1/2-Transitive Graphs of Order 3p

BRIAN ALSPACH*

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada

MING-YAO XU^{*} Institute of Mathematics, Peking University, Beijing 100871, People's Republic of China

Received March 25, 1993; Revised February 3, 1994

Abstract. A graph X is called vertex-transitive, edge-transitive, or arc-transitive, if the automorphism group of X acts transitively on the set of vertices, edges, or arcs of X, respectively. X is said to be 1/2-transitive, if it is vertex-transitive, edge-transitive, but not arc-transitive.

In this paper we determine all 1/2-transitive graphs with 3p vertices, where p is an odd prime. (See Theorem 3.4.)

Keywords: 1/2-transitive graph, metacirculant, factor graph

1. Introduction

Let X = (V(X), E(X)) be a graph (that is, no multiple edges or loops). We call an ordered pair of adjacent vertices an *arc* of X. The set of all arcs associated with a graph X is denoted by A(X). Thus, |A(X)| = 2|E(X)|. If G is a subgroup of AutX and G acts transitively on the set of vertices, edges, or arcs of X, then X is said to be *G*-vertex-transitive, *G*-edgetransitive, or *G*-arc-transitive, respectively. The graph X is said to be vertex-transitive, or edge-transitive, or arc-transitive, if it is AutX-vertex-transitive, AutX-edge-transitive, or AutX-arc-transitive, respectively. We call a graph X 1/2-transitive, if it is vertex-transitive, edge-transitive, but not arc-transitive.

D. Marušič, L. Nowitz and the first author of this paper studied 1/2-transitive graphs [1] and found several infinite families of such graphs. In [7], R.J. Wang and the second author gave a classification of arc-transitive graphs of order 3p, where p is a prime. The purpose of this paper is to determine all 1/2-transitive graphs of order 3p.

We use standard terminology and notation for the most part and refer the reader to [5, 6, 8] if necessary. For $v \in V(X)$, $X_1(v)$ denotes the neighborhood of v in X, that is, the set of vertices adjacent to v in X. If X is a graph and A and B are two vertex-disjoint subsets of the vertex-set V(X) of X, we let $\langle A \rangle$ and $\langle A, B \rangle$ denote the subgraph induced on A and the bipartite subgraph, with bipartition sets A and B, induced on $A \cup B$ by X, respectively. We remind the reader that two representations of a group G as transitive permutation groups are said to be *equivalent* if the pointwise stabilizers of one representation are conjugate in G to the pointwise stabilizers of the other representation.

^{*}This research was partially supported by the National Natural Science Foundation of China and the Natural Sciences and Engineering Research Council of Canada under Grant A-4792.

The second author thanks the Department of Mathematics and Statistics of Simon Fraser University for its hospitality and financial support, where he did his part of this work.

Assume that G acts on X imprimitively and that B_0 is a nontrivial block of G. Let $\overline{X} = \{B_0, B_1, \ldots, B_{n-1}\}$ be the complete block system of G containing B_0 . We define the *factor graph* of X corresponding to \overline{X} , which is still denoted by \overline{X} , by

$$V(\overline{X}) = \overline{X},$$

$$E(\overline{X}) = \{B_i B_j: \text{ there exist } v_i \in B_i, v_j \in B_j \text{ such that } v_i v_j \in E(X)\}.$$
(1)

The group G induces an action on \overline{X} . Assume that the kernel of this action is K. Set $\overline{G} = G/K$. Then \overline{G} acts on \overline{X} faithfully. The proof of the following result is immediate and is omitted.

Proposition 1.1 Let X be a 1/2-transitive graph such that AutX acts imprimitively on X. Then

- (1) \overline{X} is 1/2-transitive or arc-transitive;
- (2) if X is connected, then so is \overline{X} ; and
- (3) if $\langle B_i \rangle$ has an edge, then B_i is a union of several connected components of X.

Given two graphs X and Y the wreath product $X \wr Y$ is defined as the graph with vertex set $V(X) \times V(Y)$ such that (x, y)(x', y') is an edge if and only if either xx' is an edge of X, or x = x' and yy' is an edge of Y.

Informally $X \wr Y$ is obtained by taking |V(X)| copies of Y, labelling these copies with the vertices of X, and, whenever xx' is an edge of X, joining each vertex in the copy of Y labelled x to each vertex in the copy of Y labelled x'. The automorphism group of $X \wr Y$ contains the *wreath product* AutY wr Aut X (but may be larger).

The next obvious proposition gives a method of constructing larger 1/2-transitive graphs from smaller ones.

Proposition 1.2 If \overline{X} is a 1/2-transitive graph of order n, then the wreath product $\overline{X} \wr mK_1$ of \overline{X} by mK_1 is a 1/2-transitive graph of order nm.

Next we quote two propositions from [1].

Proposition 1.3 Every vertex- and edge-transitive Cayley graph on an abelian group is also arc-transitive.

Proposition 1.4 Every vertex- and edge-transitive graph with p or 2p vertices, p a prime, is also arc-transitive.

Finally we quote a result from [7].

Proposition 1.5 Let X be an arc-transitive graph of order 3p and A = AutX. If A has a block of imprimitivity of length p, then X is a Cayley graph on a cyclic group Z_{3p} .

2. Reductions

In this section we eliminate some possible types of 1/2-transitive graphs of order 3p. There is no 1/2-transitive graph of order less than 27 as observed in [1]. All suborbits of a primitive group of degree 3p are self-paired [7], which implies there are no vertex-primitive 1/2-transitive graphs of order 3p. So we may assume that $p \ge 11$ in what follows, and we only need consider those 1/2-transitive graphs with an imprimitive automorphism group.

Let X be a 1/2-transitive graph and A = AutX. We have two cases: (1) A has a block of length p, and (2) A has a block of length 3, but no blocks of length p. We shall show in the next section that the latter case cannot occur.

Assume that $\overline{X} = \{B_i \mid i \in Z_3\}$ is a complete block system of A, and that K is the kernel of the action of A on \overline{X} . Set $\overline{A} = A/K$. We also use \overline{X} to denote the corresponding factor graph. Then $\overline{X} \cong K_3$. Since X is 1/2-transitive, X is not isomorphic to $K_{p,p,p}$.

Lemma 2.1 The kernel K acts faithfully on each block B_i .

Proof: We use K_{B_i} to denote the pointwise-stabilizer of B_i in K. If K acts unfaithfully on B_i , we have $K_{B_i}^{B_j}$ is nontrivial for some block B_j adjacent to B_i . Since $K_{B_i} \triangleleft K$, $K_{B_i}^{B_j} \triangleleft K^{B_j}$. Since $|B_j| = p$, K^{B_j} is primitive which implies $K_{B_i}^{B_j}$ is transitive. It follows that the induced subgraph $\langle B_i, B_j \rangle \cong K_{p,p}$. The edge-transitivity of \overline{X} implies that $X \cong K_{p,p,p}$. The latter is impossible since $K_{p,p,p}$ is arc-transitive.

Using the same method as above we can prove the following more general result, which will be used in the next section.

Lemma 2.2 Suppose that X is a connected 1/2-transitive graph and $\overline{X} = \{B_1, B_2, \dots, B_n\}$ is a complete block system of A = AutX. If K, the kernel of the action of A on \overline{X} , acts on B_i unfaithfully and K^{B_i} is primitive, then X is isomorphic to the wreath product $\overline{X} \setminus mK_1$ of \overline{X} with mK_1 , where $m = |B_i|$.

By virtue of Lemma 2.1, we may assume that K acts on each B_i faithfully in what follows. Since $|B_i| = p$, we have two cases: (1) K acts on B_i doubly-transitively, and (2) K acts on B_i simply primitively. We shall treat these two subcases next.

Lemma 2.3 Let X be a connected vertex- and edge-transitive graph of order 3p, and $\overline{X} = \{B_0, B_1, B_2\}$ be a complete block system of A = AutX. If K, the kernel of the action of A on \overline{X} , acts doubly transitively on a block, then X is arc-transitive. That is, there are no 1/2-transitive graphs of order 3p for which K acts doubly transitively on a block.

Proof: By the classification of 2-transitive groups (see [4], for example), it is easy to check that every 2-transitive group has at most two non-equivalent 2-transitive representations. So, without loss of generality, we may assume that K^{B_0} and K^{B_1} are equivalent. Since \overline{X} is edge-transitive, all three groups K^{B_0} , K^{B_1} and K^{B_2} are equivalent to each other. Hence, for any vertex $v_0 \in B_0$, the stabilizer K_{v_0} must fix a vertex v_1 in B_1 , and a vertex

 v_2 in B_2 . By the transitivity of K_{v_1} on $B_1 - \{v_1\}$, either v_0 is adjacent to every vertex in B_1 , every vertex in $B_1 - \{v_1\}$, or only v_1 . Thus, the induced bipartite graph $\langle B_0, B_1 \rangle$ is either $K_{p,p}$, $K_{p,p}$ minus a 1-factor, or a 1-factor. By the edge-transitivity of \overline{X} , X is either $K_{p,p,p}$, $K_{p,p,p}$ minus pK_3 , or of degree 2. In all these cases, X is arc-transitive.

We now consider the case that K acts on B_i simply _rimitively. Then $K^{B_i} < AGL(1, p)$ is solvable. So K has only one transitive representation of degree p, and for any $v \in B_i$, $K_v < Z_{p-1}$ is semiregular on $B_i - \{v\}$. Furthermore, the Sylow *p*-subgroup of K^{B_i} is normal in K^{B_i} . Since K acts on B_i faithfully, the Sylow *p*-subgroup P of K is normal, and then is characteristic, in K, implying $P \leq A$. Since |P| = p, P is cyclic. We will use this information later.

In the next proposition, we determine the factor group $\overline{A} = A/K$.

Proposition 2.4 If X is a 1/2-transitive graph of order 3p with three blocks of length p, then $\overline{A} \cong Z_3$.

Proof: By Proposition 1.4, there is no 1/2-transitive graph of prime order, which implies that \overline{X} is connected. By Proposition 1.1, $\overline{X} \cong K_3$ so that $\overline{A} \cong S_3$ or Z_3 . Assume that $\overline{A} \cong S_3$. Let P be the Sylow p-subgroup of K. Then P is normal in A and is cyclic of order p by the information above. Put $C = C_A(P)$. We have A/C is isomorphic to a subgroup of Aut $P = Z_{p-1}$, so that $A' \leq C$. Since $A/K \cong S_3$, $A'K/K \cong Z_3$. Hence 3 divides |A'|, and then 3 divides |C|. Assume that $P = \langle g \rangle$. Take $h \in C$ with o(h) = 3. Set $H = \langle g, h \rangle$. Since $h \in C = C_A(P)$, h and g commute. Then $H \cong Z_3 \times Z_p \cong Z_{3p}$ is a regular subgroup of A. By [3, Lemma 16.3], X is a Cayley graph of Z_{3p} . Finally, by Proposition 1.3, X is arc-transitive, a contradiction.

Now we give an example via the next theorem. We need the concept of metacirculant defined in [2].

Let $n \ge 2$. A permutation on a finite set is said to be (m, n)-semiregular if it has m cycles of length n in its disjoint cycle decomposition. We shall be sloppy and refer to the orbits of the group $\langle \alpha \rangle$ generated by α as the orbits of α . A graph X is an (m, n)-metacirculant if it has an (m, n)-semiregular automorphism α together with another automorphism β normalizing α and cyclically permuting the orbits of α . Therefore, we may partition the vertex-set of an (m, n)-metacirculant into the orbits $B_0, B_1, \ldots, B_{m-1}$ of α , where $B_i^{\beta} = B_{i+1}$ for all $i \in Z_m$. We shall refer to the orbits of α as the blocks of the metacirculant graph. It should be pointed out that the blocks of a metacirculant graph need not be blocks of imprimitivity of the automorphism group of the graph.

Recall that a *circulant* graph is a Cayley graph on a cyclic group. Using additive notation for the underlying cyclic group, the symbol S of a circulant is defined by $S = \{j: u_0 u_j \text{ is an} edge of the circulant graph\}$. If $S_0 \subseteq Z_n \setminus \{0\}$ is the symbol of the subcirculant $\langle B_0 \rangle$ and, for all $i \in Z_m \setminus \{0\}, T_i \subseteq Z_n$ is the symbol of the bipartite subgraph $\langle B_0, B_i \rangle$, then there exists an $r \in Z_n^*$, where Z_n^* denotes the multiplicative group of units in Z_n , such that for all $j \in Z_m$, the symbol of $\langle B_j \rangle$ is $r^j S_0$ and the symbol of the bipartite graph $\langle B_j, B_{j+i} \rangle, i \in Z_m$, is $r^j T_i$. Moreover, for all $i \in Z_m$, we have $T_{m-i} = r^{m-i}(-T_i)$. Thus, the metacirculant graph X is completely determined by the $\lfloor (m+4)/2 \rfloor$ -tuple $(r; S_0, T_1, T_2, \ldots, T_{\lfloor m/2 \rfloor})$ which is called a *symbol* of X. (For a more detailed discussion of metacirculants, the reader is referred to [2].)

Now let p be a prime and $p \equiv 1 \pmod{3}$. Assume that u is an element of order 3 in Z_p^* . We use H_{3p} to denote the unique non-abelian group of order 3p, that is,

$$H_{3p} = \langle \alpha, \beta \mid \alpha^p = 1, \beta^3 = 1, \alpha^\beta = \alpha^u \rangle.$$

Definition Let p be a prime with $p \equiv 1 \pmod{3}$. Let d > 1 be a divisor of (p-1)/3. Let $T = \langle t \rangle$ be the subgroup of Z_p^* of order d. Let $r \in Z_p^* \setminus T$ be a 3-element with $r^3 \in T$. We use M(d; 3, p) to denote the (3, p)-metacirculant graph with symbol $(r; \emptyset, T)$.

Theorem 2.5 If $(d, p) \neq (2, 7)$ or (3, 19), then the graph M(d; 3, p) is a 1/2-transitive graph of order 3p and of degree 2d. This graph is independent of the choice of r. The automorphism group A = AutM(d; 3, p) is isomorphic to a semidirect product of Z_p and Z_{3d} , and A acts regularly on the edge set of M(d; 3, p).

Proof: Checking the vertex-primitive graphs of order 3p listed in [7], we know that M(2; 3, 7) and M(3; 3, 19) are the only vertex-primitive (3, p)-metacirculants and both of them are arc-transitive. Suppose now that $p \ge 11$ and $d \ne 3$ if p = 19.

Assume that $B_i = \{x_j^i \mid j = 0, 1, ..., p-1\}$, i = 0, 1, 2, are the three blocks of X = M(d; 3, p) as a metacirculant. It is easy to see that the following mappings α, β and γ are automorphisms of X:

$$\begin{array}{c} \alpha \colon x_{j}^{i} \mapsto x_{j+1}^{i} \\ \beta \colon x_{j}^{i} \mapsto x_{rj}^{i+1} \\ \gamma \colon x_{j}^{i} \mapsto x_{tj}^{i}. \end{array}$$

Assume that $3^e || d$. Then $o(\alpha) = p$, $o(\gamma) = d$ and $o(\beta) = 3^{e+1}$. Set $P = \langle \alpha \rangle$, $L = \langle \alpha, \gamma \rangle$, $M = \langle \beta, \gamma \rangle$ and $G = \langle \alpha, \gamma, \beta \rangle$. We can see that $P \triangleleft G$, G is a semidirect product of P and M, and the centralizer of P in G is P itself. Thus, $M \cong G/P$ is isomorphic to a subgroup of Aut $P \cong Z_{p-1}$, so that in particular, $M = \langle \beta \gamma \rangle$ is cyclic. Also it is easy to see that X is G-vertex-transitive and G-edge-transitive.

To prove that X is not arc-transitive, first we claim that A has a block of length p. If not, A is either primitive, or imprimitive but only has blocks of length 3 on the vertex set of X. By the reason mentioned at the beginning of the proof, assuming that $p \ge 11$ and $d \ne 3$ for p = 19, we have that X is vertex-imprimitive and A has only blocks of length 3. By a result in the next section, there are no 1/2-transitive graphs having this property, so that X must be arc-transitive. By a result in [7] the only arc-transitive graphs, which are not vertex-primitive and whose automorphism groups do not have a block of length p, have automorphism groups A, with $PSL(2, 2^{2^*}) \le A \le P\Gamma L(2, 2^{2^*})$, and $p = 2^{2^*} + 1$ being a Fermat prime. In this case 3 does not divide $p - 1 = 2^{2^*}$, so this case cannot occur.

We have proved that A has a block of length p. Since the only blocks of length p of G, which is a subgroup of A, are B_i , i = 0, 1, 2, they must be blocks of A too. Let K be

the kernel of A acting on $\overline{X} = \{B_0, B_1, B_2\}$. By the same argument as in the proof of Lemma 2.3, we know that K is not doubly-transitive on B_i . This implies that the Sylow p-subgroup of K, which is P defined above and generated by α , is normal in A. Assume that X is arc-transitive. Noting that X is not isomorphic to the multipartite complete graph $K_{p,p,p}$, by Theorem 3 in [7], $X \cong G(3p, d)$ defined in [7]. By Example 3.4 in [7], $A = \operatorname{Aut}G(3p, d) \cong (Z_p.Z_d).S_3$, where G.H denotes an extension of G by H, and A contains a cyclic subgroup of order 3p. It follows that the order of a Sylow 3-subgroup of A is 3^{e+1} , where $3^e || d$, and that the centralizer of the Sylow p-subgroup P contains an element of order 3. Since $o(\beta) = 3^{e+1}$, $\langle \beta \rangle$ is the Sylow 3-subgroup of A. It follows that β^{3^e} and α commute. However, it is not the case, a contradiction. This shows that X is 1/2-transitive as required.

It is not difficult to show that different choices of r correspond to isomorphic graphs. We leave this as an exercise for the reader.

Now we determine the automorphism group $A = \operatorname{Aut} M(d; 3, p)$. Since A is an extension of the kernel K by Z_3 , and K is an extension of P by the stabilizer K_v of $v = x_0^0$ in K, it is easy to see that $K_v \cong T$. This shows that $K \cong L$ defined before. Note that β is not in K and is a 3-element, implying that $A = \langle K, \beta \rangle = \langle L, \beta \rangle = G$, as desired. It follows that $A = G \cong Z_p Z_{3d}$ acts regularly on the edge set of X.

(Note that if $3 \not| d$, then M(d; 3, p) is a Cayley graph on H_{3p} with respect to $S = \{\beta \alpha^i \mid i \in T\} \cup \{\beta^2 \alpha^{-u^2 i} \mid i \in T\}$, while if $3 \mid d$, M(d; 3, p) is not a Cayley graph.)

Theorem 2.6 Let X be a 1/2-transitive graph of order 3p. If AutX acts imprimitively on V(X) and has a block of length p, then X is isomorphic to M(d; 3, p) for some divisor d of $\frac{p-1}{3}$, where $(d, p) \neq (2, 7)$ or (3, 19).

Proof: Assume that $\overline{X} = \{B_0, B_1, B_2\}$ is a complete block system of $A = \operatorname{Aut} X$ and that K is the kernel of A acting on \overline{X} .

(1) We claim that X is connected. If not, every connected component has either p or 3 vertices, and is also 1/2-transitive. But by Proposition 1.4, there are no 1/2-transitive graphs with a prime number of vertices.

(2) It follows from Proposition 1.1 and Proposition 2.4 that there are no edges in any induced subgraph $\langle B_i \rangle$, the factor graph \overline{X} is a triangle, and the factor group $\overline{A} = A/K$ is isomorphic to Z_3 .

(3) By the information preceding Proposition 2.4 we have that the Sylow *p*-subgroup P of K is cyclic and normal in A.

(4) We claim that X is a (3, p)-metacirculant. Let $P = \langle \alpha \rangle$. Then α is a (3, p)semiregular automorphism of X. Since $A/K \cong Z_3$, any element $\beta \in A \setminus K$ permutes $\overline{X} = \{B_0, B_1, B_2\}$ cyclically. Replacing it by its suitable power, we may assume that β is a 3-element. Hence, by definition, X is a (3, p)-metacirculant. Assume that $\alpha^{\beta} = \alpha^{r}$.
Then r is a 3-element in $Z_p^* \cong Z_{p-1}$.

Now we may label the vertices of X as follows: for i = 0, 1, 2, let $B_i = \{x_0^i, x_1^i, \dots, x_{p-1}^i\}$, and we may assume that $x_j^{i\alpha} = x_{j+1}^i$ and $x_j^{i\beta} = x_{rj}^{i+1}$ for all i and j.

(5) Finally, we claim that $X \cong M(d; 3, p)$ for a divisor d > 1 of $\frac{p-1}{3}$. Since there are no edges in $\langle B_i \rangle$ for any *i*, X has a symbol of the form $(r; \emptyset, S)$. Since X has an odd number of vertices, the degree of X is even, say 2d. Fix a vertex $v = x_0^0$. The neighborhood of v in X is $X_1(v) = X_1^{B_1}(v) \cup X_1^{B_2}(v)$, where $X_1^{B_i}(v) = X_1(v) \cap B_i$.

Consider the stabilizer A_v of v in A. Since $A/K \cong Z_3$, A_v fixes B_i setwise for each i. So $A_v = K_v$. Since K is solvable, K has only one permutation representation of degree p, and K is a Frobenius group or K = P. So K_v must fix one vertex in B_1 and one vertex in B_2 . Without loss of generality, we may assume that K_v fixes $v_1 = x_0^1$ in B_1 and $v_2 = x_0^2$ in B_2 . By the edge-transitivity of X, A_v has two orbits in $X_1(v)$, which must be $X_1^{B_1}(v) = \{x_j^1 \mid j \in S\}$ and $X_1^{B_2}(v) = \{x_j^2 \mid j \in -r^2S\}$. Since $A_v = K_v$, the action of A_v on B_1 is equivalent to the action of K_v on B_1 , and then to the action of K_{v_1} on B_1 . Since K^{B_1} is a Frobenius group, the subscripts of the vertices in $X_1^{B_1}(v)$, which is an orbit of K_{v_1} , is a coset of a subgroup of Z_{p-1} of order d, say aT, where $T \leq Z_{p-1}$, |T| = d and $a \neq 0$. So we have proved d is a divisor of p-1. If d = 1, then X has degree 2, contradicting the fact that X is not arc-transitive. So d > 1. If d does not divide $\frac{p-1}{3}$, then $r \in T$. Set $\nu: x_j^i \mapsto x_{r-1j}^i$ for all i and j. Then $\nu \in A$, and $\beta \nu$ maps x_j^i to x_j^{i+1} . Thus $\beta \nu$ is an automorphism of X of order 3 which commutes with α . This implies that $\langle \alpha \beta \nu \rangle$ is a regular subgroup of A which is isomorphic to Z_{3p} . By Proposition 1.5, X is arc-transitive which is a contradiction. So we have $d|\frac{p-1}{3}$. Finally, noticing that two metacirculants with symbols $(r; \emptyset, T)$ and $(r; \emptyset, aT)$ are isomorphic, we have the desired result.

3. A has a block of length 3

The results of the previous section leave us with the case where A has a block of length 3 and no blocks of length p. We assume that $\overline{X} = \{B_i \mid i \in Z_p\}$ is a complete block system of A, and that K is the kernel of the action of A on \overline{X} . Set $\overline{A} = A/K$. We also use \overline{X} to denote the corresponding block graph.

By Lemma 2.2, if K acts on B_i unfaithfully, then $X \cong \overline{X} \wr 3K_1$, where \overline{X} is an arctransitive graph of order p. Thus, X is also arc-transitive, so that we may assume that K acts on each B_i faithfully. Thus, we have $K \cong S_3$, or $K \cong Z_3$, or K = 1. We also know that there are no edges inside any B_i .

Lemma 3.1 The group \overline{A} is insolvable, and the graph \overline{X} is isomorphic to K_p .

Proof: If \overline{A} is solvable, then \overline{A} has a normal subgroup $\overline{H} = H/K$ of order p since \overline{A} is of degree p. Let $P \in Syl_p(H)$. Then it is easy to check that $P \triangleleft H$, and hence $P \triangleleft A$. So A has a block of length p, contradicting our assumption.

Since \overline{A} is insolvable and transitive of degree p, the well known theorem of Burnside implies that it is doubly transitive. Since there is no 1/2-transitive graphs of order 3, \overline{X} is connected. Hence, \overline{X} must be isomorphic to K_p .

Lemma 3.2 The group K = 1.

Proof: If $K \neq 1$, either $K \cong S_3$ or $K \cong Z_3$. Hence, K has a characteristic subgroup N of order 3 which is normal in A. Put $C = C_A(N)$. Then A/C is isomorphic to a subgroup of Aut $K \cong Z_2$. This implies that every element of order p in A is contained in C. It follows that A has a subgroup isomorphic to Z_{3p} , and this subgroup must be regular. Therefore, X is a Cayley graph on an abelian group. By Proposition 1.3, X is arc-transitive, which is a contradiction.

We may now assume that K = 1. In this case, $A \cong \overline{A}$ as abstract groups. But as permutation groups, \overline{A} is a group of degree p and A is of degree 3p. Since \overline{A} is insolvable, it is doubly-transitive as observed above. Then \overline{A} is known by the finite simple group classification.

If G is a doubly-transitive group of degree p, one necessary condition for G to be the automorphism group of a 1/2-transitive graph of order 3p (as abstract groups) is that the point stabilizer G_{α} has a subgroup of index 3. A table of 2-transitive groups of degree p with simple socle is given in [7], and after checking all (insolvable) doubly-transitive groups of degree p listed there, the only possible groups have socle either PSL(3, 2), p = 7, or $PSL(2, 2^{2^s})$, where s > 0 and $p = 2^{2^s} + 1$ is a Fermat prime.

There are no 1/2-transitive graphs with fewer than 27 vertices [1], so we only need to consider the latter case, where the socle is $PSL(2, 2^{2^s})$ and $p = 2^{2^s} + 1$ is a Fermat prime. In this case, noting that $|P\Gamma L(2, 2^{2^s}) : PSL(2, 2^{2^s})| = 2^s$, the stabilizer of \overline{A} having a subgroup of index 3 implies that the stabilizer of $PSL(2, 2^{2^s})$ also has such a subgroup. This is true since $2^{2^s} - 1$ is divisible by 3. Hence $PSL(2, 2^{2^s})$ is vertex-transitive on X.

Lemma 3.3 If $PSL(2, 2^{2^*}) \le A \le P\Gamma L(2, 2^{2^*})$, A is not the automorphism group of any 1/2-transitive graph.

Proof: As noted above $PSL(2, 2^{2^*})$ is vertex-transitive. Then since all orbitals are self-paired (see [7]) it follows that any edge-transitive graph X admitting the group is arc-transitive.

Summarizing the result of Section 2 and Section 3, we get the main theorem of this paper.

Theorem 3.4 A graph of order 3p is 1/2-transitive if and only if it is a (3, p)-metacirculant graph of the form M(d; 3, p), where $(d, p) \neq (2, 7)$ or (3, 19).

References

- 1. Alspach, B., Marušič, D., and Nowitz, L., "Constructing graphs which are 1/2-transitive graphs," J. Austral. Math. Soc. Ser. A, to appear.
- Alspach, B. and Parsons, T.D., "A construction for vertex-transitive graphs," Canad. J. Math. 34 (1982), 307-318.
- 3. Biggs, N., Algebraic Graph Theory, Cambridge University Press, 1974.
- 4. Cameron, P.J., "Finite permutation groups and finite simple groups," Bull. London Math. Soc. 13 (1981), 1-22.

1/2-TRANSITIVE GRAPHS OF ORDER 3p

- 5. Chartrand, G. and Lesniak, L., Graphs & Digraphs, Wadsworth and Brooks/Cole, Monterey, 1979.
- 6. Huppert, B., Endliche Gruppen I, Springer-Verlag, 1967.
- 7. Wang, R.J. and Xu, M.Y., "A classification of symmetric graphs of order 3p," J. Combin. Theory Ser. B, 58 (1993), 197-216.
- 8. Wielandt, H., Finite Permutation Groups, Academic Press, New York, 1964.