some cases of interest (see [11]), such as representations of the symmetric
group, these results hold over the reals and rationals as well.

The paper is organized as follows. In the next section we fix some terminology.
In Section 3, the module M(P) of a linear representation is intrinsically defined
by means of the symmetric algebra. In Section 4, we provide a decomposition of
M(P) in terms of the modules M(P i) of the isotypic components of P. In Section
5 we introduce generic modules and provide a decomposition of the module of
an isotypic representation P = mx, and obtain Theorem 5.1, which provides the
decomposition of M(P) for an arbitrary P. As a result, in Corollary 5.1 we obtain
rk(P) and B0(P), and express H(P, t) in terms of the Hilbert series of generic
modules. In Section 6 we show that the dimensions of all irreducible constituents
of a multiplicity-free representation can be read off from its Hilbert series. In
Section 7 we prove that determinantal relations form a Grobner basis for the
syzygies on the columns of a generic matrix with respect to any lexicographic
order. As a result, in Corollary 7.1 we obtain B1(P). In Section 8 we construct
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Grobner bases for generic modules and compute their Hilbert series, resulting in
an explicit expression for H(P, t) given in Corollary 8.1. We conclude by raising
some questions.

2. Terminology

We start by fixing some terminology on graded modules and finite group repre-
sentations. Some general references for the former are [1, 9, 13], and for the
latter [6, 16].

Let K be a field. A K-algebra A is graded if as a K-space it has a direct sum
decomposition A = +d>0Ad such that A0 = K. and AiAj C Ai+j for all i, j e N.
Typically A will be the algebra K[x1,..., xn] of polynomials which is graded by
letting Ad be the K-space of d-forms in A (homogeneous polynomials of degree
d). Given a graded K-algebra, a graded A-module is an A-module M admitting
a K-space decomposition M = +d>0Md such that AiMj C Mi+j (i, j e N). The
elements in Md are called homogeneous of degree d. A module which will be
often used is the free A-module Am of m-tuples of elements from A, equipped
with the standard basis {u1, ...,Um}. A graded submodule N of M is one that is
generated by homogeneous elements in M, in which case it inherits the grading
Nd = N n Md. If N is a graded submodule of M then its quotient is also graded
by letting (M/N)d be the quotient of K-spaces Md/Nd. If M1,M2 are graded
A-modules, then their direct sum is graded by letting (M1 ® M2)d be the K-space
direct sum M1

d ® M2
d. If f

1 , . . . , fm are elements of an A-module, M, then an
element g = Zm

i=1giUi E Am is a syzygy on f1, ..., fm if Zm
i=1gif

i = 0 in M. The
set of such syzygies forms an A-submodule of Am.

The rank of a graded A-module M is the largest size rk(M) of a subset of M
admitting no nontrivial syzygies. If A = K[x1,..., xn] and M is a submodule of
Am, then letting F = K ( X 1 , . . . , xn) be the field of fractions of A, the rank of
M equals the dimension of the F-subspace of Fm generated by M c Am C Fm.
The Hilbert series of M is the dimension generating function

in the ring Z[[t]] of univariate power series. For example, H(K[x1,..., xn], t) =
1
/(1-t)n. If N is a graded submodule of M then H(N, t) = H(M, t) - H(M/N, t).

The first Betti number B0(M) of M is the minimum number of generators of M,
and its second Betti number B1(M) is the minimum number of generators of the
module of syzygies on any minimal generating set for M. If M1 and M2 are
two graded A-modules then rk(M1 @ M2) = rk(M1) + rk(M2) and, similarly,
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If B = K [ X 1 , ..., xm] c A = K [ X 1 , ...,xn] then A is a B-module, so that given
another B-module M, we have he scalar extension A ®B M of M which is an
A-module. If M is a submodule of some Bd then rk(A ®B M) = rk(M) and

A linear representation of a finite group G over K is a homomorphism P : G —>
GL(V) where V is a K-vector space. We will always assume that V is finite
dimensional. The dimension of P is dim(V). Any choice of basis of V identifies
it with Kn via the standard basis U = {u1, ..., un} of unit column vectors in Kn,
so any map in L(V) = HomK(V, V) becomes a matrix in Knxn with respect to
the chosen basis and the linear representation P becomes a matrix representation
P : G —> GLn(K). A subspace U of V is P-invariant if P(G)(U) C U. The
representation is irreducible over K if it has no proper invariant subspace. Two
repersentation Pi : G —> GL(Vi) (i = 1, 2) are isomorphic if there is a K-
isomorphism T : V1 —> V2 such that P2(g)(T(v)) = T(P1(g)(v)) for all g E G
and v E V1.

Further facts on graded modules and group representations will be recalled
when necessary.

3. A graded module of a linear representation

We now give an intrinsic definition of the module discussed in the introduc-
tion, making it apparent that its numerical invariants remain invariant under
isomorphism of matrix representations.

For a finite dimensional K-vector space U, let SU = ®d>0SdU be the graded
symmetric algebra of the space U (see for example [9]). Thus, any basis F =
{f1, • • •, fn} of U generates SU freely as a K-algebra, and the dth summand SdU
is the K-span of formal monomials Pn

i=1f
ai

i of degree d. In particular S1U = U
and S0U = K. Now, given another vector space V, consider the graded SU-
module SU ® V (tensor products are over K unless otherwise indicated), where
the scalar multiplication is given by s(t ® v) = (at) X v for a, t E SU and v E V,
and the grading is (SU ® V)d = SdU ®V. In particular, ( S U ® V ) 1 = U®V. It
is a free module of rank n: any basis E = {e1,..., en} of V gives an SU-basis
{1 ® e1 , . . . , 1 ® en} of SU X V. We will be mostly interested in the algebra and
module above when U = V* is the dual space of V, and reserve the special
notation M = SV* ® V for the corresponding SV*-module in this case. For a
basis E = {e1,..., en} of V we denote by E* = {e*1,..., e*n} the unique dual
basis of V* satisfying e*i(ej) = Dij for all i,j. Using the natural isomorphism of
K-spaces between V* ®V and L(V) which, for any basis E = {e1,..., en} of V
and its dual E* = {e*1,..., e*n}, is given by
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we have that

and we can make the following definition.

Definition 3.1. The graded module M(P) of a linear representation P : G —>
GL(V), where G is a finite group and V is a finite dimensional K-space, will
be the graded SV*-submodule of M generated by C(P(G)). Its rank, first and
second Betti numbers, and Hilbert series will be denoted by rk(P), B0(P), B1(P),
and H(P, t) respectively.

We now show that M(P) is an intrinsic version of the module generated by
P(G)(x) discussed in the Introduction. Let E = {e1, ..., en} be an arbitrary basis
of V, so that V is identified with Kn and the linear representation becomes a
matrix representation P : G —> GLn(K). Letting E* = {e*1,..., e*n} be the basis
dual to E, the algebra SV* is identified with A - K [ x 1 , . . . , xn] via the unit
preserving isomorphism of graded K-algebras

so that the module M = SV*®V becomes an A-module, and as such is identified
with An via the isomorphism of graded A-modules

For any T e Knxn = L(V), this isomorphism takes C(T) e M to the element
of An

so the set C(P(G)) is mapped bijectively onto the orbit

Therefore, the module M(P) generated by C(P(G)) can be identified with the
A-submodule of An generated by P(G)(x).

4. Decomposition induced by isotypic components

The observation below follows immediately from the definition of a graded
module.
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Observation 4.1. Let A be a graded K-algebra and M a graded A-module. If
M is generated as an A-module by elements from Md for some d, then 5 c M
minimally generates M as an A-module if and only if it is a K-basis of Md. In
particular, B0(M) - dimK(Md).

The enveloping space of a linear representation P : G —> GL(V) is the
K-subspace

Letting C : L(V) —> V* ® V = M1 be the natural isomorphism as in Section 3,
we obtain the following statement.

PROPOSITION 4.1. The image C(S) of a subset S c L(V) minimally generates M(P)
as an SV*-module if and only if S is a K-basis for the enveloping space E(P) of P.

Proof. By definition, M(P) is generated by C(P(G)) c M(P)1. Therefore, as
observed above, a set T minimally generates M(P) if and only if it is a K-basis
for spank(CP(G)) = M(P)1. Since C is an isomorphism of K-spaces, this is the
case if and only if T = C (S) for a K-basis S of spanK(P(G)) = E(P). D

If V = ®k
i=1Vi is a decomposition of a K-space V, then V = +k

i=1V*i is a
dual decomposition if for all i, each functional in V* vanishes on @ j = i V j . Let
V = V1 © V2 and let V* = V*1 © V*2 be a dual decomposition. The inclusion
V*1 —> V* extends to an inclusion of algebras SV*1 —> SV*, turning 5V* into
a graded SV*1-module. Given a subset S c V* ® V, we write (S) for the SV*-
submodule of SV ® V generated by it, and if further S c V*1 ® V, we write
(S)SV*1 for the SV*1-submoduIe of SV*1 ® V generated by it. We omit the proofs
of the next two simple statements.

PROPOSITION 4.2. If Bi C V* ® Vi (i = 1, 2), then (B1 U B2) = (B1) + (B2) as
graded SV*-modules.

PROPOSITION 4.3. For any subset S c V*1 ® V we have that (S) is isomorphic as a
graded SV*-module to the scalar extension SV* Xsv*1 (S)sv*1.

We now need to review some more material from representation theory. Let
P = ®k

i=1Pi be a direct sum decomposition of a linear representation P : G —>
GL(V), i.e., there is a corresponding decomposition V = ®k

i=1Vi of V into P-
invariant subspaces, and Pi is the restriction of P to Vi. Let V* = ©k

i=1V*i be
a dual decomposition of V*. Then for all i we have an embedding of L(Vi) in
L(V) given via C by
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In particular, we have E(Pi) c E(P). If each Pi in the decomposition of P is in
turn a direct sum Pi = ®mi

j=1Xi of copies of the same irreducible representation xi

of G over K and the xi are pairwise nonisomorphic, then the Pi are the isotypic
components of P. For proofs of the following fact consult, for example, [16, §4.5,
Corollaries 1, 5; 6, Theorem of Frobenius and Schur (27.8)].

PROPOSITION 4.4. If P = ©k
i=1Pi is a decomposition into isotypic components of a

linear representation P over an algebraically closed field, then E(P) = ©k
i=1E (Pi).

We can now prove the following lemma, which reduces the decomposition
problem into that for isotypic representations.

LEMMA 4.1. Let P = ©k
i=1Pi be a decomposition of a linear representation P over an

algebraically closed field into isotypic components with corresponding decomposition
V = ®k

i=1Vi, and let V* = ©k
i=1V* i be a dual decomposition of V. Then the

representation module M(P) has a decomposition into a direct sum of graded
SV*-modules

Proof. For i = 1, ..., k let Bi be a K-basis for E(Pi). By Proposition 4.4,
E(P) = +k

i=1E(Pi), so that B = Uk
i=1Bi is a a K-basis for E(P). By Proposition 4.1,

C(Bi) generates M(Pi) as an SV*i-module, so by Proposition 4.3,

Now, C(B i) C V*®Vi so by Proposition 4.2, and using Proposition 4.1 once more,

as claimed.

5. Decomposition into generic modules

Having decomposed the representation module into the modules of the isotypic
components of the representation, we now turn to obtain a decomposition of an
isotypic representation.

For an isomorphism of K-spaces P: V —> U let P* : V —> U* denote the
dual isomorphism. If {e1,..., en} is any basis of V, {e*1,..., e*n} the dual basis
of V*, fi = P(e i), and {f*1,..., f*n} the basis of U* dual to the basis {f1,..., fn}
of U, then P* is given by t*(e*i) = f*i. We denote by C the isomorphism of the
tensor products induced from P, which is given by
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Now let P : G —> GL(V) be a linear representation with decomposition
P = Zm

i=1Pi = mP1, i.e., the Pi are isomorphic copies of a single representation
P1, and let V = ®m

i=1Vi and V* = ®m
i=1V*i be corresponding decompositions of V

and its dual. Let P1 be the identity on V1. For i = 2,... , m let Pi : V1 —> Vi

be an isomorphism of K-spaces yielding an isomorphism of the representations
P1 and Pi, i.e. P i(P 1(g)(v)) = P i(g)(P i(v)) for all g E G and v e V1, and let
Pi be the extension of Pi to V*i ® Vi as above. Let C : L(V) —> V* ® V
and Ci : L(Vi) —> V*i ® Vi (i = 1,..., m) be the natural isomorphisms of K-
spaces. Then for all i and all g E G we have Pi(C1(P1(g))) = Ci(Pi(g)). Now,
V*i ® Vi c V* ® V so the image of Ci is contained in V* X V for all 1 Thus,
we get

and we obtain the following statement.

PROPOSITION 5.1. Let P = Zm
i=1Pi = mP1, and let Ci and Ci be the associated K-

maps as defined above. If the set S C L(V1) spans E(P1), then the set Zm
i=1Pi(C1(S))

generates M(P) as an SV*-module.

Proof. If S spans E(P1) then by the above relation,

so by Proposition 4.1, M(P) is generated by

We need one more fact from representation theory (see again [16, §4.5, Corollaries
1, 5; 6, Theorem of Frobenius and Schur (27.8)]).

PROPOSITION 5.2. If x : G —> GL(V) is an irreducible representation of a finite
group over an algebraically closed field then E(x) = L(V) = C-1(V* ® V).
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Now let P : G —> GL(V) be an isotypic representation over an algebraically
closed field K, i.e., P = Zm

i=1 Xi = mX1 where x1 is an irreducible representation
of G over K. Let V = +m

i=1Vi and V* = +m
i=1V*i be corresponding decompositions

of V and its dual, and Pi, Ci and Ci as defined above. Combining Proposition 5.2
and Proposition 5.1, we get that, if B is any basis of V*1 ® V1, then Zm

i=1Pi(B)
generates M(P) as an SV*-module. Now, let n = dim(xi) = dim(Vi), and choose
a basis

for V such that {ei,j : 1 < j < n} is a basis of Vi and so that the isomorphism P
which gives the isomorphism of x1 and xi as above, is given by

for all i. Letting E* = {e*i,j : 1 < i < m, 1 < j < n} be the basis dual to E, we
have Ck(e*1,i ® e1,j) = e*k,i ® ek,j for all k. We get the following Proposition.

PROPOSITION 5.3. Let P = Zm
i=1Xi = mX1 be an isotypic representation over an

algebraically closed field, and let E and E* be the bases of the representation space
and its dual as above. Then the representation module M(P) is minimally generated
by the set

Proof. Choose the basis B = {e*1,i ® e1,j : 1 < i, j < n} of V*1 ® V1. Then M(P)
is generated by

For j = 1, ..., n let

Then V = +k
j=1Uj and Sj c V* ® Uj, so by Proposition 4.2,

as SV*-modules. Now let B = K[x1,1,,..., xm,n], so that all SV*-modules become
B-modules via the algebra isomorphism
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Let Bm be the free B-module with standard basis {u1,..., Um}. Then for every
j we have an isomorphism of graded B-modules

This isomorphism takes the element Zm
k=1e*k,i ® ek,j E Sj to the element

Zm
k=1xk , iUk of Bm. Thus, Sj is mapped to the set of columns of an m x n

generic matrix over B, and the B-module (Sj) is mapped isomorphically to a
generic module M(m, n) which we now define.

Definition 5.1. The generic m x n module M(m, n) is the B-submodule of
Bm generated by the set Zm

k=1xk,iuk : 1 < i < n} of columns of the generic
m x n matrix

Remark. We point out a slight difference from terminology used elsewhere: while
we reserve the term generic module for the image of the map Bn —> Bm given by
the matrix above, this term is often used (cf. [3]) for its cokernel Bm/M(m, n).

We have proved the following lemma.

LEMMA 5.1. Let P = mx be an isotypic representation over an algebraically closed
field and let n = dim(x). Any choice of basis for the representation space yields an
isomorphism of graded B-modules

Note the difference between the decompositions of P and M(P): while P is a
direct sum of m copies, the module M(P) is a direct sum of n copies.

Now let P : G —> GL(V) be an arbitrary linear representation of a finite
group G over an algebraically closed field K, the characteristic of which does not
divide the group order. By a theorem of Maschke (See e.g. [6]), P is completely
reducible, i.e., has a decomposition P = Zk

i=1 miXi where the xi are pairwise
nonisomorphic irreducible representations of G over K,. Let n = dim(P) and
ni = dim(xi). For i = 1,..., k let A(i) = K[x 1 , ..., xmini] be the subalgebra of
A = K[x 1 , ..., xn] generated by the first mini indeterminates, so that the generic
module M(mi, ni) is an A(i)-module. Recall from Section 3 that M(P) can be
turned into an A-module by choosing an arbitrary basis for V. We can now state
the decomposition theorem for our representation module, which follows from
Lemmas 4.1 and 5.1.
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THEOREM 5.1. Let P be a linear representation of a finite group G over an algebraically
closed field K, the characteristic of which does not divide the group order. Let P
have decomposition P = Zk

i=1 miXi into irreducible representations of G over K, let
n = dim(P) and ni = dim(xi), and let A and A(i) be as above. Any choice of basis
for the representation space yields an isomorphism of graded A-modules

The rank of a generic m x n matrix over the field of fractions of B =
K[x1,1,..., xm,n] is min{m, n}, so (see Section 2) rk(M(m, n)) = min{m, n}.
Also by Observation 4.1, B0(M(m, n)) = dimk(M(m, n)1) = n since M(m, n)
is generated by elements in M(m, n)1. Let H(m, n; t) be the Hilbert series of
M(m, n). By Theorem 5.1 and the behavior of the rank, Betti numbers and
Hilbert series with respect to scalar extensions and direct sums (see Section 2),
we have the following corollary.

COROLLARY 5.1. The rank, first Betti number, and Hilbert series of a linear repre-
sentation P as in the hypothesis of Theorem 5.1 satisfy, respectively

In Sections 7 and 8 we will study generic modules in more detail, resulting in
explicit expressions for B1(P) (Corollary 7.1) and H(P, t) (Corollary 8.1) as well.
First, however, we treat the case of multiplicity-free representations, for which a
special nice property can be derived.

6. Multiplicity-free representations

A linear representation P is multiplicity-free if it has a decomposition P = Zk
i=1 xi

where the Xi are pairwise nonisomorphic irreducible representations.

THEOREM 6.1. Let P be a multiplicity-free linear representation of a finite group G
over an algebraically closed field K, the characteristic of which does not divide the
group order. Let P = Zk

i=1Xi be a decomposition of P into irreducible representations
of G over K, let n = dim(P) and let ni = dim(xi). Then the multiset {n1,..., nk} of
dimensions of the Xi can be recovered from the Hilbert series of P, which is given by
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Proof. The generic 1 x n module M(1, n) is simply the unique maximal homo-
geneous ideal in A = K[x1,..., xn] generated by {x1,..., xn}, and its Hilbert
series is

Thus, by Corollary 5.1 we have

Now, let l1 < l2 < • • • < lr be all distinct values taken by the ni, and for
j = 1, ..., r let mj be the multiplicity of lj in {n1, ..., nk}. It suffices to show
that the mj and lj can be read off from H(P, t). Now, n is determined as the
smallest positive integer for which (1 - t )nH(P, t) is a polynomial in t. Then,
letting a = 1 - t, we have

and it is clear that the mj and lj are uniquely determined. D

Example 6.1. Let P(n_2,2): Sn —> GL(C(n)) be the (n-2,2) Young representation
of the symmetric group (see [10] and [11]). It is well known that it decomposes as

and the dimensions, which can be computed by the Hook formula [10], are 1,
n - 1, and n(n-3)

/2, in the corresponding order. Thus, its Hilbert series is

7. Grobner bases for syzygies on generic matrices

The notion of a Grobner basis is of great importance in contemporary computa-
tional algebra. In this section and the following one, we study generic modules
from a Grobner bases theoretical perspective. In the present section we prove
that, for any m and n, determinantal relations form a Grobner basis for the
module of syzygies on the generic m x n matrix, with respect to any lexicographic
monomial order on An. In particular, this provides an elementary proof for the
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classical fact that these relations generate the syzygies, and that the second Betti
number of M(m, n) equals (n

m+1), which gives the second Betti number of an
arbitrary linear representation. In the next section we construct a Grobner basis
for the generic module M (m, n) itself and derive an explicit expression for its
Hilbert series, resulting in the Hilbert series of an arbitrary linear representation.

We start by reviewing some material from the theory of monomial orders. Some
references are [4; 8, Chapter 6]. Let A denote the K-algebra of polynomials as
usual and for any m, let the free A-module Am be equipped with its standard
basis {u1, ..., um}. Monomials in A will be denoted by s and t, while p and
q will be polynomials, and we use f = zm

i=1 f iu i and g = Zm
i=1giui to denote

elements of Am, where fi, gi e A. A monomial in Am is an element of the
form sui. An element f e Am is divisible by g e Am if f = pg for some p e A.
Monomials form a K-basis for Am, and we say that sui appears in f e Am or that
f involves sui if it appears with a nonzero coefficient in the unique expression
of f as a K-linear combination of monomials. A total order < on the set of
monomials in Am is a monomial order if for all monomials s, t1, t2 E A, the
conditions s = 1 and t1Ui < t2U j imply t1Ui < st1Ui < s t 2 U j . This specializes to
a definition of a monomial order on A. Throughout this section and the next
one we will assume that Am is equipped with a monomial order. The initial
monomial in(f) of f is then the largest monomial appearing in /. A subset
G c M is a Grobner basis for a graded A-submodule M of Am if for every
f e M there exists a g E G such that in(g) divides in(f). If G is a Grobner
basis for M then, in particular, it generates M as an A-module. A lexicographic
monomial order on A is one that is induced lexicographically from some total
order on the indeterminates in A: if A = K[x1 , . . . , xn] and x1 > • • • > xn, say,
then a monomial Pn

i=1x
ai

i will be larger than another Pn
i=1x

bi
i if, letting i be

the smallest index for which ai - bi = 0, we have ai - bi > 0. We shall call a
monomial order on Am lexicographic if it is obtained from some lexicographic
order on A and some total order on [m] = {1,..., m} in the following way:
sui > tuj if either s > t in A,or s = t and i is larger than j in the order on [m].

In this section and the next we use X to denote both the generic m x n matrix as
in Definition 5.1 and the set {x1,1,..., zm,n} of indeterminates appearing in it. If
S is any subset of X then K[S] stands for the K-algebra of polynomials generated
by the indeterminates in S. In particular, we let A = K[X] = K [ x 1 , 1 , . . . , xm,n].
The S-content of a monomial in A is the largest monomial in K[S] dividing
it. By a syzygy on X we mean a syzygy on the columns of X, i.e., an element
f = Zn

j=1 fjuj e An satisfying Zn
j=1fjxi,j = 0 for i = 1, ...., m. Finally, if

1 < i1 , . . . , ik < m and 1 < j1,..., jk < n are indices, not necessarily distinct, we
use the bracket [ i 1 , . . . . , i k | j 1 , . . . , jk] to denote the corresponding minor of X,
i.e., the determinant of the k x k matrix obtained by restricting X to the rows
and columns indexed by the i1 and j1 respectively, reordered as designated in
the bracket.

First we observe that there are no nontrivial syzygies on the columns of X
if n < m.

199
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Observation 7.1. If n < m then the module M(m, n) generated by the columns
of X is free of rank n.

Proof. If n < m then rk(M(m, n)) = min{m, n} = n = B0(M(m, n)) (see end of
Section 5), which proves the claim. D

It is a classical fact that determinantal relations minimally generate the module
of syzygies on X. We now prove that, moreover, they form a Grobner basis for
this module.

THEOREM 7.1. Let 1 < m < n, let X be a generic m x n matrix and let A = K [ X ] ,
The set of determinantal relations

both minimally generates the module of syzygies on X and is a Grobner basis for it
with respect to any lexicographic monomial order on An.

Proof. First, note that for i = 1, ..., m we have

which shows that all elements of G are indeed syzygies on X. Second, note that
all elements of G are homogeneous of the same degree, so in order to prove that
no proper subset of G generates the syzygies, it suffices to show that they are
K-linearly independent. This is easily seen to be the case, since each element

Zm
l=0(-1)l[1,...,m|j0,...jl,...jm]ujl of G involves a monomial Pm

l=1xl,jluj0
appearing in no other element of G.

Itfremains to prove that G is a Grobner basis for the module of syzygies. Let
a lexicographic order on An be given. Permuting rows and columns, modifying
the total order on [n] which gives the order on An, and relabeling indeterminates
if necessary, we may assume that x1,1 is the A-largest indeterminate. Given
n > m and a nontrivial syzygy f = Zn

l=1 flul on X, we will show that there is a
determinantal relation on X whose initial monomial divides in(f). For any m,
the proof will use induction on n. We claim that we need consider only syzygies
/ with all components fl nonzero. For n = m + 1, this is always the case for a
nontrivial f by Observation 7.1. For larger n, if some fj = 0, then let auk be
the initial monomial of f, let S = {x1,j, ..., xm, j}, and let t be the S-content
of s. Let g = Zn

l=1glul be obtained from f by keeping exactly those terms of /
involving monomials with S-content t. Let B = K [ X \ S ] . Then
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is a syzygy on the columns of the m x (n - 1) generic matrix X' obtained from
X by deleting the jth column. Letting B and Bn-1 inherit the monomial orders
from A and An respectively, we will have by induction that in(h) = 1

/tsuk is
divisible by the initial monomial of some determinantai relation on X'. But this
is also a determinantai relation on X, and in(f) = t. in(h) is divisible by its initial
monomial as well. Thus, for any m and n > m we will consider only syzygies
f with all components fl nonzero. For such syzygies, since zn

l=1xi,lfl = 0
for i = 1,..., m, we have that each indeterminate xi,l in X must divide some
monomial of /.

We now proceed by induction on m. Consider first the case m = 1. Let
n > 1 be arbitrary and consider any syzygy f = Zn

l=1flul on X with all fl

nonzero, and let suk be the initial monomial of /. Since the monomial order
is lexicographic, no monomial in f has larger x1,1-content than does s, so in
particular x1,1 divides s. Moreover, since Zn

l=1flx1,l = 0, any monomial in
f1 must have smaller X1,1-content than does s, so in particular, k = 1. Thus,
the element

is a determinantai relation in the set G, whose initial monomial is x1,1uk which
divides suk = in(f).

Next, let m > 2 and assume the claim is true for smaller values of m. Let
n > m be arbitrary and consider any syzygy f = Zn

l=1flul on X with all fl

nonzero. Let suk = in(f) and conclude as above that x1,1 divides s. Now let
S = {x1,1,..., x1,n} U {x1,1,..., xm,1} and let t be the S-content of a. Since
Zn

l=1flx1,l = 0 we find again that any monomial in f1 must have smaller x1,1-
content than does s, so in particular can not have 5-content t. Thus, letting
g = Zn

l=1glul be obtained from f by keeping exactly those terms of / involving
monomials with 5-content t, we find that g1 = 0. Let B = K[X\S]. Then

is a syzygy on the columns of the (m - 1) x (n - 1) generic matrix X' obtained
from X by deleting the first row and first column. Letting B and Bn-1 inherit
the monomial orders from A and An respectively, we have by induction that
in(h) = 1

/tsuk is divisible by the initial monomial of some determinantai relation
on X'. Let this relation be

where 2 < j1 < • • • < jm < n. Let j0 = 1 and consider the determinantai relation
on X
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Using Laplace expansion on the first row for all the minors appearing in the
expression for w, we find that the element of An obtained from w by keeping
exactly those terms of w involving monomials which are divisible by x1,1 is

Since x1,1 is the A-largest indeterminate and the order on An is lexicographic,
it is then the case that in(w) = x1,1in(v). Now, x1,1 divides t and in(v) divides
in(h), so we finally get that in(f) = t • in(h) is divisible by the initial monomial
in(w) of the determinantal relation w in G. This completes the proof. a

Using the fact that B1(M(m, n)) = (n
m+1) (which can be deduced at once from

Theorem 7.1), by Theorem 5.1 and the behavior of Betti numbers with respect
to scalar extensions and direct sums we have the following corollary.

COROLLARY 7.1. Let P be a linear representation of a finite group G over an
algebraically closed field K, the characteristic of which does not divide the group
order. Let P have decomposition P = Zk

i=1mixi into irreducible representations of
G over K, and let n = dim(P) and ni = dim(xi). The second Betti number of P is

8. Grobner bases and Hilbert series of generic modules

A monomial module is a submodule of Am generated by monomials, e.g., Am

itself. The monomials in a monomial module always form a K-basis for it. The
initial module in(M) of a submodule M of Am is the monomial module generated
by the set {in(f): f e M} of initial monomials in M, so {in(f): f E M} also
forms a K-basis for in(M). Moreover, the (residue classes of) all other monomials
form a K-space basis for the quotient module Am/M (Macaulay; see [8, 12]).
Thus, if M is graded, then for all i

We record this fact below.

PROPOSITION 8.1. Given any monomial order on Am, the Hilbert series of a graded
submodule M of Am satisfies H(M, t) = H(in(M), t).

We shall call a monomial order on Am induced if it is obtained from some
monomial order on A as follows: sui > tuj if either i < j, or i = j and s > t in
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A. For a submodule M of Am and k = 1, ..., m, let Mk = M n ®m
i=kAui be the

submodule of elements of M of the form Zm
i=kfiui. Thus Mm c • • • c M1 = M.

Consider the map of A-modules

and let Ik = Pk(M
k), an ideal of A. We have the following pair of Propositions.

PROPOSITION 8.2. Let M be a graded submodule of Am, and let Mk, Pk and Ik
be as above. Then H(M, t) = Zm

k=1H(Ik, t), and in(M) = +m
k=1 in(Ik)uk for any

induced monomial order on Am.

Proof. For the direct sum, it suffices (cf. Proposition 4.2) to prove that

Consider f e M. If uk divides in(f) then, since the order is induced, f e Mk

so P k ( f ) E Ik and in(f) = in(Pk(f))uk. Conversely, if p E Ik then p = P k ( f ) for
some f e Mk, and, excluding the trivial case p = 0, we have in(p)uk = in(f).
For the Hilbert series, we have by Proposition 8.1 that

PROPOSITION 8.3. Let M be a graded submodule of Am, let Mk, Pk, and Ik be as
above, and let Gk C Mk. If Pk = P k (G k ) is a Grobner basis for Ik with respect to a
monomial order on A for all k, then Um

k=1Gk is a Grobner basis for M with respect
to the induced monomial order on Am.

Proof. Consider f e M. If uk divides in(f) then, since the order is induced,
f e Mk so fk = Pk(f) E Ik and in(f) = in( f k )u k . Since Pk is a Grobner basis
for Ik, there is some p E Pk such that in(p) divides in(fk). Picking g E Gk such
that Pk(g) = p, we find that in(g) = in(p)uk divides in(f) = in(fk)uk. D

Now, let again X be the generic mxn matrix, let A = K[X] = K[x1,1,..., xm,n],
and let M = M(m, n) be the module generated by the columns of X. Denote
the K x n generic matrix consisting of the first k rows of X by X[k], and the jth
column Zm

i=1 Xi,jUi of X by Xj. Let G1 = {X1,..., Xn} and, for 2 < k < n, let
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For k = 1, ..., m let A(k) = K[X[k]] be the subalgebra of A generated by
the indeterminates appearing in X[k], and let Dk,n be the determinantal ideal
of A(k) generated by the set of maximal minors of X[k]. This set is known
to form a Grobner basis for Dk,n [14], and moreover, was recently shown to
be a universal Grobner basis, i.e., a Grobner basis for Dk,n with respect to any
monomial order on A(k) [2, 15]. The Hilbert series H(Dk,n, t) is known as well
(cf. [7, Theorem 1]). We can now prove the following theorem.

THEOREM 8.1. For any induced monomial order on Am, a Grobner basis for the
generic module M(m, n) is provided by the set

The Hilbert series of M(m, n) is

Proof. First note that M1 = M is generated by G1, so I1 = P1(M
1) is the ideal

of A generated by

Second note that for 2 < k < m, an element Zn
j=1 f j X j of M is in M* if and

only if f = Zn
j=1fjuj e An is a syzygy on the generic submatrix X[k -1] of X. If

n < k < m then by Observation 7.1, there are no nontrivial syzygies on X [ k - 1 ] , so
Mk = {0}. Finally, if 2 < k < min{m, n} then, by Theorem 7.1, the submodule
Mk is generated by Gk. We conclude that if n < k < m then Ik = P k ( M k ) = {0},
whereas if 2 < k < min{m, n} then Ik = P k ( M k ) is the ideal of A generated by
the set

which is, up to sign, the set of maximal minors of X[k]. Thus, for k =
1, ..., min{m, n} the ideal Ik of A is generated by the set of maximal minors,
so Ik = A®A(k) Dk,n is a scalar extension of Dk,n.
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For the statement on Grobner bases, consider any monomial order on A. It
is easily seen that, since Pk is a Grobner basis for Dk,n with respect to this
order, it is also a Grobner basis for Ik. It then follows from Proposition 8.3 that
Umin{m,n}

k=1Gk, which is the set in the statement of the theorem, is a Grobner basis
for M with respect to the induced order on Am.

For the statement on Hilbert series, by Proposition 8.2

The claim follows by substituting the known expressions for the H(Dk , n , t). D

Note that for n < m the above expression for the Hilbert series reduces to
nt

/(1-t)mn as it should (cf. Observation 7.1), and for m < n it can be somewhat
simplified to

Combining Corollary 5.1 with Theorem 8.1, we finally obtain the Hilbert series
of a linear representation.

COROLLARY 8.1. Let P be a linear representation of a finite group G over an
algebraically closed field K, the characteristic of which does not divide the group
order. Let P have decomposition P = Zk

i=1 mixi into irreducible representations of
G over K, and let n = dim(P) and ni = dim(xi). The Hilbert series of P is

9. Discussion

A first interesting possible continuation is to find Grobner bases for all kernels
appearing in a free resolution of a generic module.

Second, we raise the following question. Is the set of determinantal relations
on a generic matrix a universal Grobner basis for the module of syzygies on its
columns? If true, this may provide an alternative way of proving the remarkable
universality of the ideal of maximal minors of a generic matrix [2, 15].
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Returning to linear representations, we note that the Hilbert series and Betti
numbers of a representation P depend only on the set of pairs {(m1, n1), ...,
(mk, nk)} of the multiplicities and dimensions of irreducible constituents of P.
We raise the following question. For what representations P, or, equivalently, sets
of pairs as above, do the Betti numbers Bd(M(P)) of all dimensions determine all
the mi and ni (the multiplicities and dimensions of the irreducible constituents
of P)?

Acknowledgments

I am indebted to L.J. Billera for discussions which originated this study and helped
it evolve, and to R.P. Stanley and J.R. Stembridge for enlightening discussions and
for their help in observing Proposition 4.1. I also thank I. Borosh, A. Machiavelo,
B. Sturmfels, W. Vasconcelos, and A. Zelevinsky for helpful conversations, R. Adin
for a helpful remark on the formulas for the Hilbert series, and a referee for
valuable comments and references. Finally, I express my gratitude to Institut
Mittag-Leffler for its hospitality while this work was initiated.

References

1. M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison Wesley, Reading,
MA, 1969.

2. D. Bernstein and A. Zelevinsky, "Combinatorics of maximal minors," J. Alg. Comb. 2 (1993),
111-121.

3. W. Bruns and U. Vetter, Determinantal Rings, Lecture Notes in Math. 1327, Springer-Verlag, Berlin,
1988.

4. B. Buchberger, "Grobner bases—An algorithmic method in polynomial ideal theory," in Multidi-
mensional Systems Theory, N.K. Bose, ed. D. Reidel, 1985.

5. D.A. Buchsbaum and D. Eisenbud, "Generic free resolutions and a family of generically perfect
ideals," Adv. Math. 18 (1975), 245-301.

6. C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Inter-
science, New York, NY, 1962.

7. J.A. Eagon and D.G. Northcott, "A note on the Hilbert functions of certain ideals which are
defined by matrices," Mathematika 9 (1962), 118-126.

8. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Lecture Notes 4,
Brandeis University, Waltham, MA., Spring, 1989.

9. H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1969.
10. G.D. James. The Representation Theory of the Symmetric Group, Lecture Notes in Mathematics 682,

Springer-Verlag, Berlin, 1978.
11. S. Onn, "Geometry, complexity, and combinatorics of permutation polytopes," J. Combin. Theory

Series A 64 (1993), 31-49.
12. R.P. Stanley, "Hilbert functions of graded algebras," Adv. Math. 28 (1978), 57-83.
13. R.P. Stanley, Combinatorics and Commutative Algebra, Birkhauser, Boston, 1983.
14. B. Sturmfels, "Grdbner bases and Stanley decompositions of determinantal rings," Math. Z. 205

(1990), 137-144.
15. B. Sturmfels and A. Zelevinsky, "Maximal minors and their leading terms," Adv. Math. 98 (1993),

65-112.
16. E.B. Vinberg, Linear Representations of Groups, Birkhauser, Boston, 1989.

206


