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Twisted Extensions of Spin Models
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Abstract. A spin model is one of the statistical mechanical models which were introduced by V.F.R. Jones to
construct invariants of links. In this paper, we give a new construction of spin models of size 4n from a given
spin model of size n. The process is similar to taking tensor product with a spin model of size four, but we add
some sign exchange. This construction also gives symmetric four-weight spin models of the type introduced by
E. Bannai and E. Bannai.
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1 Introduction

A spin model is one of the statistical mechanical models which were introduced by V.F.R.
Jones in [9] in connection with his invariant 'Jones polynomial' [7, 8]. The main importance
of spin models comes from the fact that every spin model gives an invariant of knots and links
through its partition function. Precise explanations about spin models and corresponding
link invariants can be found in [9, 2, 3].

A spin model is essentially an n x n-matrix W, whose entries Wa,B are non-zero complex
numbers, such that (for a, B,y = 1, ...,n)

The second equation is known as the 'star-triangle relation'. Remark that W may be non-
symmetric in this paper. Kawagoe-Munemasa-Watatani [13] showed that the symmetric
condition in [9] is not necessary to construct invariants of oriented links.

As easily shown, the tensor product W1 O W2 of two spin models W1 and W2 becomes a
spin model. So we can obtain a spin model of size 4n from an arbitrary spin model W by
taking its tensor product with a spin model of size four. In this paper, we show that we can
add some 'twist' (sign exchange).

Let W be a spin model of size n. For an n-tuple e = ( e 1 , . . . , en) with e, = ± 1 ((' = 1,
. . . , n), let W be the matrix whose entries are given as
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Theorem 1 Let W be a spin model, and let e = ( e 1 , . . . ,en) withei = ±1 (i = 1 , . . . , n).
Then both U and V, defined above, become spin models.

Remark We can replace W' by wW' in the matrix U of Theorem 1, where w> is one of the
4-th roots of unity. Clearly U and V become symmetric if W is symmetric.

When ei, = +1 (i = 1, ...,n), these models split into the tensor product of W and the
following spin models:

Otherwise, U and V might possibly give new spin models.

Question. Can one find a new spin model by the above construction of U (or V) starting
from a known spin model W?
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Using W and W', construct the following matrices U, V of size 4n:

2 Lemmas

Theorem 1 is easily obtained from the following two Lemmas.

Lemma 2 Let W and W' be matrices of size n, and let U be the following matrix of
size 4n.

Then U is a spin model if and only if the following conditions hold (for all a, B, y =
1 , . . . , « ) :
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3 Proof of Lemmas

First let us prove Lemma 2. The conditions (1), (2) for the matrix U become
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Lemma 3 Let W and W' be matrices of size n, and let V be the following matrix of size 4n.

Then V is a spin model if and only if the following conditions hold (for all a, ft, y =
1 , . . . , « ) :

We write down the above conditions in terms of W and W' for various values of A, u
v. Put X = { 1 , . . . , n}, and identify x e X with (x, 00), n + x with (x, 01), 2n + x
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with (x, 10) and 3n + x with (x, 11), where the second components 00, 01, 10 and 11
belong to (Z/2Z)2. This group acts by translation on the rows and columns of U, V
and leaves these matrices invariant. Hence it is enough to consider OT and ST for A. in
X = (x,00) \x = 1 , . . . , n } .

Now choose arbitrary a, B, y e X.
First we consider the equations OT(A, u). For a,B e X, OT(a, B) becomes

and OT(a, n + B) becomes

Also OT(a, 2n + B) becomes

and OT(or, 3n +B) becomes

Remark that (15) and (16) always hold. If OT(X, u) holds for all A, u with A. = u, then
(13) and (14) hold for all a, ft e X with a = B, so we get (3). Conversely, if (3) holds for
all a, B e X with a = B, then (13) and (14) hold for a = B. Since (14) holds also for
a = ft, we get OT (A, u) for all X, u, with X = u.

Next we consider ST(A, u, v). ST(a, B, y) becomes

i.e.
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this coincides with (4). ST(a, B, 2n + y) becomes

i.e.

this is (5). ST(a, 2n + B, y) becomes

i.e.

this is (6). ST(a, 2n + B, 2n + y) becomes

i.e.

this is (7). Thus, if ST(A, u, v) holds for all A, u, v, then W and W' satisfy (4), (5), (6), (7).
For the proof of the converse, we must show ST(A, u, v) for all A, u, v. We may assume
A. e X by the above remark on (Z/2Z)2-symmetry. Moreover if we perform a 01-translation
on u, this amounts to change of the sign of W'x B, Wa B, Wy B whenever these matrices appear
in ST(A, u, v). It is easy to see that these changes of sign do not modify the four equations
given above. A similar argument can be applied to a 01-translation on v, and clearly using
these translations we may reduce all the remaining cases to the above four cases.

Let us now prove Lemma 3. Observe that V can be obtained from U by performing a
10-translation on the columns, and can also be obtained from U by 10-translation on the
rows. Thus if we proceed as in the proof of Lemma 2 (with the same notations), we shall
obtain OT(A, u) for V from OT(A, u) for U by permuting the summands in the left-hand
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side, and this yields the same equation (3) (i.e. (8)). Similarly, the left-hand sides of the
four cases of ST(A, u, v) are the same for U and for V up to permutation of terms. The
right-hand sides are easily seen to be those of (9)-(12). Finally the symmetry arguments
used for U can also be applied to V.

4 Spin models coining from Hadamard matrices

We have constructed new spin models from Hadamard graphs [14]. Let H be a Hadamard
matrix of order n = 4m, i.e. an n x n-matrix with ±1 entries such that H'H = nl, Let A
be the Potts model of size n;

where J denotes the n x n-matrix with all entries 1, and a, b are complex numbers such
that

^—

where O is one of the roots of 0 + 0 + n — 2 = 0. Using H and A, construct the
following matrix;

where w denotes one of the 4-th roots of unity. As shown in [14], the above matrix becomes
a symmetric spin model.

The partition function of the above model was obtained by F. Jaeger. At first he proved
that the partition function does not depend on the choice of the Hadamard matrix H [4],
and secondly he obtained an explicit formula [5]. In fact, the partition function for a link L
can be written in terms of Jones polynomials [7] of sublinks of L.

The link invariant associated with the above model is somewhat stronger than Jones
polynomial. In fact, Jones [12] constructed a pair ( L 1 , L2) of two links which can be
distinguished by the above invariant but not by the Jones polynomial. In the construction,
he used his recent method of commuting transfer matrices [11].

Jones informed us [12] that the above invariant is similar to the invariant given by Rolfsen
[15]. In fact, Rolfsen's invariant and our invariant are the same for links having at most two
components, and so the examples of links given in [6] also give examples of links which
are distinguished by our invariant but not by the Jones polynomial.

Here we give a variation of Lemma 2 which covers the above spin model WH.

Lemma 4 Let W and W' be matrices of size n, and let U be the following matrix of size
4n.
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Then U is a spin model if and only if the conditions (17)-(24) hold (for all a, B, y =
1 , . . . , n ) ;

Proof: We shall proceed as in the proof of Lemma 2. A 01-translation on the columns
corresponds as before to a change of sign of W'. But now a simultaneous 10-translation on
rows and columns amounts to the transposition of W', and similarly for 11-translations. So
provided we close our set of equations by transposition of W', we can restrict our attention
to the same cases studied for Lemma 2 by applying the same symmetry arguments. We
get (17) as we got (3) in Lemma 2 (transposing W' in the second equation yields an
equivalent equation). We also obtain (18), (19), (20), (21) from the proof of (4), (5), (6),
(7) by transposing suitable occurrences of W'. Then (22), (23), (24) are obtained from (19),
(20), (21) by transposition of every occurrence of W. D

In [14], we proved that the matrix WH given above becomes a spin model. Here we give
an alternating proof of this fact by using Lemma 4. The matrix U in Lemma 4 becomes
WH for W = A, W' = WH. We would like to show that the matrices W and W' satisfy
(17)-(24). We may assume w = 1 since all equations are invariant under multiplication
of W' by w. Since W = A is a spin model and since W' = H is a Hadamard matrix, the
equations (17) and (18) are clearly satisfied.

Let us prove (19). If a = B, then the left hand side of (19) becomes

and the right hand side becomes r.h.s. = Aa,B = a, so (19) holds by our choice of a and b.



When B e X+, this becomes (1 /Vn)(a - b), and the right hand side becomes b ', so (20)
holds. In the same way, we can show (20) when B e X_.

The proof of (21) is the same as that of proof (20), but in this case X± are defined with
respect to B and y. Now the proof of (19), (20) and (21) also gives a proof of (24), (23)
and (22), since the transpose of W = H is also a Hadamard matrix.

The left hand side of (20) becomes

so (20) holds. Now fix a, y e X with a = y. We partition X into subsets X+ and X_:

So (19) holds. The above computation also works well in the case y e X_ (in this case
signs of both sides are changed).

Let us prove (20). If a = y, then (20) becomes

and the right hand side of (19) becomes

When y e X+, this becomes

Since H is a Hadamard matrix, we have \X+\ = \X-\ = n/2 and X = X+ U X_. The left
hand side of (19) becomes

Now fix a, ft e X with a =B. We. partition X = [ 1 , . . . , n] into two subsets X+ and X_:
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5 Symmetric four-weight spin models

E. Bannai and E. Bannai [1] introduced four-weight spin models, which generalize the
ordinary spin models given by Jones. In this section, we describe a relation between our
construction and four-weight spin models.

A four-weight spin model is defined in [ 1 ] as follows. Let X be a set of n elements, and w,
i = 1, 2, 3,4) be functions on X x X to the complex numbers. Then (X, w1, w2, w3,, w4)
is a four-weight spin model if the following conditions are satisfied (for all a, B, y e X):

Lemma 5 Let W and W' be symmetric matrices of size n with non-zero complex entries.
Put X = ( 1 , . . . , n} and define Wj (i = 1, 2, 3,4) as

Then (X, w1, w2, w 3 , w 4 ) is a four-weight spin model if and only if the following matrix V
is a spin model.

Proof: If V is a spin model, Lemma 3 implies

Therefore (X, w1 w2, w3, w4) becomes a four-weight spin model.
Conversely, assume (X, w1, W 2 , w 3 , w4) is a four-weight spin model. Then conditions

(8) and (10) in Lemma 3 hold. But the conditions (9), (10), (11) and (12) in Lemma 3
are equivalent to each other under the assumption (8) by [1] Theorem 1. So V becomes a
spin model. n

Remark Theorem 1 and Lemma 5 imply a construction of symmetric four-weight spin
models from an ordinary spin model. Moreover we can conclude that every symmetric
four-weight spin model comes from an ordinary symmetric spin model.
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Problem. Give a formula for the partition function of the spin model U, V in Theorem 1,
in terms of the partition function of W.
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