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Abstract. A graph is said to be graded if its vertices are divided into levels numbered by integers, so that the
endpoints of any edge lie on consecutive levels. Discrete modular lattices and rooted trees are among the typical
examples. The following three types of problems are of interest to us:
(1) path counting in graded graphs, and related combinatorial identities;
(2) bijective proofs of these identities;
(3) design and analysis of algorithms establishing corresponding bijections.
This article is devoted to (1); its sequel [7] is concerned with the problems (2)-(3). A simplified treatment of some
of these results can be found in [8].

In this article, R.P. Stanley's [26, 27] linear-algebraic approach to (1) is extended to cover a wide range of graded
graphs. The main idea is to consider pairs of graded graphs with a common set of vertices and common rank
function. Such graphs are said to be dual if the associated linear operators satisfy a certain commutation relation
(e.g., the "Heisenberg" one). The algebraic consequences of these relations are then interpreted as combinatorial
identities. (This idea is also implicit in [27].)

[7] contains applications to various examples of graded graphs, including the Young, Fibonacci, Young-
Fibonacci and Pascal lattices, the graph of shifted shapes, the r-nary trees, the Schensted graph, the lattice
of finite binary trees, etc. Many enumerative identities (both known and unknown) are obtained.

Abstract of [7]. These identities can also be derived in a purely combinatorial way by generalizing the
Robinson-Schensted correspondence to the class of graphs under consideration (cf. [5]). The same tools can be
applied to permutation enumeration, including involution counting and rook polynomials for Ferrers boards. The
bijective correspondences mentioned above are naturally constructed by Schensted-type algorithms. A general
approach to these constructions is given. As particular cases we rederive the classical algorithm of Robinson,
Schensted, and Knuth [20, 12, 21], the Sagan-Worley [17, 32] and Haiman [11] algorithms, the algorithm for the
Young-Fibonacci graph [5, 15], and others. Several new applications are given.
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1. Linear theory

/./. Graded graphs

The terminology and notation used follows [25,26,18].
A graded graph is a triple G = (P, p, E) where

(1) P is a discrete set of vertices,

(2) p: P —> Z is a rank function,

, A sequel [7] to this article will appear in Journal of Algebraic Combinatorics, Vol. 4, No. 1.
*Partially supported by the Mittag-Leffler Institute.
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(see [24]). Each of these facts is known to have both computational and bijective proofs;
however, these proofs use individual properties of the graphs (except for the proof of (1.1.3)
in [26, 5]).
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(3) E is a multiset of arcs/edges (x, y) where p(y) = p(x) + 1.

Sometimes \x\ is written instead of p(x). The set Pn = {x: p(x) = n} is called a level
of G. Finiteness of the levels is always assumed and some of them may be empty. The
situation when

is typical (a graph with a zero 0 ).
Examples of graded graphs can be found in [25, 2,14, etc.].
G can be regarded either as an oriented or as an unoriented graph. The edges of an

oriented graph define a partial order on P. If there are no multiple edges, G is the Hasse
diagram of this poset. Therefore non-oriented paths (i.e., paths in the non-oriented graph)
are often called Hasse walks.

Let e(x —» y) denote the number of shortest non-oriented paths between x and y. In a
graph with zero let«(y) = e(0 —> y). So e(y) is the number of paths going from 0 to y. Let

In other words, a(n —> m) is the number of paths connecting the nth and mth levels. One
can similarly define a(n — m — p), e(x —> y —> z), etc. For instance, in a graph with zero

is the number of loops of length 2n, i.e., pairs of oriented paths of length n starting at 0 and
having common endpoint).

The main results we are going to obtain in this article are combinatorial identities involving
e(x) and similar enumerative functions. A typical example is the Young-Frobenius identity

or, equivalently,

for Young's lattice. This is not an isolated result. Surprisingly, the same formula proves to
be valid for the so-called Fibonacci lattices [24, 5, 26], A similar identity (with additional
coefficients) is known for the graph of shifted shapes (see, e.g., [18] or (2.2.7)). Another
example is the lattice of binary trees where
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We develop combinatorial techniques for proving general results of this type for a wide
class of graded graphs. Unified proofs of (1.1.4), (1.1.5), and many other enumerative
identities, both known (see, e.g., [26, 18]) and unknown, are given. Then we develop, in
[7], a general approach to Robinson-Schensted-type algorithms for the same class of graphs.
This allows us to provide bijective proofs for all the enumerative results of this paper.

A few words about terminology and useful associations. The subject under consideration
is related to the so-called animal growth, i.e., mathematical models of a growth of multi-cell
patterns. From this point of view, vertices of G are "animals", and oriented paths are virtual
scenarios of their growth.

Another convenient language is that of diagrams and tableaux. Vertices are referred to as
diagrams or shapes. Monotone mappings of the form

1.2. The linear algebraic approach

We start with some basic concepts introduced by R.P. Stanley [26].
A graded graph is completely determined by the adjacency matrices of the bipartite

graphs formed by its consecutive levels. Thus graded graphs can be studied as linear-
algebraic objects.

Let G = (P, p, E) be a graded graph, and K a field of characteristic zero. The finitary
K-valued functions on P (or, equivalently, the formal linear combinations of vertices) form
the vector space KP. For any x, y 6 P let a(x, y) denote the multiplicity of (x, y), i.e.,
the number of edges joining x and y. The formulae
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are called tableaux. This terminology is especially natural when P is a distributive lattice of
finite order ideals of a poset Q: then the elements of Q are drawn as boxes/cells forming the
diagrams/shapes being the elements of P. A growth (1.1.6) of such a shape can be described
by a tableau whose entries indicate the moments of discrete time when corresponding boxes
get added to the shape. Formally, a number t is put into a box c if g(t) = g(t - 1) U {c}.
A tableau containing n boxes is said to be standard if the growth g is strictly monotone
(bijective), i.e., a new box springs up at every moment till n. In other words, a tableau
is standard if and only if it is filled with consecutive integers 1 ,2 , . . . , n. In the case of
the Young graph this terminology coincides with the usual concepts of Young tableau and
standard Young tableau (SYT).

and

define linear transformations U and U* acting on KP.



Hasse walks having arbitrary (but fixed) structure can be dealt with in the same manner.
For example, the number of loops of length 2n starting at zero (cf. (1.1.2)) is the coefficient
of 0 in(U*)nU/n0 .

The linear algebraic approach allows us to study not only ordinary graphs but also graded
networks, i.e., graphs with arbitrary—say, rational, negative, complex, etc.—edge mul-
tiplicities or weights. The interpretation of e(x) and similar quantities depends on the
particular situation. For example, the weights can be defined as the transition probabilities
of a certain Markov process. In this case the value of e(x —> y) is the probability of going
through y provided the process starts in x.

In what follows combinatorial terminology is used. However, most of the results remain
valid for networks, and examples of the latter type will also be given.

The space KP can also be equipped with a Euclidean structure by declaring the vertices
to form an orthonormal system. This structure makes the transforms U and U* conjugate.
However, we intentionally avoid exploiting this Euclidean structure; only purely linear
techniques are used. So the asterisk in U* is to be regarded as just a symbol.

Now we extend the linear algebraic approach to pairs of graphs.

Definition 1.2.1 Let G1 = (P, p, E1) and G2 = (P, p, E2 be a pair of graded graphs
with a common set of vertices and common rank function. Define an oriented graded graph
G = (P, p, E1 ,E2) by directing the Gi-edges up (in the direction of increasing rank) and
the G2-edges down (in the direction of decreasing rank). Now it is natural to introduce the
up and down operators U,D e End(KP) associated with the graph G (or with the pair
(G1, G2))by
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It is well known that many path counting characteristics can be expressed in terms of
operators U and U*. For example, let x e Pn. Then

and

and

where ai(x, y) is the multiplicity (weight) of the edge (x, y) in Gi.
In the case G1 = G2 this definition coincides with (1.2.1)-(1.2.2); in other words, in

this case U* = D, an equation that may not hold in general. Also, note that an alternative
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construction G* = (P,p,E-},E\) leads to operators U* and D*, but we do not need to
bring these operators into the picture.
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Definition 1.2.2 Let G be as in Definition 1.2.1. Assume w is a word in the alphabet
{U, D} (or briefly a {U, D}-word). A path p in G is said to have structure w, or to be a
w-path, if its consecutive arcs are directed up or down in accordance with the word w. So
the U correspond to up-directed arcs of GI and the D to the down-directed arcs of G^. We
emphasize that in this definition a word w is to be read/rom right to left since it will be
later interpreted as an operator.

For example, a C/2£>-path is a path formed by three arcs

where

Thus the number of tu-paths in G from x to y is the coefficient of y in the expansion of wx
where w is interpreted as an operator in KP.

1.3. Recurrent commutation relations

Throughout this section a graph G, the operators U and D, etc., are as in Definition 1.2.1.
The restrictions of U and D onto "homogeneous" subspaces KPn are denoted Un and Dn,
respectively. So two series of inversely directed linear homomorphisms arise:

We will study situations where the maps U and D (or the Un and the Dn) satisfy some
algebraic conditions. Formal algebraic consequences of those conditions (see Section 1.4)
will then lead to enumerative combinatorial identities (Section 1.5).

Definition 1.3.1 Assume that, for any n,

or, equivalently,

where the fn are certain polynomials in one variable with coefficients in K. The equalities
(1.3.1) or (1.3.2) are called recurrent commutation relations.

From a combinatorial point of view, (1.3.1) means that for any pair of vertices x, y G Pn

the number of two-edged Df/-paths from xtoy (cf. Definition 1.2.2) can be expressed as a
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linear combination of the cardinalities of the /-paths, UD-paths, UEUD-paths, etc., joining
x and y. (The /-path is a degenerate path in the case x = y.)
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Remark 1.3.2 The relations (1.3.2) are symmetric (invariant) with respect to the inter-
change of the initial graphs GI and GI. Indeed, replacing D and U by U* and D*,
respectively, transforms (1.3.2) into an equivalent relation

This property allows us to regard the situation under consideration as, in a sense, a duality
of the graphs GI and GI with respect to relations (1.3.2).

The relations (1.3.2) do not of course exhaust the whole class of symmetric in the above
sense relations. We have chosen (1.3.2) because of the many interesting examples satisfying
these relations and because in this case the relevant calculations can be done explicitly.

Definition 1.3.3 The main special case of (1.3.1) is the linear commutation relations

These relations mean combinatorially that

(1) if x and y are different vertices of rank n then the number of D [/-paths from x to y is
qn times the number of f//?-paths joining x and y;

(2) if a; is a vertex of rank n then the number of DU-\oops (paths) from xtox equals the
number of UD-\oops times qn plus rn.

The most important special case of (1.3.3) is qn = 1 (see Definition 1.3.4 below). How-
ever, there are various examples with qn ^ 1, including infinite rooted t-nary trees, com-
plete graded graphs, many combinatorial designs, etc. Note that in all mentioned examples
U* = D, which may be false in general.

There are several ways of constructing new graphs satisfying (1.3.3) from existing ones
(cf. [27]). Some of these constructions will be described later on.

Definition 1.3.4 Graded graphs GI and GI with a common set of vertices and common
rank function (see Definition 1.2.1) are said to be r-dual if the following relations hold:

where r = {rn} is a sequence of constants, i.e., rn e K. In the case where all the rn

coincide, say, rn = r, the graphs are called r-dual:

Finally, they are called simply dual when r = 1:



Definition 1.4.2 Let 2lo denote the subalgebra of 21 formed by the elements of zero rank.
This subalgebra is freely AT°°-spanned by the balanced {[/, D}-words, i.e., those with an
equal number of C/'s and D's. Since every balanced word commutes with any element of
K°°, we can regard as an algebra over K°°.

Since 2lo is a /£r°°-algebra, we can operate in the usual way with expressions like g(iu)
where w € 2lo (e.g., w is a balanced {U, £>}-word) and g is a polynomial with coefficients
in AT00.
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Similarly, the conditions (1.3.3) may be referred to as a (q, r)-duality.

These definitions are summarized and restated below in (1.4.9)-(1.4.13).
In the sequel we shall prove enumerative formulae for the general case (1.3.1) and then

obtain their versions for the particular cases (1.3.3)-(1.3.6).

1.4. Graded algebras

Definition 1.4.1 Let K°° denote the commutative ring of infinite sequences of elements
of our field K, with coordinatewise operations. Regarding K°° as an algebra over K,
extend it by adding non-commuting generators U and D satisfying

and

for any a = {aj} 6 K°° where a* = {ai+i} is a "shifted down". Alternatively,

and

where aT = {aj_i} is a "shifted up". The resulting non-commutative associative algebra
21 can be graded:

the rank function extends to "homogeneous" elements by setting p (AB) = p (A) p (B).
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Lemma 1.4.3 Let g be a polynomial with coefficients in K°°. Then

Proof: This follows from (1.4.1)-(1.4.4).

Each oriented graded graph (pair of graphs) G provides a representation of the graded
algebra 21 by operators in KP = @KPn. Namely, U and D are represented by the up and
down operators. A sequence a = {an} e K°° is interpreted as a "block-scalar" operator
defined by ax = anx, x & KPn .

If the operators representing U and D satisfy some of the conditions (1.3.1)-(1.3.6), a
representation of a quotient algebra of 21 arises. To facilitate further references, let us restate
(1.3.1) and (1.3.3)-(1.3.6) in terms which are natural for 21:

Here f = {/„} is a polynomial with coefficients in K°°; q = {qn} and r = {rn} are
elements of K°°; / = { . . . , l , l , l , . . . } i san identity element of K°° (so r/ = r). Note
that f is well-defined provided the degrees of the /„ are bounded.

Theorem 1.4.4 The quotient algebra of 2lo under commutation relation (1.4.9) is
commutative,

Proof: A balanced {U, £>}-word w = wi • • • wn is called a below-word if for any m e
{l,...,n} '

and therefore

This means that any w-path lies entirely below its starting point.
Multiple use of (1.4.9) allows us to express any balanced {U, £>}-word as a linear combi-

nation of below-words with coefficients in K°°. Thus it suffices to prove that below-words

D

recurrent commutation relations:

linear commutation relations:

r-duality:

r-duality:

[standard] duality:
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Definition 1.4.7 Inductively define
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commute pairwise. This will be done by double induction on the lengths of the words
being multiplied. The base (one of the words is empty or both are UD) is trivial. Every
nonempty below-word either is a concatenation of two nonempty below-words or has the
form UwD where w is a below-word also. If at least one of the words under multiplication
is really a concatenation of two below-words then the claimed commutation follows from
the induction hypothesis. Otherwise the words are Uw\D and Uw^D where w\ and w%
are also below-words. Hence

as desired.

Theorem 1.4.4 generalizes R.P. Stanley's result [26, Corollary 4.11 (a)] for the case
(1.4.12).

In the case of the linear commutation relations (1.4.10) the statement of Theorem 1.4.5
can be strengthened.

Theorem 1.4.5 Assume the relation (1.4.10) is invertible, i.e., all the coefficients qi are
nonzero. Then any element of the quotient algebra o/2to under (1.4.10) can be expressed
as a polynomial in UD with coefficients in K°°.

Proof: Any element of the quotient algebra can now be transformed, by multiple appli-
cation of (1.4.10), into a combination of the £/"£>". Hence it remains to prove that UnDn

can be expressed as g(UD). By induction on n and (1.4.6),

where D

D

DProof: This follows from (1.4.5), (1.4.8), and (1.4.9).

Note that, generally (i.e., for an arbitrary commutation relation (1.4.9)), a balanced word
does not have to have a representation in terms of the UnDn. For example, if (1.4.9) is
DU = UDUD then DU = UDUD = UUDUDD = UUUDUDDD = . . . –and that
is all one can do.

Theorem 1.4.5 extends [26, Lemma 4.10] that treats the case (1.4.12).
Now we proceed to derive explicit algebraic identities from (1.4.9)-(1.4.13).

Lemma 1.4.6 Assume (1.4.9) holds. Then, for any polynomial g over K°°,
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where o stands for composition. In other words, the nth components of, e.g., fik and f *fe are

Lemma 1.4.8 Assume (1.4.9) holds. Then, for k = 1 ,2,3, . . . ,

This last equation is well-defined since all the factors commute.

Proof: All these identities can be proved by induction on k using Lemma 1.4.6 and (1.4.6).
For example, (1.4.17) is obtained as follows:

a

The equalities (1.4.17) - (1.4.19) are particular cases of the following general formula for
DnUm.

Theorem 1.4.9 Assume (1.4.9) ho Ids. Then

and

where

for k and I nonnegative integers.

Proof: Induct on k. The base is (1.4.19). The induction step follows by Lemma 1.4.6 and
(1.4.15).

In cases (1.4.10)-(1.4.13) the vector functions f** and fk>l can be computed explicitly:

D
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Formula (1.4.22) can be rewritten as

where

Thus we can use (1.4.26) and (1.4.23)-(1.4.25) in (1.4.21) to obtain respective versions
of Theorem 1.4.9 for the cases (1.4.10)-(1.4.13). To save space we only state the versions
of (1.4.20).

Theorem 1.4.10 Let k and I be nonnegative integers. If (I A. 10) holds then

where a^ and b(s> are given by (1.4.27)-(1.4.28).

In particular, for the special cases (1.4.11) - (1.4.13) one has, respectively:

Some special cases of (1.4.29)-(1.4.31) were given in [27, 26].
Similarly, one can derive formulae expressing UnDm in terms of UD. However, there

exists another approach. Note that (1.4.!)-(!.4.4) remain valid when interchanging U and
D, T and *. The relation (1.4.11) is invariant with respect to replacement ofU,D, and r by
D, U and -r, respectively. Therefore we can make corresponding substitutions in (1.4.29),
thus obtaining, under the condition (1.4.11), the identity

n
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where rTj is defined as in (1.4.14). In particular, (1.4.12) implies

that reduces to [26, (47)-(48)] when k = 0.
Now we state some useful particular cases of Lemma 1.4.8.

Corollary 1.4.11 [26] Assume (1.4.12) holds. Then, for any nonnegative integer k,

(i) DUk = UkD + krUk~l,

(ii) DkUk = (UD + r) • • • (UD + fcr).

Proof: See (1.4.30). D

Corollary 1.4.12 [27] Assume (1.4.11) holds. Then, for any nonnegative integer k,

Proof: See (1.4.29). D

/.5. Path enumeration

Each of the results of Section 1.4 can be regarded as an enumerative formula concerning
path counting, keeping in mind the natural representation of the algebra 21 in the space
K P. Recall that, given a {U, £>}-word w and vertices x and y, the coefficient of y in the
expansion of wx is the number of w-paths from x to y (see Definition 1.2.2).

Consider the identity (1.4.32) as a typical example. Let x be a vertex of rank n, and y a
vertex of rank n + k — 1. Applying both sides of (1.4.32) to x and equating the coefficients
of y gives

since x e Pn and

So the following enumerative theorem is obtained.
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Theorem 1.5.1 Assume the up and down operators in oriented graded graph G satisfy
the relation (1.4.11). Thenforanyx e Pnandy € Pn+k-i the identity (1.5.1) holds.

Most combinatorial reformulations of the identities of Section 1.4 are cumbersome. For-
tunately, they get much simpler in case of graphs with zero. The reason is that £)0 = 0
and so

for any polynomial g over K°°. Thus, e.g., (1.4.20) implies

The zero-rank component of the sequence f fc> '(0) e K°° is only relevant in (1.5.3) since
we apply it to 0. So let us write the expression for /o''(0) more explicitly. From (1.4.21)
and (1.4.16) one has

and then

Combining together (1.5.3)-(1.5.4) results in the following theorem.

Theorem 1.5.2 Assume the up and down operators in an oriented graded graph G with
zero satisfy (1.4.9). Then, for any x € Pk,

In particular, the conditions (1.4.10)-(1.4.12) imply, respectively:

Note that, in the above formulas, the notation e(x) refers to paths in GI — (P,p,E\)
(see Definition 1.2.1) since one is only allowed to move up along the Ej-arcs. Similarly,



FOMIN370

e(0 —> y —> x) denotes the number of paths going in GI from 0 to y and then in G2 from
y tox.

In the special case / = 1 and GI — Ga the formulae (1.5.7)-(1.5.8) were given in
[26,27]. Let us also state the case / = 1 separately, as it is the most important case for the
applications.

Corollary 1.5.3 Assume G has a zero, (1.4.9) holds, and G% has no multiple edges. Then,
for any x € Pk,

In particular, (1.4.11) and (1.4.12) imply, respectively,

Another interesting special case of Theorem 1.5.2 is x = 0. It corresponds to counting
loops of length 21.

Corollary 1.5.4 Assume the condition (1.4.9) holds. Then, for any nonnegative I,

The last two identities were proved by R.P. Stanley [27, 26] in the case G! = G2. For the
Young lattice, (1.5.9) becomes the classical identity (1.1.4). Note that the left-hand side in
(1.5.9) can be rewritten as

where ei (y) and 62(2;) denote the numbers of paths (saturated chains) connecting 0 and y
in GI and G^, respectively.

Formulae similar to Theorems 1.4.9-1.4.10 and hence to Theorem 1.5.2 (though perhaps
much more complicated) can be obtained for any {U, Z)}-word (cf. [26]). The essence of
results of this type can be stated as follows.

In particular, (1.4.11) and (1.4.12) imply, respectively,
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Proposition 1.5.5 Every element of the quotient algebra o/2l by (\ .4.9) can be expressedas
a linear combination of terms of the form Ung(UD) org(UD)Dn where g is a polynomial
over K°°. Explicit formulae can be written in terms off.

Proposition 1.5.6 Let w be a {U, D}-word. Assume G is a graph with zero satisfying
(1.4.9). Then the number of w-paths joining 0 with an arbitrary vertex x of corresponding
rank is proportional to e(x). The coefficient depends only on w but not on x. It can be
effectively computed from f.

Level sums. Certain enumerative formulae can be derived from the fact that, in addition
to (1.4.9)-(1.4.13), some graphs satisfy linear-algebraic conditions involving the vectors
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or

(cf. [26]). In particular, it is easy to verify that in the self-dual case one has, under (1.4.10),

Summing this equation over n we obtain, by virtue of (1.4.1),

Multiply by Dn and use (1.4.2) and (1.4.18) to get

Now suppose G has a zero and observe that the coefficient of 0 in DnP is just an = a(Q —>
n). Extract the coefficients of 0 from (1.5.10) to obtain

Recall that in the case under consideration f*n is given by (1.4.26)-(1.4.28) to get to the
following result.

Corollary 1.5.7 Assume G is a non-oriented graded graph (i.e., GI = G2) with zero, and
(1.4.10) holds. Then the values an = a(0 —» n) satisfy the following recurrence relation:

In case of r-differential posets, i.e., when qj = l,n = r, (1.5.11) reduces to the well
known formula (cf. [26, (12)])
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/. 6. Characteristic polynomials

The results of Section 1.4 show that the structure of representations of the graded algebras
under consideration (namely, the quotients of 2lo and 21 by (1.4.9)) is strongly dependent
on the structure of an operator representing the word UD. This operator is a direct sum of
operators Un- 1Dn acting on invariant spaces KPn. So our next step will be the computation
of the characteristic polynomial of Un-iDn (cf. [26, Section 4]).

Lemma 1.6.1 Assume the up and down operators U and D in an oriented graded graph
G satisfy the relation (1.4.9). If DnUn-ix = \x then

Following [26], let Ch(M, A) denote the characteristic polynomial of an operator or matrix
M, normalized to be monic.

Lemma 1.6.3 [31, Ch. 1, Sec. 51] Let A : V -> W and B : W -> V be linear homo-
morphisms, with dim V = m, dim W = n. Then Ch(AB, A) = X n - m Ch(BA, A).

Let
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Proof: The first implication is obvious; the second follows from (1.4.9). D

We see that applying U to the eigenvectors of DnUn-1 results in eigenvectors of Dn+1 Un,
though not all of them, in general.

Comments 1.6.2

1. It follows immediately from Lemma 1.6.1 that in a graph with zero, Un0 is an eigen-
vector of Dn+1Un. This can also be seen as a special case / = 1 of Theorem 1.5.2.

2. When the conditions (1.4.9) are invertible (e.g., one has (1.4.10) with nonzero qn), a
corresponding version of Lemma 1.6.1 is valid:

i.e., applying D to the eigenvectors of Dn+iUn gives eigenvectors of £>nJ7n_ i—though
maybe including zero ones.

3. Similar results hold for the operators Un-\Dn.

Corollary 1.6.4 Ch(Un-!Dn, A) = AA" Ch(DnUn-i, A).



A calculation of characteristic polynomials of operators Dn+\Un and Un-\Dn can be
carried out even in the absence of the restriction A* > 0 — though the latter usually holds
in well known examples. Corresponding formulations are omitted.

The structure of up and down operators becomes perfectly clear in the diagonalizable
case, e.g., when U* = D (equivalently, GI = G^) and so Un-iDn and Dn+iUn are
self-adjoint. The condition 17* = D is not essential. Some simple assumptions on the
functions {/„} allow us to diagonalize the operators Un-iDn and Dn+iUn. Then we are
able to describe the structure of U and D.

Theorem 1.6.6 Assume the up and down operators in an oriented graded graph G with
zero satisfy the relations (1.4.9). Suppose all the values Ank given by (1.6.2) are nonzero.
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Note that (1.4.9) implies that the roots of Ch(Dn+1 Un, A) are the fn-images of the roots
of Ch(Un-1Dn, A), with the same multiplicities.

The following theorem generalizes [26, Theorem 4.1].

Theorem 1.6.5 Assume the up and down operators in an oriented graded graph G with
zero satisfy (1.4.9). Suppose all the An are nonnegative. Then the characteristic polynomial
Ch(Dn+1Un, A) has the roots

where k = 0,1, . . . , n. The multiplicity of Ank is Ak.
The polynomial C h ( U n - 1 D n , X ) has the roots A n - 1 , k with the same multiplicities

(including, by definition, An-1,n = 0, with multiplicity An).

Note that, in terms of (1.4.16), Ank = f1(n-k+1)(0).

Proof: Induct on n. The base is trivial. If

then, by Corollary 1.6.4,

and therefore
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Comments 1.6.7

1. The vectors vnj are the eigenvectors of UD and DU.

2. The condition Xnk = 0 is satisfied, e.g., if every fn is positive on [0,+00). For
example, it is the case when fn(t) = qnt + rn (see (1.4.10)) with qn > 0, rn > 0.
Stanley considers the special case<j>n = 1, rn = r, U* = D in [26, Section 4].

3. Regard G as a representation of the quotient algebra 217(1.4.9). Then Theorem 1.6.6
claims that such a representation is, in a sense, a direct sum of one-dimensional repre-
sentations in spaces isomorphic to K°° (with a shifted grading).

Proof of Theorem 1.6.6: Bases {vn:i} are constructed recursively, starting from n = 0.
Set v0i = 0 to form a basis for KP0.

Assume {vmj} are defined for all m < n, and corresponding conditions (1.6.3)-(1.6.5)
are satisfied. Then the operator Un-\Dn has eigenvectors vnj and eigenvalues An_i,fc
including An_i,n = 0 for j = pn_j + 1,... ,pn. By (1.4.9) and (1.6.2), Dn+iUn has
the same eigenvectors and nonzero eigenvalues Xnk. The vectors Unvnj are linearly inde-
pendent since the homomorphism Dn+\ sends them to linear-independent vectors \nkVnj.
Set vn+ij = Unvnj for j = 1,... ,pn. Then (1.6.3) and (1.6.4) are guaranteed. Besides
we have proved pn+\ > pn, extending [26, Corollary 4.3], Hence, by Corollary 1.6.4, the
space KPn+i falls into a direct sum of the image U(KPn) and an invariant space L of a
dimension An+i = pn+i - pn that belongs to the zero eigenvalue of UnDn+i. Suppose
Ai+iy T^ 0 f°r some y € L. Then UnDn+\y ^ 0 since all \nk are nonzero. On the
other hand, UnDn+iy € U(KPn) and UnDn+iy e UD(L) = L (contradiction). Hence
L C KerDn+i (in fact, L — KerDn+i) and the system {un+i,j}j=i can be extended to
a basis of KPn+\ by adding vectors satisfying (1.6.5). D

Theorem 1.6.6 provides effective techniques for computing vectors wx where w is a
{U, £>}-word and x e Pn. (Recall that the ^/-component of wx is the number of tu-paths
from x to y). Calculations can be carried out as follows. Convert w into a standard form in
the spirit of Theorem 1.4.9 (cf. Proposition 1.5.11). Expand x in the basis vnj, i.e., in the
UD eigenvectors, and perform the computation.

Example 1.6.8 The Young graph. In the Young graph (see, e.g., [25]) fn(t) = t + 1, and
the conditions of Theorem 1.6.6 hold. From (1.6.2) one has Anfc — n - k + 1. Simple
calculations give
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Then there exist bases {vnj} of the spaces KPn such that
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where (1), (2), and (12) are the Young diagrams corresponding to the respective partitions.
Then, for example,

Theorem 1.6.9 Let x and y be two Young diagrams each containing s boxes. Then for
n = 0, 1, 2, . . .

where Rxy is a polynomial (in n) of degree s with rational coefficients depending on x and
y only. There exists an effective algorithm computing a polynomial Rxy from diagrams x
andy. D

Results of this type can also be obtained for other graded graphs (pairs of graphs) satisfying
the conditions of Theorem 1.6.6.
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In other words,

(Combining (1.6.6) and (1.6.7) results, of course, in 1(n + 2)! ; cf. (1.1.4).) Now restate,
e.g., (1.6.6) in terms of tableaux. Let e(2) (x) denote the number of standard Young tableaux
of shape x and with the "2" placed in the first row. Then

A formula similar to (1.6.8) can be obtained for the number of paths in the Young graph
which have any fixed structure and join any two fixed vertices. The simplest result is the
following analogue of (1.6.6) - (1.6.7).
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Figure 1, The Young graph.

2. Dual graphs: examples

In this chapter various examples of dual (r-dual, etc.) graded graphs are given. Section 2.8
contains an index of these examples. Enumerative applications of the results of Chapter 1
are given in Section 2.9.

2.1. Self-dual graphs

Definition 2.1.1 Let Q be a countable poset. J(Q) will denote the set (the distributive
lattice) of finite order ideals of Q (cf. [25, Section 3.1]). The lattice J(Q) is a graded graph
with zero; the rank of an ideal is its cardinality.

be the two-dimensional integral quadrant with the usual (i.e., coordinatewise) partial order.
The graph Y = J(P2) is called the Young graph/lattice. Its vertices are the Young diagrams,
or Ferrers shapes; see Figure 1 where each Ferrers shape is represented by the sequence

Example 2.1.2 The Young graph [1,25, etc.]. Let
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of its row lengths. The numbers e(x) are the dimensions of irreducible representations of
symmetric groups Sn (see, e.g., [22, Section 17]). The most well known identities involving
e(x) are (1.1.3) and

The Young graph is a self-dual graph or differential poset [26]. This means that its up
and down operators U and D = U* satisfy (1.4.13); combinatorially,

(1) for any two shapes x and y = x the number of shapes covered in the Young lattice by
both x and y equals the number of shapes covering both x and y;

(2) for any shape x the number of shapes covered by x is exactly one less than the number
of shapes covering x.

The first property is, of course, valid for every modular lattice.

Theorem 2.1.3 [26, Prop. 5.5] The Young graph is the only distributive lattice among
self-dual graded graphs with zero.

Example 2.1.4 The Young-Fibonacci graph [5, 26]. Let {1,2}* denote the set of all the
words in the alphabet {1,2}; we shall call such words snakes. A snake can be pictured as
a shape; for example, 121221 becomes

A rank of a snake is the number of boxes in its shape; equivalently, rank is the sum of the
entries of the corresponding {1,2}-word.

The Young-Fibonacci graph YF (see Figure 2) is denned as follows:

(1) the set of vertices is {1,2}*;
(2) w' covers w if and only if w' = Iw (concatenation) or w' = 2v where w covers v.

We have already mentioned that (1.1.4) is known to hold for the Young-Fibonacci graph.
This graph is self-dual since

(1) YF is a modular lattice [5,26];
(2) every vertex of YF has one more successor than predecessor.

The relation (1.4.13) can also be derived directly from the following alternative definition
of this graph. Define the adjacency matrices between successive ranks, Un, recursively by

377
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Figure 2. The Young-Fibonacci graph.

where T stands for transposition, and /„ is an identity matrix of appropriate size. Thus

which coincides with (1.4.13).
One can also construct other examples of self-dual graphs. However, they seem to be

somewhat artificial. At the same time, there are a number of interesting examples of dual
graphs with G2 ^ G\ as we will see.

2.2. Weighted distributive lattices

Assume G\ = (P, p, EI) is a distributive lattice: P = J(Q). Let us try to construct an
r-dual graph G% as follows. Let w: Q —> K be a weight function where K is our field. For

and so on. It is easy to see that this definition is equivalent to the original one. On the other
hand, (2.1.2) immediately implies
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any edge (x,y) €. E\ take the element q € y such that q & x and define w(q) to be the
multiplicity of the edge (x, y) in G^. Thus G^ is a weighted distributive lattice. (Strictly
speaking, G^ is not a graph but a graded network.)

We want G\ and G2 to satisfy (1.4.12) or, equivalently,

Note that whichever weight function w you choose the left-hand matrix in (2.2.1) is di-
agonal. Thus we only need the equality of diagonal elements on both sides of (2.2.1).
Combinatorially, this means the following (cf. [27, Proposition 3.1]): for any finite order
ideal x in Q, the total weight of the elements q € Q which can be added to x (i.e., such that
x U {q} is also an ideal) is r more than the total weight of the elements q € Q able to be
deleted from x.

Thus a weight function w: Q —» K defines a weighted distributive lattice G^ which is
dual to G\ = J(Q) if and only if the condition

holds for any vertex x of G\ and G^.
The condition (2.2.2) is very restrictive. However, we can give a number of examples

where it is satisfied. The Young graph is the first one, with r = 1 and w = 1 on Q = P2.

Example 2.2.1 The chain N = {0,1,2,...}. This graph can be treated as the lattice
of ideals of P = {1,2,3,...} with the usual ordering. The only weight function w on P
satisfying (2.2.2) with r = 1 is w(q) = q. Thus the graph dual to N is the same chain
having its nth edge of multiplicity n; see Figure 3.

Another interpretation of this example is the following. Consider the vector space of
polynomials in one variable t. Define U to be the multiplication by t and D to be the
derivation ^. This approach can be applied to any algebra with derivation; see Section 2.3.

Example 2.2.2 Pascal graphs. Let Q = rP, i.e., Q is a disjoint union of r copies of P.
Then Nr = J(Q) is an r-dimensional Pascal graph. Properly speaking, Nr is the lattice
of r-dimensional vectors with nonnegative integer coordinates; see Figure 4. The numbers
e(x) are the ordinary r-nomial coefficients.

To construct an r-dual graph for Nr (the coincidence of these two r's is not accidental) let
us make the following general observation. Assume Q = Q1 U Q2 U . . . is a finite disjoint
union of posets. Let Wi be a weight function on Qi satisfying (2.2.2) with r = 1. Then the
function w: Q —> K defined by

satisfies (2.2.2) provided £ ai = r.
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Figure 3. The chain.

Figure 4. The 2-dimensional Pascal graph.

In case of the Pascal graph Nr each Qi is isomorphic to P; so the Wi can be taken from
Example 2.2.1. The most natural option for on is a, = 1; thus the r in Nr and in (1.4.12)
are the same. As a result, a weight function w: P —> Z defined by

is obtained where q^ denotes the element q taken from the ith component of rP. Thus the
multiplicity of an edge
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Example 2.2.5 Diagrams with < r rows. Let Q be a direct product of the infinite chain
P and a finite chain [r] = {1, . . . , r}. Then J(Q) = J(P x [r]) is the distributive lattice
of Young diagrams containing < r rows. It is a sublattice and an order ideal of Young's
lattice. So the values e(x) are the same as in Y.

In a particular case r = 2 the lattice J(P x [2]) is known as the SemiPascal graph
[14]; see Figure 5. The numbers e(x) for the vertices x of SemiPascal lying in the main
diagonal (i.e., for the (2 x n)-rectangular diagrams) are the Catalan numbers ^y (2^) (cf.
[30], Section 3.1]).

Lemma 2.2.6 The weight function w: P x [r] —» K defined by
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in the r-dual graph for Nr is Xj +1; see Figure 4. This graph is an rth cartesian power of the
dual graph for N (cf. Example 2.2.1). This is a special case of the following observation.

Lemma 2.2.3 Assume graphs GI and G2 are r-dual, and H1 and H2 are s-dual. Then
GI x HI and GZ x H^ are (r + s)-dual.

By means of Lemma 2.2.3, one can easily construct new pairs of r-dual graphs from old
ones. For example, the graph Yr, the rth cartesian power of the Young graph, is self-r-dual,
as is YFr. See [9] for other examples.

Example 2.2.4 Bernoulli networks. These are graded networks obtained by assigning
weights to the edges of the Pascal graph Nr, namely, an edge (2.2.5) has weight on > 0
where ]Cr=1 = 1. Then the values e(x) are the probability weights of the corresponding
multinomial distribution. In other words,

where £(n) is an r-dimensional Bernoulli-type Markov process with transition probabili-
ties ai. Details are omitted.

satisfies (2.2.2).

Thus we have constructed a weighted lattice that is r-dual to J(P x [r]). Note that the r
involved in P x [r], (2.2.6), and (2.2.2) do coincide.

Example 2.2.7 The Young graph: non-standard weights. Unexpectedly, in the case of the
Young graph the constant weight function on P2 is not the only possible one. The general
form of a weight function on P2 obeying (2.2.2) is

D
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Figure 5. SemiPascal.

Figure 6. The graph of shifted shapes.

where a is an arbitrary constant. However, w(q) = r is the only nonnegative suitable
weight function.

Example 2.2.8 Shifted shapes [17, 32, 21]. Let Q = SemiPascal (see Example 2.2.5).
The graph SY = J(Q) is the graph of shifted shapes which are the Young diagrams with
strictly decreasing row lengths; see Figure 6. Since SY is not an order ideal of Young's



Thus the dual graph for SY is the same graph but with the edges which correspond to adding
non-diagonal boxes doubled; see Figure 6.

Unfortunately, the construction of weighted distributive lattices does not work in several
interesting cases, e.g., for the lattice J(P3) of three-dimensional shapes, for the distributive
Fibonacci lattice F (see Example 2.3.7), for the lattice of binary trees J(T2) (see Section 2.4),
etc. Later on we will construct dual graphs for F and J(T2) using other approaches.

Now consider the special case r = 0. So we are interested in pairs of graded graphs, with
a common set of vertices and a common rank function, satisfying the commutation relation

Example 2.2.10 SkewStrips. Let t e P. Define the poset t-Plait as follows:

(i) The vertices are . . . , -1,0,1,2,... and . . . , -1', 0', 1', 2',....
(ii) The order relation is

(a) n < m, n' < m', and n < m! in t-Plait whenever n < m in Z ;
(b) n' < m whenever n + t < m in Z .

The distributive lattice t-SkewStrip — J(t-Plait) (see Figure 7) can be easily seen to satisfy
(2.2.9); so it is self-0-dual. Note that the case t = 1 reduces to Example 2.2.9.
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lattice, the values e(x) in SY differ from those in Y. The main identity involving the e(x)'s
in SY is the following [19, 16]:

where h(x) is the height (= number of rows) of the shape x.

The only weight function on SemiPascal satisfying (2.2.2) with r = 1 is

The relation (2.2.9) can hardly be valid in a graph with 0 since UDO = 0 ^ DUO. A
natural class of graded graphs to be studied in this context is the class of distributive lattices
without zero. So let us extend Definition 2.1.1 to posets Q which are not bounded from
below. Namely, define J(Q) to be the [distributive] lattice of the order ideals of Q which
are bounded from above. We avoid now discussing when such a lattice satisfies the level
finiteness condition.

Example 2.2.9 The chain Z. This lattice can also be regarded as J(Z). Condition (2.2.9)
obviously holds. Thus Z is a self-0-dual graph.
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Figure 7. 4-Plait and t-SkewStrip.

Figure 8. The lattice of skewstrip shapes.

Example 2.2.11 SkewStrip shapes. These are the elements of the distributive lattice
J(t-SkewStrip) (see Figure 8). To build a 0-dual graph, define an appropriate weight
function on t-SkewStrip and use the weighted lattice construction. One can check that the
weight function w defined on t-SkewStrip by



Example 2.3.2 The Young graph (cf. Example 2.1.2). Let A be the algebra of symmetric
functions in commuting variables u\, u2, — Alternatively, A is the algebra of polynomials
in the variables
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(cf. (2.2.8)) satisfies (2.2.2) with r = 0.

2.3. Derivations in graded algebras

Let A be a graded associative K-algebra with identity; so A (as a vector space) is a direct
sum of "homogeneous" subspaces An, n 6 Z (usually n e N), and if a 6 An and b 6 Am

then a& e Ai+m- Assume D: A —> A is a derivation, i.e., a linear endomorphism satisfying
D(ab) - aD(b)+D(a)b. Assume, in addition, that if a 6 .An then £>(a) e .An_i. Suppose
there exists an element t € A such that

where id stands for an identity element of A; of course t € A\. (Informally, D is the
derivative with respect to t/r.) Hence the operator U e End(A) defined by

and the derivation operator Z) satisfy the condition (1.4.12) where/ e End(A) is the identity
transformation. (One can also take the right multiplication U(a) = at instead of (2.3.2).)
When the homogeneous subspaces An are finite-dimensional we can fix arbitrary bases in
them to obtain a pair of r-dual graphs or networks.

Now we reconstruct several examples of Sections 2.1-2.2 using this tool.

Example 2.3.1 The chain N = {0,1,2,...} (cf. Example 2.2.1). Let A = K[t] be the
algebra of polynomials in the variable t with the natural grading p (tn) = n. Then U is
the operator of multiplication by t, and D is ^. Now take the basis {tn: n 6 N} to get
Example 2.2.1.

where

Now let D be the derivation with respect to t\ and U the multiplication by t\. Since
D(ti) = 1, we have a pair of dual graded graphs; to make the construction explicit, bases
for the An's should be chosen. One choice is the basis of functions t"1 • • • tf-; this results
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in a set of disjoint chains and corresponding dual weighted chains (cf. Example 2.3.1). On
the other hand, the bases formed by the Schur functions give rise to the Young graph of
Example 2.1.2. See [13, 26, 21] for more details.
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Example 2.3.3 Pascal graphs (cf. Example 2.2.2). Let A = K\ti,..., tr] be the algebra
of polynomials in r commuting variables. Define

Thus

and

Now condition (2.3.1) holds, and we get the pair of Example 2.2.2.

Example 2.3.4 Diagrams with < r rows (cf. Example 2.2.5). Here A is the algebra of
symmetric polynomials in r commuting variables ti,..., tr. As in Example 2.3.3, define
U and D by (2.3.5)-(2.3.6). The result coincides with that of Example 2.2.5.

The remaining examples in this section are different from those considered previously.

Example 2.3.5 Infinite r-nary trees. Let A be a free associative algebra with r noncom-
muting generators ti,...,tr. In other words, A is the algebra of linear combinations of
words in the alphabet {t\,..., tr}, including the empty word. Multiplication is concatena-
tion. All the it's have rank 1. Let t = ti + . . . + tr , as before. The derivation D is defined
in a natural way (cf. (2.3.6)): if w = wi • • • WK is a word in the alphabet {t\,..., tr} then

Thus D(t) — r0 as in (2.3.1). Now let U be the right multiplication by t, so that

and (1.4.12) holds. The natural basis in A is the basis of words. With respect to this basis,
the operator U defines the infinite r-nary tree Tr. The r-dual graph for Tr is defined by the
operator D (see (2.3.7)). In this graph a word w of rank k is linked with a word v of rank
k — 1 by a(v, w) edges where a(v, w) is the number of ways to obtain v by deleting a single
letter from w. See Figure 9 for the case r = 2: the infinite binary tree and its 2-dual graph.
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Figure 9. The binary tree.

Figure 10. The lifted binary tree.

Example 2.3.6 The lifted binary tree, first construction (cf. Example 2.4.1). Let A be
the algebra of symmetric polynomials in two non-commuting variables £1 and t2; the rank
of both t\ and t% is 1. For any {tj, t2}-word w, let w denote the word obtained from w
by replacing all the ti entries by £2. and vice versa. Then the elements of the form w + w
provide a linear basis for A. Now define U and D as in Example 2.3.5 (cf. (2.3.7) and
(2.3.8) with r = 2). Thus we have a pair of 2-dual graphs. The operator U, with respect
to the basis {w + w}, defines the lifted binary tree, i.e., the infinite binary tree ¥2 with
an additional edge attached below the old zero. The operator D defines the corresponding
2-dual graph. See Figure 10.
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Figure 11. The Fibonacci graph.

Example 2.3.7 The Fibonacci graph [24], Recall the definition of the Young-Fibonacci
graph from Example 2.1.4. There exists another remarkable graph with the same set of
vertices {1,2}*. In fact, this graph was historically the first of the two. Its vertices are also
snakes though ordered in another way.

Let Q be a poset comb defined as follows:

(i) the vertices are 1,1', 2,2', 3,3',...;
(ii) the order relation is

(a) n < m in Q whenever n < m in P;
(b) n < m' whenever n < m.

Now define the Fibonacci graph F as the distributive lattice J(Q). R.P. Stanley's notation
for this graph is Fib(\); see Figure 11. Finite order ideals of the comb are just the snakes
or, equivalently, the {l,2}-words. The rank function is of course the same as before (i.e.,
rank = number of boxes = sum of digits).

The following surprising result holds.

Lemma 2.3.8 [5, 26, 29b] The values e(x) in F and YF are the same.

In other words, the number of ways of growing a snake does not depend on whether it is
considered as an element of the Fibonacci or the Young-Fibonacci graph. Thus all identities
involving the e(x)'s of YF (e.g., (1.1.4)) are also valid for F.

Now let us describe the algebra with derivation associated with the Fibonacci graph. A
first try is to consider the free algebra with two non-commuting generators having ranks 1
and 2, respectively. A basis of this algebra can be formed by the snakes, and the ranks are
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2.4. Trees

The next three sections are devoted to constructing dual graphs for some rooted trees.

Example 2.4.1 The lifted binary tree, second construction (cf. Example 2.3.6). The
vertices of this tree can be naturally labelled by the bit strings for the nonnegative integers:
0,1,10,11,100,101,110,... so that 0 is the root; 1 is the only vertex of rank 1; 10 and
11 are the vertices of rank 2, etc. (see Figure 12). Generally, the rank is the length of the
string, except for the case p(0) = 0.

Now define the graph BinWord (a lifted binary subword order, cf. [3]; see Figure 12)
with the same set of vertices, the same rank function, and the following covering relation:
x covers y if and only if x can be obtained by deleting a single symbol from y. In addition,
1 covers 0. For example, 101001 covers 11001, 10001, 10101, and 10100. We emphasize
that BinWord is a graph without multiple edges.

The following observation is surprising but easily proved.

Lemma 2.4.2 BinWord and the lifted binary tree are dual.

Comments 2.4.3 The graph BinWord is invariant with respect to the reflection
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just those we need. Unfortunately, this construction does not result in the Fibonacci graph.
The right approach is different.

Let u, v € {1,2}* be two snakes. The shuffle product uv is the formal sum of the snakes
which can be obtained by shuffling v with u. For example,

(the digits corresponding to /, i.e., to the first multiplier are underlined). This multiplication
is associative and commutative. So we have defined a graded commutative algebra A for
which snakes form a linear basis.

Lemma 2.3.9 Let D be the down operator of the Fibonacci graph, i. e., the operator which
changes any 1 into 1 or deletes the last digit if it is 1. Then D is a derivation in the shuffle
algebra A.

Definition 2.3.10 A graph dual to the Fibonacci graph F can be determined by the operator
of multiplication by the snake 1. In other words, a snake w € {1,2}* of rank k is linked
with a snake v of rank fc - 1 by a(v, w) edges where a(v, w) is the number of ways to
obtain v by deleting a single 1 from w (cf. Example 2.3.5). See Figure 11. Note that this
graph is not connected.

Another examples of dual graphs associated with graded algebras will be given in the
sequel.
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Figure 12, The lifted binary tree and Bin Word.

Simultaneously, this map transforms the binary tree into another (though isomorphic) tree
related to inserting new symbols between wi and w2. Thus there are at least two dual graphs
for BinWord—both without multiple edges.

Example 2.4.4 The lifted (r + l)-nary tree. This is a generalization of the previous
example. Now the vertices are the words in the alphabet {0,1,..., r}. Two words are
linked in the tree whenever one of them can be obtained by adding a single symbol to the
end of another. The corresponding analogue of Bin Word is a graph (r + l)Word where two
words are linked if one can be obtained by inserting a single symbol into another (cf. [3]).

Lemma 2.4.5 Thegraph (r+l)Words and the lifted (r+l)-nary tree satisfy the relations

Thus these graphs are not exactly r-dual. They are r-dual (cf. (1.4.11)) with r =
(l,r,r,r, . . .).

and
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Example 2.4.6 The Bracket Tree. This tree (see Figure 13) is defined as follows. The
vertices of rank n are the syntactically correct formulae defining different versions of
calculation of non-associative product x • x . . . . . x containing n -f 1 entries of x. In
other words, any vertex of rank n is a valid sequence of n — 1 opening and n — 1 closing
brackets inserted into x • x . . . . . x. We call such sequences the bracket schemes. Two
schemes are linked in the tree if one of them results from another by deleting the first entry
of x and subsequent removing the pair of unnecessary brackets. For example, the scheme
[[xx][xx]][xx] covers [x[xx]][xx]. Clearly, this defines a tree.

Lemma 2.4.7 The Bracket Tree is dual to the distributive lattice J(T2) of finite order
ideals of the infinite binary tree.

Proof: This statement needs explanation. First of all, we must show that the Bracket Tree
and J(T2) have the same set of vertices (see, e.g., [30, Section 3.1] for another proof). A
vertex of the Bracket Tree is a bracket scheme. Any bracket scheme is associated with an
appropriate parsing tree. Remove the leaves of this tree (they correspond to the x *s) together
with the edges incident to them. As a result we obtain a binary tree which is an order ideal
of the infinite binary tree T2. Thus we have constructed a desired rank-preserving bijection

bracket schemes <--> order ideals of ¥2.

aThe statement of the lemma can now be easily verified.

See [24] for other results concerning ^(¥2).

Comments 2.4.8 Again, the dual graph is not unique (cf. Comments 2.4.3). Each auto-
morphism of the binary tree ¥2 induces an automorphism of the lattice J(T2). However,
the construction of the Bracket Tree is not invariant with respect to these automorphisms

Figure 13. The lattice of binary trees and BracketTree.
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since it involves a specific path in the binary tree, formed by its leftmost edges. Since there
is a continuum of paths from the root to infinity, this gives a continuum of different (though
isomorphic) graphs dual to J(T2).

This example can also be interpreted in terms of a well-known bijective correspondence
[30] between the bracket schemes of rank n and the standard Young tableaux having a
rectangular diagram of shape 2 x n—or, equivalently, the paths in SemiPascal joining
(0,0) and (n, n) (the Dyck paths).

2.5. Tableaux

In this section we examine examples of tableaux trees, i.e., trees of paths in graded graphs
with zero.

Definition 2.5.1 Let G\ = (P, p, E\) be a graded graph with zero 0. Let Tn denote the
set of paths (= saturated chains) joining 0 and the vertices of rank n. Define T(Gi) to be
the graded rooted tree with vertices L£Lo ^» anc* covering relation

T' € Tn+i covers r e Tn if and only if r1 is a prolongation of r.

In [7] a universal scheme will be given that allows us to construct a dual (r-dual, etc.)
graph for the tree T(Gi) from GI and its dual graph G%. For now, let us consider the main
two cases: the Young and the Young-Fibonacci graphs.

Example 2.5.2 The SYT-Tree and the Schensted graph. The SYT-Tree (see Figure 14)
is defined as T(Y); the vertices are the standard Young tableaux which are linked if one
is obtained from another by deleting a box with the maximal entry. The dual graph for

Figure 14. The SYT-Tree and the Schensted graph.



Definition 2.5.4 Schensted Insertion [20]. Let T be a Young tableau. Assume ao € P is
not an entry of T. In the first row of T, find the minimal entry which is greater than ao, say
a-i, and replace it by OQ. Then insert ai into the second row in the same manner, replacing
the minimal entry a^ > 01; a-i goes to the third row, etc., until some a^ is greater than or
equal to all the elements of the (i + l)st row. Then a^ is placed into a new box added to
this row. The resulting tableau is denoted Ins(r, ao) and is said to be obtained by Schensted
inserting ao into T. Details can be found in [12, 21, 18, etc.].

Definition 2.5.5 The Schensted graph. The vertices of this graph (see Figure 14) are the
standard Young tableaux. Given two SYT a and T, a covers r in the Schensted graph if and
only if there exists a partial Young tableau r' and a number k such that stand(r') = r and
InsjV, k) = a. In other words, one can obtain all the tableaux covering r by increasing its
entries k,k + l,...,n (wheren = p ( T ) ) by 1 and then inserting k; k = 1,2, . . . ,n + 1.

Lemma 2.5.6 The Schensted graph and the SYT-Tree are dual.

This statement can be verified directly. However, it is a particular case of a more general
result (see [7]) on Schensted-type constructions, so we will not bother to prove it here.

Example 2.5.7 The tree of standard Young-Fibonacci tableaux. Since the Young-Fibo-
nacci graph YF is also a self-dual lattice, it is natural to have a corresponding analogue
of Schensted insertion. Such an analogue was introduced in [5] and is reformulated here.
Another description of the same algorithm can be found in [15].

The vertices of YF are the snakes which can be written as {1, 2}-words or pictured as
diagrams. The growth of a snake can be represented as a Young-Fibonacci tableau, i.e., a
filling of such a shape by integers indicating when respective boxes get added. This process
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SYT-Tree is the graph we call Schensted (see Definition 2.5.5 below). To construct it, we
use the Schensted insertion [20] and the following definition.

Definition 2.5.3 Let r be a saturated multichain, i.e.,

where Xi € P, XQ = 0, and for each i either xi+1 covers xi or xi+i = Xi. Let stand(r)
denote the "standard tableau" (saturated chain) obtained by deleting repeated entries from
T. For example, if T is a partial Young tableau with different entries then stand(r) is an
SYT having the same shape (say, of n boxes) filled with the numbers 1 ,2 , . . . , n so that the
induced order of boxes remains the same. Tableaux T and T' are said to be equivalent if
stand(r) = stand(r').



Note that this construction has an essential distinction from the classical Young's case:
when a new box is inserted into a snake, the old boxes move. Thus the position of a box
can change in the course of the growth. This could not be otherwise since the lattice YF is
not distributive.

An arrangement of positive integers within a "snakeshape" ought to obey certain condi-
tions in order to represent a valid Young-Fibonacci tableau.

Lemma 2.5.8 A filling of a snakeshape with different positive integers is a valid Young-
Fibonacci tableau (standard YFT provided these are 1,. . . , n) if and only if

(ii) to the right of any l±l there are no numbers from the interval (A, B] in either the lower
or upper rows);

(iii) if the position above \Aj is not occupied yet then to the right of [A] there are no
numbers greater than A in either the lower or upper rows.

Note that the conditions (ii) and (iii) are quite similar: (iii) converts into (ii) if the position
above \A\ is regarded as occupied by |oo |.

Definition 2.5.9 The standard Young-Fibonacci tableaux form a tree SYFT-Tree = T(YF)
shown in Figure 15.

Definition 2.5.10 Young-Fibonacci insertion [5]. As in Definition 2.5.4, assume r is a
partial Young-Fibonacci tableaux. Then r satisfies the conditions of Lemma 2.5.8.

Assume a0 6 P is not an entry of r. Attach a new box | q0 | just to the left of r (in the
lower row). Then find all the entries of r which are greater than ao and sort them:
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can also be treated as a growth of a tableau. At the moment n, a new box filled with n can
be added to a current tableau. Recall from Example 2.1.4 that this new box is either placed
into the leftmost available position in the second row (in the first column of length 1) or
inserted into the first row at any place to the left of this position, thus dividing the tail of
the snake. As an example, the growth process

corresponds to the tableau

(i) for anypairl^j the inequality A < B holds;

151

0
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Figure 15. The SYFT-Tree and InsYF.

Now put a box [•] just above [a0] and move the ai chainwise according to the following
rule: [•] <— [a1] <— [a2] <— . . . <— [ak]; that is, a1 moves into the new box, a2 moves to
the old place of a1, etc. The box that was occupied by ak disappears; if it was situated in
the lower row, the left and right parts of the snake are concatenated. For example:

As before, Ins(r, a0) denotes the resulting tableau.

Now let us construct the Young-Fibonacci analogue of the Schensted graph (cf. Defini-
tion 2.5.5).

Definition 2.5.11 The graph Ins YF (see Figure 15) is defined exactly as the Schensted
graph, replacing "Young" by "Young-Fibonacci" everywhere in Definition 2.5.5.

Lemma 2.5.12 The graphs Ins YF and SYFT-Tree are dual.

The proof of this lemma is omitted for the same reasons as in the case of Lemma 2.5.6.
Actually, it is not difficult to verify the duality directly.

The insertion procedure of Definition 2.5.10 has many nice properties which are simi-
lar to those of the Schensted insertion. In particular, it allows to establish a one-to-one
correspondence between permutations and the pairs of standard Young-Fibonacci tableaux
having the same shape. We will return to this subject in [7].
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The latter notation is the most natural in this context. Diagonal sets of the same type are
said to be equivalent. The set of all the types is denoted Perm. Thus Perm contains the
permutations of {1, . . . , n} for all n € N. For n = 0, the permutation of rank zero is the
type of the empty set.

Definition 2.6.2 Permutation algebras. We define a graded associative algebra Permu as
follows:

(i) the elements of Permu are the formal finite linear combinations of permutations. Thus
Permu coincides with KPerm as a set where K is our field;
(ii) grading is defined by letting Permn be all permutations of {1, . . . , n};

(iii) the product a1 U a2 of two permutations a1 € Permn1 and a2 € Permn2 is a formal
sum of the permutations a € Permn1+n2 satisfying the following property: there exists a
diagonal set M of type a and a vertical line l such that l cuts M into parts having types a1

(to the left) and <r2 (to the right). For instance,
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2.6. Permutation trees

This section is devoted to a single example of dual graphs that plays a fundamental role in
the sequel [7]. Both graphs in this example are trees.

Definition 2.6.1 A finite subset M = {(#1, y i ) , . . . , (xn, yn)} of the coordinate plane
R2 is said to be diagonal if all the Xi are distinct and all the yj are distinct (though Xi = yj
is allowed). Sorting the Xi and the yj produces bijective numberings

such that Xi < Xj if and only if v(xi) < v(xj); y^ < yj if and only if p(yi) < p,(yj).
The map

is of course a permutation. The permutation a is called the type of the diagonal set M. For
example, if

M = {(6,7), (0,10), (1,15)}

then the type of M is



Lemma 2.6.3 Permu and Perm*- are graded associative algebras with identity.

Definition 2.6.4 Let d^, d^, d~*, and 9*~~ denote four linear endomorphisms KPerm —>
KPerm acting as follows. Assume that a € KPerm and M is a diagonal set of type a.
Delete the uppermost (lowermost, rightmost, leftmost, respectively) element from M. The
resulting set has, by definition, the type <9T<7 (d^a, <9~*<r, <9*~cr, respectively). For example,

In other words, delete the maximal (the minimal, the last, the first) element from the
permutation and standardize the result.

Lemma 2.6.5 The operators <9T and d^ are derivations in the algebra Permu; the operators
d~" and 9*~ are derivations in Perm?-.

Let 1 denote the only permutation of rank 1 (not to be confused with the identity element
0 having zero rank). Then

Thus we can use the main construction of Section 2.3 to obtain the following.

Lemma 2.6.6 Define the operators C/T, U^, U~*, and W~ on KPerm by

Let I denote the identity transformation. Then the equality DU = UD +1 holds in each
of the following cases:

(i) U = UtorU = Ul, D = d^ or D = d~;
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The definition of the dual algebra Pernf- is completely analogous: use horizontal cuts
instead of vertical ones. In other words, a\ C a^ is the shuffle product of a\ and n\ + a^.
For example,

where T stands for the transposition (= inversion of permutations).

The algebras Permu and Pernf- are isomorphic. They have the same set of elements and
the same rank function. The multiplications U and d satisfy



Example 2.7.1 The Hex [14]. This graph (see Figure 17 for its definition) is interesting
because its e(x) for ranks 2n and 2n + 1 are the ordinary binomial coefficients (£), 1 <
k < n. Thus they coincide with their analogues for the Pascal graph N2. Recall that the
construction of Example 2.2.2 provides a 2-dual for N ; a 1-dual graph for N2 is necessarily
disconnected. However, this is not the case for the Hex. The latter has a connected dual
graph with positive integer multiplicities; see Figure 17.
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Proof: Follows from Lemma 2.6.5 and (2.6.1). D

2.7. Miscellaneous

Note that there are eight dual pairs in the lemma.
So we have four graded graphs associated with the up operators (2.6.2), and four graded

graphs (each dual to two of the first four) corresponding to the down operators d^, d^, d~*,
and 9*~. It turns out that these quadruples coincide.

Lemma 2.6.7 Suppose KPerm is made into a Hilbert space by declaring Perm to be an
orthonormal system. Then the operators in the following pairs are conjugate to each other:

Proof: For instance, U^cr is the sum of permutations a' obtained by inserting n + 1 into
a 6 Permn; these are exactly those satisfying 9V — a. O

Thus we have actually four graphs associated with the symbols T, *•, ~~\ and *~.
Lemma 2.6.6 shows that among these graphs there are four dual pairs. Let us describe the
situation explicitly.

Example 2.6.8 Permutation trees. These are the trees PTT, PT1, PT~*, and PT"~ (see
Figure 16) defined as follows:

(i) the vertices of rank n are the permutations of {1,..., n} (i.e., all the four graphs have
the common set of vertices Perm);
(ii) any permutation a covers the permutation 9Tcr (d^cr, d~*a, d^a, respectively).

The permutation trees have the up and down operators U and d with respective super-
scripts. Below we state again the duality relations among permutation trees.

Theorem 2.6.9 Each of the trees PTT and PT[ is dual to both PT^ and PT^.
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Figure 16. Dual permutation trees.

Figure 17. Hex.

Example 2.7.2 Fant. Amalgamate t disjoint infinite chains by gluing their zeros together
to create the graph Fant. Define a complete graded graph with the same set of vertices
by connecting any two vertices lying on consecutive levels with a simple edge. These two
graphs satisfy (1.4.11) with ro = t, ri = r% = • • • — 0. There are similar constructions
with other values of the rj.
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Example 2.7.3 The Reflected Young graph. Take the levels P0, PI , . . . , Pn of the Young
graph and reflect them in the top rank level to obtain a new Pn+i which is a copy of Pn_i,
new Pn+2 which is a copy of Pn_2, etc. The resulting finite graph Re/Young has a height
2n; see Figure 18. This graph is a sequentially differential poset (in the terminology of
[27]), i.e., it is self-r-dual with

Paths in this graph joining 0 and 1 can also be regarded as loops in the usual Young graph.

The reflection construction of Example 2.7.3 can be applied to any pair of dual (r-dual,
etc.) graphs GI and G^. Details are left to the reader.

2.8. Example index

Table 1 summarizes the examples of dual and r-dual graded graphs given in the paper.

2.9. Enumerative corollaries

The identities of Section 1.5 can be formulated for each of the preceding examples of dual
graphs. Listing all of them would take too much room. So we only apply Corollaries 1.5.3
and 1.5.4 to our main examples.

Table 1.

Gi

Young graph Y

Young-Fibonacci graph YF
The chain N
Pascal graph Nr

Diagrams with < r rows
SemiPascal
Graph of shifted shapes SY
The chain Z
t - SkewStrip
t — SkewStrip shapes
Infinite r-nary tree Tr

Lifted binary tree

Fibonacci graph
Bracket Tree
SVT-Tree
SYFT-Tree
Permutation tree
(either PTT or FT*)
Hex

G2

Gi
GI , weighted

Gi
GI , weighted
GI , weighted
GI , weighted
GI , weighted
GI , weighted

Gj
Gi

GI , weighted
See Ex. 2.3.5
See Ex. 2.3.6

BinWord
SeeDef. 2.3.10

J(T2)
Schensted graph

InsYF
Permutation tree

(either FT- orPT*~)
See Fig. 17

r

1
V
1
1
r
r
2
1
0
0
0
r
1
1
1
1
1
1
1

1

Example

2.1.2,2.3.2
2.2.7
2.1.4

2.2.1,2.3.1
2.2.2, 2.3.3
2.2.5, 2.3.4

2.2.5
2.2.8
2.2.9
2.2.10
2.2.11
2.3.5
2.3.6
2.4.1
2.3.7
2.4.6
2.5.2
2.5.7
2.6.8

2.7.1

Figure

1

2
3
4

5
6

7
8
9

10
12
11
13
14
15
16

17
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Most of the results stated below are well-known. However, their common origin was not
previously realized.

Corollary 2.9.1 Assume G is a self-dual graph with zero. Then

(1) a(0 -> n -> 0) = n!;

(2) for any vertex x of rank k

Corollary 2.9.2 Assume G\ and GI are dual graphs with zero, and G% is a tree. Then in
Gl

(1) a(0 -» n) = n!;

(2) every vertex of rank k is covered by exactly k + 1 vertices (taking into account the edge
multiplicities).

401

Figure 18. The reflected Young graph.

In particular, these identities hold for the Young graph Y and the Youns-Fibonacci graph
YF.

Proof: See (1.5.9) and (1.5.8) with 1 = 1. D
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In particular, this is the case when G\ is one of the following: BinWord, J(T2), Schensted
graph, InsYF, Permutation Tree.

Proof: TheproofisthesameasforCorollary2.9.1,usingthefactthate2(y) = 1 wherethe
index 2 refers to Ga. Note that the first statement of the lemma follows from the second one.

D

Corollary 2.9.3 Assume a weight function w defined on a poset Q satisfies (2.2.2). Then
in the distributive lattice P = J(Q) the following identities hold:

and ifx is of rank k,

In particular, these identities are valid in the following distributive lattices with the weight
functions w defined as indicated below:

(1) The graph of shifted shaves SY.-

(2) The graph of the diagrams with < r rows:

where a is an arbitrary constant;

(5) The Pascal eraph Nr = J(riP): w is the natural projection rP —> P.

DProof: Similar to the proof of Corollary 2.9.1.

Comments 2.9.4

1. In the case of the graph of shifted shapes SY the identity (2.9.1) reduces to Schur's
formula (2.2.7).

(3) SemiPascal:

(4) The Youne sraoh Y;
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2. In the case of the graph of r-row diagrams (2.9.1) turns into

3. In the case of the Young graph we have a generalization of the Young-Frobenius formula:

(combine (2.9.1), (2.9.3), and /? = a/r). In turn, (2.9.2)-(2.9.3) with r = 0 result in

where y\x = (91,92).

4. In the case of the Pascal graph Nr (2.9.1) becomes the classical £ e(x) = rn, where
e(x) denotes the appropriate multinomial coefficient.

Further applications are given in the sequel [7].
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