A Note on Varieties of Groupoids Arising from *m*-Cycle Systems^{*}

DARRYN E. BRYANT

Centre for Combinatorics, Department of Mathematics, The University of Queensland, Queensland 4072, Australia

Received November 4, 1993; Revised July 20, 1994

Abstract. Decompositions of the complete graph with *n* vertices K_n into edge disjoint cycles of length *m* whose union is K_n are commonly called *m*-cycle systems. Any *m*-cycle system gives rise to a groupoid defined on the vertex set of K_n via a well known construction. Here, it is shown that the groupoids arising from all *m*-cycle systems are precisely the finite members of a variety (of groupoids) for m = 3 and 5 only.

Keywords: m-cycle system, variety, equationally defined, groupoid

1. Closed trail systems and groupoids

A closed trail in a graph G is a connected subgraph all of whose vertices have even degree. The closed *m*-trail (closed trail of length *m*) with edges $\{x_1, x_2\}, \{x_2, x_3\}, \ldots, \{x_m, x_1\}$ is denoted by $\langle x_1, x_2, \ldots, x_m \rangle$. A traverse of a closed *m*-trail is an Euler walk in the trail. The traverse with vertex sequence $x_1, x_2, \ldots, x_m, x_1$ is denoted by the *m*-tuple (x_1, x_2, \ldots, x_m) . Note, for example, that (a, b, c, a, d, e) and (a, b, c, a, e, d) are distinct traverses of the 6-trail $\langle a, b, c, a, d, e \rangle = \langle a, b, c, a, e, d \rangle$.

A closed trail system of order n is a pair (S, T) where S is the vertex set of a complete graph $G \cong K_n$ (|S| = n) and T is a set of edge disjoint closed trails (in G) whose union is G. If the closed trails of a closed trail system are all of the same length, m say, then the system is called a *closed m-trail system*. Two obvious necessary conditions for the existence of a closed m-trail system of order n are:

(1) n is odd; and

(2) n(n-1)/2m is an integer.

Closed *m*-trail systems are also known as *neighbour designs* and it has been shown (see [3]) that the above necessary conditions for the existence of a closed *m*-trail system of order n are also sufficient.

A closed *m*-trail with all vertices of degree 2 is an *m*-cycle. A cycle system (S, C) is a closed trail system in which all the closed trails are cycles. If there exists an *m*-cycle system of order *n* then, as well as the above two conditions it is also necessary that $n \ge m$ (if n > 1). Whether or not these three necessary conditions are also sufficient for the existence of an *m*-cycle system is in general an unsolved problem. For a survey of cycle systems see [5].

Given a closed trail system (S, T) and a traverse $\tau(t)$ of each trail $t \in T$, we can define a binary operation (denoted by juxtaposition) on S as follows:

- (1) $x^2 = x$, for all $x \in S$; and
- (2) if $x \neq y, xy = z$ and yx = w if and only if $(\dots, w, x, y, z, \dots) \in \tau(T)$, where $\tau(T) = \{\tau(t) : t \in T\}$.

^{*}Research supported by Australian Research Council grant A49130102.

Clearly, if (S, T) is a cycle system then the binary operation is independent of the choice of the traverses. However, this is not the case in general.

It is easy to verify that any groupoid (S, \cdot) obtained in the manner described above satisfies the identities $x^2 = x$, (xy)y = x and the quasi-identity $xy = x \rightarrow x = y$. It is not difficult to see that the converse of this is also true. That is, any finite groupoid satisfying the above identities and quasi-identity gives rise to a closed trail system. The closed trail system (S, T)is constructed from the groupoid (S, \cdot) by letting $\langle \ldots, x(yx), yx, x, y, xy, y(xy), \ldots \rangle \in T$ for each distinct $x, y \in S$. The quasi-identity $xy = x \rightarrow x = y$ is necessary to ensure that T consists entirely of closed trails. For example, if the quasi-identity is not satisfied, the (open) trail consisting of the edges $\{a, b\}$ and $\{b, c\}$ could be included in the set T; it would be denoted by $\langle a, b, c, b \rangle$. These ideas were first introduced in 1970 by Kotzig [4].

This note deals with universal algebraic properties of the groupoids corresponding to m-cycle systems. For the standard definitions and results of universal algebra which are used here see the text [2]. If the groupoids corresponding to all finite m-cycle systems are precisely the finite members of a variety then we say that m-cycle systems are equationally defined. In this paper we will prove the following theorem:

Theorem 1.1 The only values of m for which m-cycle systems can be equationally defined are m = 3 and m = 5.

For m = 6 and for all $m \ge 8$, it has been shown [1] that there is an *m*-cycle system whose corresponding groupoid has a homomorphism onto a groupoid which does not correspond to an *m*-cycle system. In fact, the result was proven for a special class of *m*-cycle systems (called 2-perfect) whose corresponding groupoids are quasigroups. The result means that for these values of *m*, *m*-cycle systems cannot be equationally defined. Hence we need only consider the cases m = 3, 4, 5 and 7.

2. The m = 3, 5 and 7 cases

The identities $x^2 = x$, (xy)y = x and xy = yx equationally define 3-cycle systems. The identity xy = yx ensures that the closed trails are of length 3, and hence are cycles. It also implies that the quasi-identity $xy = x \rightarrow x = y$ holds;

$$xy = x \rightarrow yx = x \rightarrow (yx)x = x^2 \rightarrow y = x.$$

The identities $x^2 = x$, (xy)y = x and x(yx) = y(xy) equationally define 5-cycle systems. The identity x(yx) = y(xy) ensures that the closed trails are of length 5, and hence are cycles. It also implies that the quasi-identity $xy = x \rightarrow x = y$ holds;

$$xy = x \rightarrow x(yx) = yx \rightarrow (x(yx))(yx) = (yx)^2 \rightarrow x = yx \rightarrow x^2 = (yx)x \rightarrow x = y.$$

We now show that 7-cycle systems cannot be equationally defined. We construct a 7-cycle system of order 49 whose corresponding groupoid G_{49} has a homomorphism onto a groupoid G_7 of order 7 which does not correspond to a 7-cycle system. Let G_7 be the groupoid corresponding to the closed 7-trail system (\mathbb{Z}_7, T) where

$$T = \{ \langle 0, 1, 3, 0, 4, 5, 6 \rangle, \langle 1, 4, 6, 1, 2, 3, 5 \rangle, \langle 2, 0, 5, 2, 4, 3, 6 \rangle \}.$$

For each $(a, b, c, a, d, e, f) \in \{(0, 1, 3, 0, 4, 5, 6), (1, 4, 6, 1, 2, 3, 5), (2, 0, 5, 2, 4, 3, 6)\}$ and each $(x, y) \in \mathbb{Z}_7 \times \mathbb{Z}_7$ let

$$\langle (a, x), (b, y), (c, x + y), (a, x + 1), (d, y), (e, x), (f, y) \rangle \in C.$$

Also, for each $a \in \mathbb{Z}_7$, let

$$\langle (a, 0), (a, 1), (a, 2), (a, 3), (a, 4), (a, 5), (a, 6) \rangle,$$

 $\langle (a, 0), (a, 2), (a, 4), (a, 6), (a, 1), (a, 3), (a, 5) \rangle,$ and
 $\langle (a, 0), (a, 3), (a, 6), (a, 2), (a, 5), (a, 1), (a, 4) \rangle \in C.$

Then $(\mathbb{Z}_7 \times \mathbb{Z}_7, C)$ is a 7-cycle system of order 49 (with corresponding groupoid \mathbf{G}_{49} say). Moreover, the map $(p, q) \mapsto p$ is a homomorphism from \mathbf{G}_{49} onto \mathbf{G}_7 . Hence, 7-cycle systems cannot be equationally defined.

3. The m = 4 case

It is easy to see that a groupoid corresponds to a 4-cycle system if and only if it satisfies the identities $x^2 = x$, (xy)y = x, x(yx) = xy and the quasi-identity $xy = x \rightarrow x = y$. The extra identity x(yx) = xy ensures that the closed trails have length 4 and any closed trail of length 4 is necessarily a 4-cycle. However we will show that unlike the cases m = 3 and m = 5, the quasi-identity cannot be deduced from the three identities. First we prove the following theorem:

Theorem 3.1 Any homomorphic image of a groupoid corresponding to a finite 4-cycle system is the groupoid of another 4-cycle system.

Proof: Suppose G is the groupoid corresponding to a finite 4-cycle system and suppose ϕ is a homomorphism from G onto H. We show that H corresponds to a 4-cycle system. Since ϕ is a homomorphism we need only check that the quasi-identity $xy = x \rightarrow x = y$ holds in H.

Let $a, b \in \mathbf{H}$ be distinct and suppose ab = a. Now, let $\phi^{-1}(a) = \{a_1, a_2, \dots, a_r\}$ and let $b^* \in \phi^{-1}(b)$. Now, for all $i \in \{1, 2, \dots, r\}$

$$\phi(a_ib^*) = \phi(a_i)\phi(b^*) = ab = a$$

That is, for all $i \in \{1, 2, ..., r\}$, $a_i b^* \in \phi^{-1}(a)$. Since G corresponds to a 4-cycle system, we must have $a_i b^* = a_j$ for some $j \neq i$. Hence $|\phi^{-1}(a)|$ is even; we can pair off its elements by making $\{a_i, a_j\}$ a pair if and only if $a_i b^* = a_j$ (note that $a_i b^* = a_j \leftrightarrow (a_i b^*) b^* = a_j b^* \leftrightarrow a_i = a_j b^*$). But, if $a_i, a_j \in \phi^{-1}(a)$ then

$$\phi(a_i a_j) = \phi(a_i)\phi(a_j) = a^2 = a$$

and so $a_i a_j \in \phi^{-1}(a)$. Hence, $(\phi^{-1}(a), \cdot)$ corresponds to a 4-cycle system (a subsystem of the system corresponding to G) and so $|\phi^{-1}(a)|$ is odd ... a contradiction.

We now show that 4-cycle systems cannot be equationally defined by showing that a 2-element groupoid (which clearly does not correspond to a 4-cycle system) is in the variety \mathcal{V} generated by the class of groupoids corresponding to finite 4-cycle systems. Let $(\mathbb{N} \times \{a\}, C_a)$ and $(\mathbb{N} \times \{b\}, C_b)$ be infinite 4-cycle systems. Let $C_c = \{\langle (x, a), (y, b), (x + 1, a), (y + 1, b) \rangle \mid x, y \text{ are odd}, x, y \in \mathbb{N}\}$. Then $(\mathbb{N} \times \{a, b\}, C)$ where $C = C_a \cup C_b \cup C_c$ is an infinite 4-cycle system. Let **G** be the groupoid corresponding to $(\mathbb{N} \times \{a, b\}, C)$ and consider the map $\phi: \mathbb{N} \times \{a, b\} \to \{1, 2\}$ defined by $\phi(x, a) = 1$ and $\phi(x, b) = 2$ for all $x \in \mathbb{N}$. Clearly, ϕ is a homomorphism from **G** onto a 2-element groupoid **H**.

We now show, that **G**, and hence **H**, is in \mathcal{V} . If $\mathbf{G} \notin \mathcal{V}$, then there exists an identity *I* which holds in \mathcal{V} but not in **G**. Since *I* does not hold in **G** there is a finite collection of 4-cycles in the 4-cycle system corresponding to **G** (that is, a finite partial 4-cycle system) which defines a finite partial groupoid in which *I* fails. This partial 4-cycle system can be embedded in a finite 4-cycle system, (S, D) say, see [6]. Hence, *I* fails in the finite groupoid corresponding to (S, D). This is a contradiction and so $\mathbf{H} \in \mathcal{V}$. Hence, 4-cycle systems cannot be equationally defined.

Acknowledgment

Many thanks to C.C. Lindner and R.W. Quackenbush for helpful discussions.

References

- D.E. Bryant and C.C. Lindner, "2-perfect m-cycle systems can be equationally defined for m = 3, 5, and 7 only," Algebra Universalis (to appear).
- 2. S. Burris and H.P. Sankappanavar, "A course in universal algebra," Graduate Texts in Mathematics 78, Springer-Verlag, New York, 1981.
- 3. F.K. Hwang and S. Lin, "Neighbour designs," J. Combin. Theory Ser. A 23 (1977), 302-313.
- 4. A. Kotzig, "Groupoids and partitions of complete graphs," *Combinatorial Structures and Their Applications* (Proc. Calgary Internat. Conf., Calgary, Alta), Gordon and Breach, New York (1970), 215–221.
- C.C. Lindner and C.A. Rodger, "Decompositions into cycles II: Cycle systems," in *Contemporary design theory: a collection of surveys* (eds. J.H. Dinitz and D.R. Stinson), John Wiley and Sons, New York (1992), 325-369.
- C.C. Lindner, C.A. Rodger, and D.R. Stinson, "Embedding cycle systems of even length," J. Combin. Math. Combin. Comput. 3 (1988), 65-69.
- 7. R.M. Wilson, "Decompositions of edge-colored complete graphs," Journal of Combinatorial Designs (to appear).