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Abstract We construct a family of partially ordered sets (posets) that are q-analogs of the set partition lattice.
They are different from the q-analogs proposed by Dowling [5]. One of the important features of these posets is
that their Whitney numbers of the first and second kind are just the q-Stirling numbers of the first and second kind,
respectively. One member of this family [4] can be constructed using an interpretation of Milne [9] for S[n, k]
as sequences of lines in a vector space over the Galois field Fq. Another member is constructed so as to mirror
the partial order in the subspace lattice.
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1. Introduction and definitions

The theory of q-analogs has a long and venerable history, going back to Gauss who studied
the q-binomial coefficients. Recently there has been considerable interest in q-Stirling
numbers. The q-Stirling numbers of the first kind, s[n, k}, were introduced in Gould's
paper [7]. Then Gessel [6] gave them an interpretation as the generating functions for an
inversion statistic. The q-Stirling numbers of the second kind, S[n, k], were introduced by
Carlitz [2, 3], and were also studied by Gould [7] and Milne [8]. Later, Milne [9] showed
that these numbers could be viewed in terms of inversions on partitions, and Sagan [11]
showed that there was also a version of the major index. Also, Milne [9] and Wachs and
White [13] proved that the q-Stirling numbers of the second kind count restricted growth
functions using various statistics. Finally, Milne [9] gave a vector space interpretation of
these numbers.

Consider the lattice of partitions of {l, 2, ..., n} ordered by refinement, IIn. This lattice
has the ordinary Stirling numbers of the first and second kinds, a(n, k) and S(n, k), as its
Whitney numbers of the first and second kinds, respectively. The purpose of this paper is to
construct a q-analog of IIn that has s[n, k] and S[n, k] as its Whitney numbers. (Dowling
[5] has also constructed a q-partition lattice, but it does not have this property.) In fact
we will construct a whole family of such q-analogs. One in particular will use Milne's
interpretation of the S[n, k] as sequences of lines in a vector space over a finite field.
Another will reflect a connection with the lattice of subspaces. First, however, we will need
some definitions and notation.

Let Z and N stand for the integers and non-negative integers, respectively. Consider
n = {1, . . . , n}. The set of all permutations of n that can be written as a product of k



where d0, k is the Kronecker delta, with k and n running over Z and N, respectively.
If n e N then it's standard q-analog is
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disjoint cycles will be denoted c(n, k). The (ordinary) Stirling numbers of the first kind,
s(n, k), are defined by

where | • | denotes cardinality. It is easy to see that these numbers satisfy the recursion

So we can define the q-Stirling numbers of the first kind, s[n, k], using a q-analog of equation
(1):

Next we will look at Stirling numbers of the second kind. The set of all partitions of n
into disjoint subsets BI, BZ, ..., Bk (sometimes called parts or blocks) will be denoted
S(n, k). The (ordinary) Stirling numbers of the second kind are

The recurrence for these numbers is

with the usual conventions for k and n. A g-analog of this equation gives the q-Stirling
numbers of the second kind

There are many different statistics that yield the g-Stirling numbers [6, 9, 11, 13]. The
one that will interest us counts non-inversions. If TT € S(n, k), then we write

with the convention that

We will say that a partition written in this manner is in standardform. Given such a partition
TT we will let mi = min Bi and denote by bi any element of Bi \ {mi}. It should also be
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noted that we always refer to elements of TT with small letters, and to blocks of n with capital
letters.

Define a non-inversion of TT to be a pair (mi, bj) such that m^ < bj and i < j. The
non-inversion set ofir is

and we let

If (a, b) is a non-inversion in TT we will often say that b causes a non-inversion in TT.
Similarly if there are I different elements a such that (a, 6) is a non-inversion then we will
say that 6 causes I non-inversions. Note that

since each bj causes a non-inversion with all mj such that i < j.
As an example, consider

Then

and nin TT = 5. Also we can say 8 causes two non-inversions and 7 causes one non-inversion.
We will now show that S[n, k] is the generating function for nin.

Theorem 1.1 We have

Proof: It suffices to check the boundary condition and recursion of (4). The former is
easy. For the latter, note that

where the 1 -I- q + • • • + qk * comes from the non-inversions caused by the element n.
Hence by induction
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We will also wish to compare two non-inversion sets. If a, it € Un, then the set of new
non-inversions ofa\ir is defined to be the set-theoretic difference

In addition, let nin a\w = \ Nin a \ ir\. To illustrate, if

and TT is as (6), then

with nin a \ TT = 2.
Finally, we need some definitions concerning posets (partially ordered sets). Consider

a finite poset P with unique minimum 6 and maximum i. Define the Mobius Junction
H : P -> Z by

The partitions of n form a poset, Un, when ordered by refinement. The Mobius function
of !!„ is well known. The reader can consult Stanley's text [12] for a proof.

Theorem 1.2 If-K = J5i/B2/ • • • /Bk is an element ofHn, then

A poset P is ranked if, for every element x € P, all maximal chains from 0 to x are of
the same length. The rank ofx is this common length. If a poset is ranked, then we can
also consider its Whitney numbers of the first and second kinds. The feth Whitney number
of the first kind is

so it is the sum of all the Mobius function values at rank k. The kth Whitney number of the
second kind is



so it is the number of elements at rank k. The connection between the Whitney numbers
and the Stirling numbers is provided by the following theorem. Again, see [12] for details.

Theorem 1.3 The Whitney numbers for On are

Our aim in the rest of this paper is to describe a family of posets, "Pn(q)i each of which
can claim to be a (/-analog of Iln. The basis of this claim is that for each P e Pn(g)>
a ^-analog of Theorem 1.3 will be true with the Stirling numbers replaced by ^-Stirling
numbers. Furthermore, a q-version of Theorem 1.2 will be true. Later we will see what
replaces the factorials therein. First, however, we will examine two particular posets in
Pn(q) that are of special interest.
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2. The poset nn(q)

For the purposes of this section and the next, let q be a prime power. Milne [8] gave a vector
space interpretation to the S[n, k] as follows. Let V be a vector space over the Galois field
Fq. Given any set of vectors 5 C V, we let (S) denote the linear span of 5. Now any
sequence of lines (one dimensional subspaces of V) /i, l^, • •-, ln determines a flag

obtained by deleting the repeated subspaces in

The sequence (8) is called a complete flag of dimension k because dim Vj = iforl < i < k.
Now fix a complete flag of dimension k, and let {vi, ..., Vk} be a basis for Vfe such that
{v\, ..., Vi} is a basis for Vi for all i. Then the group of upper unitriangular matrices in
this basis acts on the sequences of n lines generating the given flag of dimension k. Milne
showed that S[n, k] is the number of orbits under this action, regardless of the initial choice
of a flag.

We would like a more concrete description of this situation. Therefore, we will pick a
particular representative for each orbit. By a common abuse of notation, we will represent
a line / by a non-zero vector lying along I. We may assume that the vector representing a
line is of the form (* , . . . ,* , 1, 0, . . . , 0) where each * is an element of Fq. We will say
that the rightmost non-zero entry of this vector is its leading 1.

Since we can pick any complete flag of dimension k, we will do so in the simplest possible
way. Let £i, . . . , en be the standard basis vectors for F£. Then define
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These will be the subspaces in our complete flag. To account for the orbits, we will put
each sequence of lines generating Wo C Wi C • • • C Wfc in a canonical form. So
let i = l\, ..., ln be such a sequence. We will say that i is standard if for each i with
1% & {^i! • • • i k-i) we have ij = £j where (li, ..., li) = Wj. Further, we say Resequence
has dimension k if the flag generated is of dimension k.

For example, if n = 9, k = 4 and q — 3, then one possible sequence of lines is

Note that the first, second, fourth and fifth lines must be standard basis vectors since, in each
case, they are the first to venture into a larger subspace than their predecessors. Notice, too,
that our definition makes sense for all positive integers, q, not just prime powers. Merely
replace elements of Fg with the residue class {0, 1, . . . , q — 1} of integers modulo q.
As long as we do not try to do any division, there will be no problems. Hence all our
enumerative results will be true in this larger setting.

Let En(g) denote the set of all standard sequences ofnlinesand consider t = l\, ..., ln e
Un(q). Define a mapping T: Tln(q) -»IIn by T(t) = J3i/ • • • /Bk where

This establishes a surjective correspondence between sequences of lines, £, and partitions,
TT. We call T the type map, and say that (. has type K. Because of this correspondence, we
will say that k is in the jth part whenever its leading 1 is in position j. In other words, li is
in the jth part whenever k € W,- \ Wj_i. By way of illustration, if t is the sequence (9)
then

We can now state the connection between line sequences and the non-inversion statistic.

Proposition 2.1 Given x e IIn, the number off € Un(q) of type TT is qnin 7r.

Proof: Suppose T(£) = it = B\/ • • • /Bk and consider i, 1 < i < n. If i is the minimum
of a block of TT, then lt must be a standard basis vector. So there is no choice for these lines
mt

If i e Bj \ {ntj} then i causes j - 1 non-inversions in TT. Also, li has j — 1 entries which
are arbitrary elements of Fq, so there are q*'1 possibilities for /j. Thus, the total number
of possible preimages of TT is
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by equation (5). D

Given a line I = (ai , . . . , afc_ i, 1,0,..., 0) define the shift left operator, L, by

D

so that the 1 now appears in the (k -1 )st position and there is one extra 0 at the end. Shifting
left m, Lml, is just the result of shifting left m times in succession. If I is the eighth line of
(9)thenL/ = (0,2,l,0,0,0,0,0,0)andL2J = (2,l,0,0,0,0,0,0,0).

We will now define a partial order on standard sequences of n lines to turn Tln(q) into a
poset. We wish to make the covering relation in Un(q) agree with the the covering relation
in nn. Given t = li, ...,/„ and t' = l(,..., l'n, we write (! -< i if f is covered by t. So
we want

If a is a partition, then we make a covering partition by combining two parts, say the sth

and tth parts where s < t. Hence for sequences of lines we will move lines in the ith into
the sth part. Note also that the indices on blocks after the tth in a are decreased by one,
whereas the indices of those blocks before the ith remain the same. This will be mirrored
as well in our definition of the covering relation.

Now suppose £ - li,..., ln and V = l{,..., l'n are standard. Then we let t' x t if there
exist s and t, 1 < s < t < n, such that the following four conditions hold.

1. If l'm is the first line in the tth part then lm = (ai , . . . , as_i, 1,0,..., 0) where the
aj € Fq are arbitrary.

2. For each l\ in the tth part with i ^ m, we have ^ = Lt~al'i,

3. For each l( in a part after the tth, we have li = Ll(.

4. For each Z • in a part before the tth, k = ZJ.

Continuing our running example,
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is covered by

where the * could be any element of FS.
The proof of the next result follows directly from the preceding definition and so is

omitted.

Proposition 2.2 The map T: Un(q) —» Un is order-preserving D

Finally, we can use new non-inversions to count the number of lines below a given element
ofUn(q).

Proposition 2.3 Fix t € Un(q) of type TT and a < n. Then the number oft' < t with t' of
type a is qn'm "\7r.

Proof: Suppose •n = BifBij • • • and i € Bj. If i is not a minimum in a = Ci/C^/ • • •
and i € Cm, then i causes m — j of the non-inversions in Nincr \ TT. Furthermore, these
are the only i, 1 < i < n, that cause new non-inversions.

Now suppose that t1 < t is of type a, and consider the line k in (.. By definition, /j
completely determines the corresponding l( in f! unless i is not a minimum in a. In that
case, I'i will have m - j entries that can be chosen arbitrarily if it moves from the jih part of
7rtothemth part of <T. Thus the number of choices for l( isqm~3. But this m - j coincides
with the number of new non-inversions computed in the previous paragraph. So the total
number of lines will be <?nin a\*.                                                                                             D

3. TheposetPn(g)

We define a poset Pn(q) as follows. Let

Extend the addition and multiplication in Fq to Fq by letting

for all x e Fq. Let Pn(q) consist of the (k - 1) x (n - 1) matrices over Fq, 1 < k < n,
in the following version of row-echelon form.

D

n
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1. Each row has at least one finite entry, and the first finite entry in each row is a 1 called
a pivot.

2. All entries above a pivot are 0, and all entries below a pivot are oo.

3. All entries below an oo are oo.

We will find it convenient to index the rows with 2 , . . . , k and the columns with 2 , . . . , n.
Again, as long as division is not used we can replace Fq with a complete set of residues
modulo q e N.

By way of illustration, if n = 9, k = 4 and q = 3 then one such matrix is

The unique two in M is m^ g = 2.
We now define a type map T: Pn(q) -> Un by letting T(M) = B\j • • • /Bk where

If M is as in (11), then

If T(M) = TT then we will say that M has type TT.
We have an analog of Proposition 2.1 for Pn(q)-

Proposition 3.1 Given TT 6 IIn, then number ofM& Pn(q) of type it is qm"*.

Proof: Suppose T(M) = TT = BI/BZ/ • • • and consider j, 1 < j < n. If j is the
minimum of a block of TT, then the jth column of M contains a pivot 1. So all the entries
of this column are fixed as a 0,1 or oo. Thus there is no choice for these columns in M.

If j 6 Bi \ {mj} then j causes i - 1 non-inversions in TT. Also, in the jth column of M,
the first i - 1 entries are arbitrary (and the rest fixed), so there are g*"1 possibilities for that
column. Thus, the total number of possible preimages of TT is

by equation (5).

For brevity, we will write a (k — 1) x (n - 1) matrix M using row vectors. That is,

D
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where the Vi are vectors over Fg. Vector addition and scalar multiplication are defined
componentwise using (10) with one exception. If T(M) — B\/ • • • /Bk, then we let

Then M covers M' if and only if there exist 1 < s <t < fc + 1 such that

where £j ^ oo for i < s, and £j = oo for i > s.
Continuing our previous example, consider

Letting s = 2 and t = 4, we see that this matrix is covered by

where all addition and multiplication is done in ^3. The fact that a covering matrix is sent
by T to a covering partition is no accident, as the next proposition shows.

Proposition 3.2 If M' and M are as in (13) and (14), then M is in row-echelon form.
Furthermore, the map T: Pn(q) —* Hn is order-preserving.

Proof: We will simultaneously prove that M is row-echelon, and that if T(M') =
.Bj/.-./.Bfc+i.then

where

We are now ready to define the covers of the poset Pn(o)- Let
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This will give us the order-preserving property of T as well.
First note that for i < s all entries of xX are finite because of the multiplication rules in

(10) and the fact that Zi ^ oo. So v{ and v'i+XiVf have oo's in exactly the same spots. Thus
the upper portion of M is row-echelon. Applying the type map to the matrix consisting of
rows 2 through s of M yields the blocks B%,..., Bs-\ which are the same as for M'.

Now oov't has oo in all positions j such that j € Bt and zeros elsewhere. Thus, for
s < i < t, the vector v( + oov't will have extra oo's in the positions of j € Bt, and the same
elements as v( in the other positions. Hence rows 2 , . . . , t - 1 of M are in row-echelon
form and the type map applied to these rows gives the second through (t - 2)nd blocks of
(15).

Finally, v( is invariant for i > t 4-1. This completes the verification that M is row-echelon
and that T(M) also has blocks B\ and Bt+i,..., Bk+1. n

We will also need an analog of Proposition 2.3 in this setting.

Proposition 3.3 Fix M e Pn(q) of type IT and a < n. Then the number ofM'<M with
M' of type a is qn{n <r\v.

Proof: We will first reduce to the case of a cover. Let the elements which are minima in
a but not in TT be si > s2 > • • • and construct a sequence of partitions

271

n

where IT; is obtained from TTJ-J by making si a new minimum. Because of our choice of
covers, we have

where W denotes disjoint union. Now for any M' < M with T(M') = a there is a sequence
of matrices in Pn(q)

such that T(Mj) = TTJ for all /. Thus it suffices to consider covers.
So suppose that M' -< M and that blocks Ba and Bt, s < t, are merged in a =

BI/ • • • /Bk+i to form TT. Note that the entries in v( for i > t are not changed in passing
from M' to M. So we need only consider i < t.

Now consider column j of M'. If j is a minimum of a then it causes no new non-
inversions in Nin a \ TT. Such elements correspond to pivot columns of M' where every
element is determined. Thus there is only q° = 1 possibility for such columns, as desired.

If j is in a block to the left of Bt, then it also causes no new non-inversions. In this case
the jth element of row v( in M' is equal to oo. Also, since j & Bt, adding multiples of
v't does not affect the jth column by (10) and (12). Thus the entries of this column in M
completely determine the entries of this column in M'. So, again, there is only one choice.

If j e Bt \ {mt}, then j causes t - s new non-inversions. We claim that the entries
rn'a+i, j, m'«+2,j' • • •' m't,j can be chosen arbitrarily from Fq, and once this is done all the
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other entries of the jth column of M' are determined uniquely. This will give the necessary
ql~a possibilities. Since for s < i < t we have oo = m^j — m'iti + oo, any finite entry
will do for the m\^ in these rows. This accounts for g*"*"1 choices. For i < s, note that
the scalar Xi ^ oo in (14) is uniquely determined by the entries in column mt of M and the
fact that v't has its pivot one in that column. So, given m{j, m^j ^ oo there is a unique
solution to

Thus, any one of the q choices for m't j completely determines the rest of column j. Hence,
the total is qt-s~l • q = qt-a possibilities.

If j is a non-minimum in a block to the right of Bt, then it causes one new non-inversion.
For s < i <t we must have m£ , = mj, j by (12), so these entries are uniquely determined.
Also, once we have picked mt>j' l^e entries m^ for i < s are fixed by (16). This
gives a total of q1 choices, and we have checked that the proposition holds in every case.
Note that the solution of (16) for m'^j, given all the other quantities in the equation, can
be done without division. Thus this result still holds when q is not a prime power.

D

We will now show that the subspace lattice of dimension n - 1 over Fq, Ln-i(q), can
be embedded in a natural way in Pn(q)- Given a basis, each element of the subspace
lattice corresponds to a matrix in standard row-echelon form. So, replacing each 0 to
the left of a pivotal 1 with oo, we can obtain an element of Pn(q). This defines a map
ij): Ln-\(q) —* Pn(q). It is easy to see that if V € Ln_i(g) then V'(V) has the correct
form for a row-echelon matrix in Pn(q). We claim that the image of -0 is a subposet of
Pn(q) isomorphic to Ln-\(q). This will follow from the next proposition and the fact that
the subspace lattice is self-dual.

Proposition 3.4 The map t/j: Ln-i(q) —> Pn(q) is an order-reversing injection. Also, iff*1

is order-reversing.

Proof: The fact that ip is injective follows immediately from its definition. The proofs
that V1 and V1"1 are order-reversing are similar, so we will only do the former.

It suffices to show that if V -X W then V>(V) y V(W). But if

in row-echelon form, then it is possible to find scalars x\,..., xt-\ € Fq such that

272

n
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for some t. This corresponds to the case s = t - I in the definition of the covers for Pn(q)-
Thus i/>(V) >• V(W). DD

4. Properties of nn

We will now investigate some properties of the partition lattice that will be important for
our g-analogs. Let TT = Bi/Bi/ • • • /Bk be a partition of n. Recall the convention that
m» = minB, and 6* € £» \ {mi}.

We will need to refine the set of non-inversions. So define the non-inversions caused by
a block, BJ, by

Similarly, define the non-inversions caused by an element, bj 6 n, by

For example, if TT = 139/2467/58 = Bi/B2/B3, then

and

Clearly

and

As before, "nin" will be used to denote the number of elements in each set. Also the ?r will
be dropped when doing so causes no confusion.

The interference set of n is
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with cardinality

Using the same partition as before

If (bi, bj) e IntTf, then we say (as usual) bj causes interference in it. Note that

since each element that is not the first in its block causes interference with each element
smaller than the minimum of its block, except those that are themselves first in a block. We
will also refine interference by defining

and

As previously, "int" will denote the number of elements in each set and the TT will be dropped
when doing so causes no confusion.

Intuitively, (bi, bj) is an interference pair if splitting block Bt up into Btl and Bi2 with
bi = min Bi2 will make (&,, bj) a new non-inversion. This is the essential ingredient in the
following lemma.

Lemma 4.1 Let it be a partition and let B be a block of IT. Ifb&B, then

for any refinement, a, of IT which splits B into two parts and keeps all other parts the same.

Proof: Suppose the pair (a, b) causes interference in TT where b £ B. Let B' be the block
of b in TT. Then B' is still b's block in a. Furthermore, since a < m — min B', we have
that the block containing a still precedes B' in a. Now there are two possibilities for a. If a
becomes a minimum of a block in a, then (a, b) is a new non-inversion in <7\7r. Otherwise,
(a, b) still causes interference in a. Thus we have shown

For the reverse inequality, suppose 6 € Irtish i±) NinCT\T6. If (a, b) causes interference
in cr, then it also causes interference in TT. If (a, b) is a new non-inversion, then a must
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be the larger minimum in the two blocks merged to form B. Thus these pairs also cause
interference in TT. This concludes the proof of the lemma. Q

In order to obtain g-analogs of the factorials appearing in the Mobius function for the
partition lattice, we will need a rather strange definition. Given any set of integers, B =
{01 < 02 < • • • < an} define

a

Thus {0,1,..., n- 1}! is the usual g-analog of n\. Also, let

It should be pointed out that B - b has only n — 1 elements and that (B — b)\ is a ̂ -analog
of (n —1)1. Note that we can consider (B - b)\ to be a product with a factor corresponding
to each element of B \ min B where the factor corresponding to a,j, j > 2, is

We will need a lemma telling us how this factorial acts under refinement.

Lemma 4.2 Let B = {01 < a? < • • • < an} be a set of positive integers, then

where the sum is taken over all partitions of the set B into two parts B = C W D with
a\ € C and 0,3 € D.

Proof: Assume that these products are multiplied out to give monomials but terms with
equal powers are not combined. We will first show that there are the same number of terms
on each side. Then, since the sums are finite, it will be sufficient to prove that each term of
(B - ai)! appears as a unique term in (C - ai)\(D - 01)! for some uniquely chosen C
and£>.

Now (B - ai)\ has (n - 1)! terms. Also, if C has k elements and D has n - k elements
then (C - oi)!(D - ai)! has (k - l)!(n - k - 1)1 terms. Further, there are (£~J) pairs
C, D with k and n - k elements respectively, since a\ e C and 02 € D. Hence the number
of terms on the right hand side is

as desired.
In looking at the individual terms recall that
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and that each term in the expansion of (B — a\}\ is obtained by taking the product of
one summand from each factor. Furthermore, the factors correspond to the non-minimal
elements of B. We must first determine the C and D corresponding to this term. By
definition, ai 6 C and a-z €. D. The summand from the factor corresponding to 03 can
be either 1 or gaa~°». In the former case put 03 6 C and in the latter put as e D.
Continue putting elements into C or D in increasing order using the following criterion:
If the summand for a, is qai~ai (so % > j), put a* in the same block as a,j. Clearly this
uniquely determines a partition B = C W D. Also, by definition, the factor corresponding
to aj in (C - ai)! (or (D — ai)!) contains a unique summand of the form qa^~a^. Hence
the product of these summands is the term in question. n

We are almost ready to give the (/-analog of the the Mobius function of IIn. First, however,
we must define a related function 0 on IIn. Later we will show that if x is an element in
one of our ^-partition posets corresponding to a partition ?r € S(n, k) via a type map, then

276

If TT — BI/BZ/ • • • /Bk is a partition of n then define

It is clear that substituting q = 1 into 4> yields |//(TT)| as given in Theorem 1.2. Also, if
Bt = {01 < 03 < • • • < a;} then qintB* (Bi - m*)! can be considered as a product with a
factor corresponding to each element of J3j \ {ai}. The factor corresponding to a,j, j > 2,
is

In fact, we can extend this definition to ai by letting it correspond to a factor of 1. Hence
<j>(ir) can be thought of as a product with a factor corresponding to each element of n. This
will be used to simplify the proof of the next theorem, a result which will be critical in
proving that the Mdbius values in our (/-analogs cancel properly. In it, a singleton block of
a partition is one containing only one element.

Theorem 4.3 Let IT = B\/B<}/ • • • /Bk be apartition and let B be the first non-singleton
block 0/7T with B = {a\ < • • • < a;}, then

where the sum is taken over all refinements, a, of it which split B into two parts, B = C l±l D
with ai € C and 0,3 s D, and keep all other parts the same.

Proof: First consider any element 6 not in block B. The factor in </>(TT) corresponding to
b involves qrint"6 but the rest of the factor depends only on which elements are in the same
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block with b. Since this part of the factor does not change in the a's under consideration,
we may cancel it from both sides of equation (19). In order to cancel qintnb we need

for these a. But this follows directly from Lemma 4.1.
Hence, after cancelling these factors we are left with the following to be verified:

where the sum is taken over all partitions of the set {a1, a2 , . . . , a;} into two parts, C and
D, where a1 e C and 02 € D.

First we can simplify this expression by noting that intvB = 0 since B is the first non-
singleton block in TT. Also, since C will now be the first non-singleton block in a we see
that rima\T,C = 0 and int^C" = 0. Further, any element b € D, b ^ 02 will cause either
a new non-inversion or interference with every element, a such that a\ < a < a-z since b
is now in a later block than a. Hence nin^D + int^D = (|D| - I)(a2 - ai). Thus we
must verify that

where the sum is taken over C and D as described above.
For the proof of (20) let D — {02, ait, ai3,..., aim }; then

Thus there are \D\ -1 factors (counting the 1). Further, there are (|D| -1) copies of g"2"01

so we can multiply each factor by qa3~ai to change all (a, - 02)'s to (a* - ai)'s. Thus

So, the original equation reduces to

which is true by Lemma 4.2. D

We need one last lemma for the verification that the g-Mobius function will be well
behaved.

Lemma 4.4 Let n = Bi/B^/ • • • /Bk be a partition and let B = {ai, 02, ..., a;} be
the first non-singleton block ofn. Then let a = Ci/C^/ • • • /Cm be any refinement of
TT such that 01 and a^ are still in the same block, say {01, 02} C C. Further, let r =
Di/D2/ • • • /Dm+i be a refinement of a such that C = D U D' with ai 6 D and o2 6 D'
and other blocks remain the same. Then
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Proof: Since B is the first non-singleton block of TT, it is easy to see that all the blocks
preceding C in a, or D in r are singletons. Suppose first that (a, 6) 6 Nin T\TT. This gives
the following possibilities.

1. a = min D'. Then a € C \ min C so (a, b) € Nin r \ a.

2. b € D'. Then a must be the minimum of a block weakly to the right of D and strictly
to the left of D', since (a, b) & Nin TT. Since 6 6 C, we have (a, b) 6 Nin r \ a.

3. a, 6 £ .D'. Then the blocks containing a and b are in the same relative positions in T
and a. Also, (a, b) & Nin TT. Thus (a, 6) € Nin a \ TT.

Hence we have shown that
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For the reverse inclusion, we have two cases.

(i) (a,b) €Ni t iT\<r . Then either a or b must be in D'. (If not, then (a, b] € Nin <r.) If
a = min D' then it is no longer a minimum in TT. Thus (o, 6) 6 Nin r \ vr. If b € D'
is not a minimum, then o must be in a block weakly right of D and strictly left of D'
(since (a, 6) ^ Nin a). So again (a, b) £ Nin IT and (a, 6) € Nin T \ TT.

(ii) (a, b) € Nin <r \ TT. First of all, a £ £>'. (If a £ D' then a is not a minimum in CT,
contradicting (o, b) e Nin CT.) Also 6 ^ £>'. (If not, then b e C in a and b 6 B
in TT. So (a, 6) € Nin a implies (a, 6) e Nin TT, a contradiction.) Thus the blocks
of a and b are in the same relative position in a and T. Hence (a, 6) € Nin T\TT.

a

5. The family Tn(q)

The time has come to describe our g-partition posets. A poset, P, is of rank n if it is ranked,
and all maximal chains of greatest length have length n. A type map is an order-preserving
map T: P -> !!„. We say that a; 6 P has type TT if T(x) = TT. Now define Pn(q) to be the
family of all posets, P, of rank n - 1 such that there is a type map T: P —> Iln satisfying
the following two conditions.

1. The number of elements of P of type TT is qnin * for all TT e IIn.

2. Given x € P of type TT, then the number of y < x of type a is qni" <T\'r.

Conditions 1 and 2 will ensure that the Whitney numbers Wfe(P) and w^(P), respectively,
will turn out to be g-Stirling numbers.

It follows immediately from the results in Sections 2 and 3 that we have already seen two
posets in Pn(q).

Theorem 5.1 The posets Un (q) and Pn (q) are elements ofPn (q). Dn

n
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We now show that the the MSbius function for any P € Pn(<l) is given as in equation
(17).

Theorem 5.2 Suppose P e Pn(q). Ifx e P has type ir = BI/ • • • /Bk then

Proof: If TT = 1/2/ • • • /n then nin TT = 0. So there is only q° = 1 element x of type
TT, by condition 1 in the definition of Pn(q)- Thus x must be a unique minimum of P and
hence fj,(x) = 1. But the definition of <0 shows that the right side of equation (21) is also 1,
giving agreement in this case.

Now let TT = BI/BZ/ • • • /Bk be an element of IIn. Define a function on P by f ( x ) —
(-I)n~fc0(7r). We wish to show that

for any x ^ 6. Then / will satisfy the recurrence for the Mobius function and by uniqueness
we will have / = M-

Now use condition 2 of the definition of Pn(q)- For any refinement a of TT there are
gnin "^ elements y € P which are below x and of type a. If a has I blocks, then

Let B and C be defined as in Lemma 4.4. Then for each a which keeps a\ and 02 in the
same block Theorem 4.3 says (with a change of notation) that

where the sum is taken over all refinements r of a which split C into two parts with ai and
02 separated but keep all other parts the same. Hence by Lemma 4.4 we have

for refinements r of a which split ai and 02 but keep other blocks the same. Thus every
term in (22) cancels out since every refinement of TT (including TT itself) either has a\ and
a-i in the same block and so cancels with even finer refinements or has a\ and a^ separated
and so cancels as part of some coarser refinement. Hence we have
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as desired so n(x) = (-1)n-k o(^).

We end this section with a g-analog of Theorem 1.3.

Theorem 5.3 The Whitney numbers for any P €. Pn(q) are

a

Proof: We will first prove the statement about the Whitney numbers of the second kind.
Because the type map is order-preserving, the elements at rank n — k in P € Pn(o) are
exactly those which map to partitions TT of rank n — k in IIn. Each such TT has k blocks and
gnin ff elements in its preimage. Thus

by Theorem 1.1.
Now we will verify the values of the Whitney numbers of the first kind.

where TT' is TT with n deleted and

Suppose the block containing n in TT is B = {ai < 02 < • • • < am < n}. Then

Holding TT' fixed and summing over all TT obtained by adding n to a block of TT' yields

Note that this sum does not depend on TT'. So, by induction and the definition of s[n, k},
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6. Comments and open questions

Here are some remarks about the foregoing material. It will be convenient to use the notation
TT = /BI/BI/ • • • /Bk/ for the partition of n D HJjBj such that all elements of n \ Wj-Bj
are in singleton blocks.

(1) Even though Un(q] and Pn(q) were constructed differently, they might still be iso-
morphic as posets. The next result rules out this possibility.

Proposition 6.1 Forn > 4 and q > 2 we have Un(q) ¥ Pn(q)-

Proof: Suppose, to the contrary that there is an isomorphism /: lin(q) —> Pn(q)- Then /
is also a graph-theoretic isomorphism of the Hasse diagrams of these posets. In particular,
the bipartite graphs induced by the elements at ranks 1 and 2 in these Hasse diagrams are
also isomorphic. Furthermore, / must also preserve the MSbius function values of these
elements.

We claim that / carries the elements of type /n — ln/ in IIn (q) to those of the same type
inPn(q). An^ £ IIn(g)oftype/n-l n/ is adjacent to an element of type TT = /I n-1 n/.
But TT is the unique type at rank 2 having Mobius value 1 + gn~2. So f(£) must be an
element of rank 1 of type a where a < ir. Thus the possible choices for a are /I n — I/ or
/I n/ or /n - 1 n/. Now, for n > 4, elements of type /n-ln/ are also adjacent to those
of type /I 2/n — 1 n/, which have /i-function q. However, elements of type /In-I/ or
/I n/ have no neighbors with /^-function q. Hence, / preserves the type of the /n — 1 n/
elements.

Now consider the elements of type /n — 2 n - 1 n/. These are adjacent to those of type
/n — 1 n/. Furthermore, they are the only neighbors of the / n - l n / elements having
Mobius value 1 + q. This fact, together with what we proved in the previous paragraph,
shows that / must restrict to an isomorphism of the bipartite subgraphs induced by the
elements of types /n-ln/ and /n - 2 n - 1 n/ in Un(q} and Pn(q).

We will now show that this is an impossible situation. In Un(q) this subgraph consists of
qn~3 copies of the complete bipartite graph Kqiqn-3. To see this, note that the vertices of
type /n - 1 n/ in a given component consist of all t with last line (01,..., an_2, 1, 0),
where 02, . . . , an_a are fixed and 01 varies over Fq. The corresponding vertices of type
/n — 2 n - 1 n/ have last two lines
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we have
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where b 1 , . . . , bn-3 vary over Fq. This means that, in the subgraph of II n (q) , the neigh-
borhoods of any two vertices of type /n -1 n/ are either equal or disjoint.

However, we can construct two vertices of type /n-1n/ in Pn(q) whose neighborhoods
are neither equal nor disjoint. Let

where the pivot 1 is in the ith position. (Remember that the positions are numbered
2 , . . . , n.) Also let

and consider the matrices

Then both M and N are adjacent to

But M is adjacent to

while N is not. This contradiction ends the proof of the proposition. D

(2) Although IIn is a lattice, the elements oiPn(q) are not as the following result shows.

Proposition 6.2 IfP e Pn(q)for n > 4 and q>"2 then P is not a lattice.

Proof: Since n > 4, we can consider the partitions

D

By condition 1 in the definition of Pn(q),
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Also, nin TT \ CT = 2. So, by condition 2, every element of type TT lies below the unique
element of type a. Finally, nin TT \ r = I, so q1 elements of type IT lie below each element
of type r. Since q > 2, we can choose x, y € T~l(n) both of which are covered by
the element of type a and one element of type r. Hence x and y cannot have a join.

D

(3) Recently Simion [10] has developed a general theory of q-analogs of posets that
includes our constructions as a special case. Using her machinery, one can show our posets
are EL-shellable [1]. Thus one can get a combinatorial explanation for the factors in (18)
by counting decreasingly labeled chains.
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