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Abstract. We explore the connection between polygon posets, which is a class of ranked posets with an edge-
labeling which satisfies certain 'polygon properties', and the weak order of Coxeter groups. We show that every
polygon poset is isomorphic to a join ideal in the weak order, and for Coxeter groups where no pair of generators
have infinite order the converse is also true.

The class of polygon posets is seen to include the class of generalized quotients defined by Bjorner and Wachs,
while itself being included in the class of alternative generalized quotients also considered by these authors.
By studying polygon posets we are then able to answer an open question about common properties of these
two classes.
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1. Introduction

This paper ties together topics in algebraic combinatorics (Coxeter groups), partially ordered
sets, and combinatorial games: We define, axiomatically, a family of partially ordered sets
called polygon posets. The background to this definition is the properties of the position
posets of the 'numbers game', a combinatorial game of Mozes [12]. We show how the
polygon posets are embedded in the weak order of Coxeter groups, and how they are
relevant to Coxeter group theory in various other ways.

The organization of the material is as follows.
In §2 we give a characterization of the weak order on a Coxeter group (W, S) as the

unique poset that admits an 5-labeling of its edges satisfying some simple conditions. The
class of polygon posets is defined by dropping one of these conditions. Hence the weak
order of any Coxeter group is a polygon poset, and every polygon poset is in a direct way
related to a certain Coxeter group (W, S),

The weak order is known to be a A-semilattice, though in general not a lattice. In §3 we
see that this is an easy consequence of the fact that the weak order is a polygon poset.

Define a join ideal in the weak order to be a subset I c W such that if v e I and w e W
then v A w e I, and if v,w e I and v v w exists then v v w € I. We show in §4 that every
polygon poset P is isomorphic to a join ideal in the weak order of (W, S). If all polygons
are finite, then the converse also holds.

Bjorner and Wachs [2] studied two kinds of generalizations of the ordinary concept
of quotient in Coxeter groups, which they called generalized quotients and alternative
generalized quotients. We show in §5 that the class of generalized quotients of a Coxeter
group (W, S) is contained in the class of polygon posets of (W, S), which is itself contained
in the class of alternative generalized quotients of (W, S).



§6 deals with a method for constructing examples of polygon posets. As an application of
this method, we construct, in §7, some examples that answers, negatively, some questions
of Bjb'rner and Wachs about properties of alternative generalized quotients.

For V c W we also define W$V, the sharp quotient, in §8. The sharp quotients, under
weak order, are shown to be polygon posets as well. We discuss the connection between
the existence of a finite state automaton for recognizing the language of reduced words, and
finiteness of the number of nonisomorphic sharp quotients and generalized quotients. In
§9 we use the methods of the paper to give a short finiteness proof for all Coxeter groups
such that no pair of generators commute.

Finally, we devote §10 to the position posets of the numbers game. We show that every
finite polygon poset can be realized as a position poset, but that this is not true in the infinite
case. In particular, the language defined by the legal play sequences, i.e. by the edge
labelings of upward going paths from the least element in the poset, is a greedoid for the
numbers game, which is false for polygon posets in general.

1.1. Preliminaries on strong convergence

The concept of strong convergence was introduced by Anders Bjorner, and has been thor-
oughly studied by Eriksson [10], The setting is one-player games, that is, discrete processes
where the 'player' in each position chooses among some moves, until a terminal position,
where no moves are available, is reached.

Definition 1.1 A game has the strong convergence property if, given any position p
where some play sequence leads to some terminal position t, all ways of playing from p
will terminate in t, and in the same number of moves.

The strongly convergent games are characterized in the following theorem from [10].

Theorem 1 (Polygon Property Theorem) A game has the strong convergence property if
and only if given any position where two different moves, x and y, are legal, either there
are two play sequences of the same length and beginning with x and y respectively that
result in the same position, or there are two such play sequences which can be continued
forever.

The 'polygon' that is referred to in the name 'Polygon Property Theorem' is the polygon
shape in the game graph (with the positions being nodes and the moves being directed
edges) that the two play sequences, if finite, build up. Thus, we may equivalently define
strong convergence as a property of directed graphs. Observe that posets, represented by
their Hasse diagrams, are a family of directed graphs, so strong convergence also applies
to posets; every poset is interpreted as a game, where the elements are the positions, and
where there is a move from p to q if q covers p in the poset. Suppose that the poset has a
unique least element. Strong convergence then says that if there exists a maximal element,
then it is unique, and all maximal chains are of the same length.
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A Coxeter group (or, more precisely, a Coxeter system) (W, S) is a group W together with
a distinguished set 5 of involutory generators, and relations (st)m(s,t) = e (the identity
of the group), where m(s, t) > 2, for all s, t e S. If st has infinite order in W, then
m(s, t) = oo.

Every element w e W can be represented by several different words in the alphabet
S. As is customary, we let l(w) denote the length of a reduced expression for w, i.e. a
word of minimum length, (w) will denote any reduced word for w. We let (w)(v) denote
concatenation of words, so saying that (w)<u> is reduced is another way of expressing that
v and w satisfy l(wv) = l(w) + l(v). A useful result on reduced words is the following,
see e.g. Bourbaki [4].

Lemma 2 (Exchange condition) Let w = s1 ... sr (all Si e S) be a reduced word. If
l(ws) < l(w) for some s e S, then there exists an index i for which w = s1 ... si ... srs (s
exchanged for S i).

The (right) weak order of a Coxeter group (W, S) is a partial order on the group elements,
which we will denote by >. It is defined by w2 > w1 if w2 = w1v where (w 1 ) (v ) is reduced.
We denote the poset obtained in this way by (W, S, >). The S-labeled Hasse diagram of
(W, S, >r) is equivalent to the Cayley graph of the Coxeter group, with W as node set and
an edge (w1 ,w2) labeled s & S if w2 = w1s and l ( w 2 ) = l ( w 1 ) + 1. The Hasse diagram is
always directed upwards, with e at the bottom. Sometimes we will instead use the left weak
order >L, which is the isomorphic partial order obtained by putting v to the left instead of
to the right in the definition above.

The Bruhat order on (W, S), here denoted by >B, can be defined by the following
subword property, cf. Bourbaki [4]. Let v = s1S2 ...SK be a reduced expression. Then
v >B u if and only if there is a reduced expression for u that is a subword of s1s2 • • • sk, i.e.
« = s1S2 • • • sk, where 1 < i1 < i2 < • • • < ij< < k. The weak order is weaker than Bruhat
order in the sense that w>v => w >B v. For an expository discussion of these orderings
on Coxeter groups, see [1].

A well-known feature of Coxeter groups is the existence of minimal coset representatives.
Let I = {s, t} c S, and let WI be the parabolic subgroup generated by /. Then for any
given w 6 W, the coset wWI contains a minimal coset representative, an element v such
that the expressions (u) (sts- • -)m(s,t) and (v) (tst• • -)m(s,t) are reduced, where for convenience
we introduce the notation (sts- • •)n for the alternating word stst- • • of length n.

We will also need Tits's Word Theorem. Tits introduced two admissible operations on
words:

(Ml) If a word contains (sts- • -)m(s, t ) then this part may be changed into (tst- • • ) m ( s , t ) . For
example, if m(s, t) = 3, then rstsu may be changed into rtstu. This is called an
M-simplification of the first kind.

(M2) If a word somewhere contains ss we may erase those letters. For example, rsstu may
be changed into rtu. This is called an M-simplification of the second kind.

Theorem 3 (Tits's Word Theorem) A word s 1 2 - • -sk (all si S) is reduced if and only
if it cannot be shortened by any finite sequence of M-simplifications. Given two reduced

1.2. Preliminaries on Coxeter groups
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Figure 1. The Hasse diagram of (W, S, >) where S = [x, y, z} and m(x, y) = 3, m(x, z) = m(y, z) = 2.

2. Polygon posets and the weak order

For a Coxeter group (W, S), let (W, S, >) denote the poset obtained by partially ordering
W by weak order. We shall begin by giving a characterization of (W, S, >) as the unique
poset with certain simple properties. If one looks at the example in Fig. 1, the proof should
be easier to follow.

Lemma 4 For any Coxeter group (W, S) with Coxeter relations (xy) m ( x , y ) = e, there
exists a poset P, unique up to isomorphism, such that:

1. P has a least element 6.
2. There are \S\ elements covering 0.
3. P admits an S-labeling of the edges of its Hasse diagram satisfying:

(a) No two edges incident to the same element of P have the same label.
(b) If there are two edges going upwards from p e P with labels x and y, then they

are the first edges of two upward going paths from p of length m(x,y) labeled
alternatingly x and y. If m(x,y) < oo then these paths end in the same element,
while if m(x, y) = oo the paths go on forever.

Proof: We will give a construction of the labeled Hasse diagram of P. Let l(p) denote the
length of a shortest path from 0 to p in the Hasse diagram. Let Pn = {p e P: l(p) < n}.
We will prove that Pn+1 can be constructed in a unique way from Pn; it is graded and
everyone of its elements has \S\ incident edges in P, that is, when one counts also edges
leading to elements outside Pn+1.

The claim is trivially true for P0 = {0}. Suppose it is true for Pn. We can construct every
new element q of Pn+1 by following an edge, labeled x say, upwards from an element p
with l(p) — n. Then l(q) = n + 1 and we must now prove that for any y e S, y = x, either
the conditions (a) and (b) force the existence of an edge labeled y leading up to q from

words for the same element in W, one can be obtained from the other by a finite sequence
of M-simplifications of the first kind.



some element r, where l(r) = n, or they force the existence of an edge labeled y going
upwards from q.

By (a), there is a unique alternating path yxyx- • • leading downwards from p. It must end
in an element q' where both edges labeled x and y go upwards, since we know that there is
one edge of each label incident to every element of Pn.

By (b), there are two upward-going alternating pathsxyxy . . .and y x y x . . . o f length m(x, y)
beginning in q'. Thus, if l(q) — l(q') < m(x, y), then the path continues from q, so there is
an edge labeled y going upwards from q. Otherwise we must have l(q) — l(q') = m(x,y),
in which case the two paths join in q, so there must be some element r where l(r) = l(q) — 1,
and with an edge labeled y going upwards to q.

Pn+1 is unambiguously constructed, it is graded, and every element has \S\ incident edges
in P. a

Now, (W, S, >) certainly has a least element, e, with \S\ elements covering e, namely 5,
and the natural S-labeling of the edges satisfies (a), since the generators are involutions, and
(b) because of the special property of the minimal coset representatives. Hence we have
found our unique poset.

Theorem 5 The poset (W, S, >) is characterized by the properties in Lemma 4.

From the construction of the poset P, it is easy to deduce also the following properties:

(c) If there are two edges going downwards from p e P with labels x and y, then they
are the first edges of two downward going paths from p of length m(x,y) labeled
alternatingly x and y. If m(x,y) < oo then these paths end in the same element,
while if m(x, y) = oo this case never occurs.

(d) If there is an upward going path of lengthm (x, y) < oo from p e P, alternatingly la-
beled x and y and beginning with x, then there is also another one, beginning with y.

If we drop the condition (2), which says that there are \S] elements covering 0, and instead
demand that (c) and (d) hold, then we get an interesting class of posets.

Definition 2.1 A polygon poset, associated to a Coxeter group (W, S), is a poset P with
a least element 6 and an S-labeling of the edges of the Hasse diagram satisfying properties
(a)-(d) above.

Corollary 6 (W, S, >) is a polygon poset.

The pair of paths that properties (b)-(d) are all about, should be thought of as constituting
a polygon in the Hasse diagram, in which the edges are alternatingly labeled x and y. Then
the cup property (b), the hat property (c), and the half-polygon property (d), guarantees the
existence of such a polygon whenever there is a cup, a hat, a half-polygon, resp. See Fig. 2.

We will see later that every polygon poset is graded.

3. The weak order is a semilattice

Another property of polygon posets that can be derived is strong convergence, since it
follows from the cup property and the existence of a least element, by the Polygon Property
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Theorem, see § 1. This means that an infinite polygon poset has no maximal elements, while
a finite polygon poset has a unique maximum element, and that all its maximal chains are
of equal length.

The dual of a poset P is the poset obtained by turning the Hasse diagram of P upside
down. Note that if P has the hat property, its dual has the cup property. If P has the
half-polygon property, then so does its dual. If P has a least element, the dual of P has a
maximum element. Since by strong convergence any finite polygon poset has a maximum
element, it is clear from the definition that the dual of any finite polygon poset is also a
polygon poset.

A lower interval in a poset with a least element 0 is any interval of type [0,x]. It is a
trivial consequence of the definition of right weak order that any interval [u, w] in(W, S, >)
is isomorphic to the lower interval [e, u-1 w].

Proposition 7 Any interval in (W, S, x) is a polygon poset.

Proof: Properties (a), (c), (d), and having a 0, are clearly inherited by lower intervals,
while (b) remains to be proved. But an arbitrary lower interval [e, w] is isomorphic to
the dual of [e, w - 1 ] . Since [e, w-1] has the hat property (c), its dual must have the cup
property (b). D

We now point out a fundamental property of the weak order, due to Anders Bjorner.

Theorem 8 The weak order on a Coxeter group is a -semilattice.

Proof: We must show that any two elements w and « in the Coxeter group have a greatest
lower bound, a meet, which we denote by w A u. The set [e, w] n [e, u] contains all lower
bounds of w and u. The intersection [e, w] m [e, u] inherits the properties (a)-(d) and the
least element e, hence it is a polygon poset. It is of course finite, so by strong convergence
it has a greatest element. D

The above result was proved by Anders Bjorner in the early eighties (see his survey paper
[1]), but the proof has not been published.

Figure 2. A cup, a hat, or a half-polygon implies a polygon of length m(x, y). Here m(x, y) = 3.
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Figure 3. Sketch of the induction step. Here m(x, y) = 3.

4. Polygon posets are join ideals in the weak order

A result analogous to Tits's Word Theorem holds for the labels of shortest paths from 0 in a
polygon poset. What really matters is only the half-polygon property and the hat property,
as we will see below. To make the analogy transparent we introduce the terminology that
a word that is obtained by reading the labels of a shortest path, i.e. a maximal chain, from
6 to an element p in a polygon poset is a reduced expression for p.

Lemma 9 Any polygon poset P is graded, so all reduced expressions for an element p
in P have the same length.

Proof: The lower interval [0, p] inherits the hat property of P. Hence its dual has the
cup property, and p becomes a least element, so it is strongly convergent by the Polygon
Property Theorem. Since it is finite, all maximal chains in the dual of [0, p] are of equal
length. Then this is of course true also for [0, p]. d

Now extend the M-simplifications of the first kind to operate also onh these words. In the
Hasse diagram, an M-simplification of the first kind means exchanging one half-polygon
for the other.

Lemma 10 If y 1 y 2 - - yk and x1x2 • • • Xk are two reduced expressions for some element
pofa polygon poset P, then they can be obtained from each other by a finite sequence of
M-simplifications of the first kind.

Proof (Sketch): True if k = 0, that is, if p = 0. The induction should be clear from
Fig. 3: Let x = xk and y = )yk. The hat property gives the polygon between p and u,
where («) has length k — m(x, y), and the induction hypothesis gives the following chain



Proposition 11 If s1 s2 • • • sk is a reduced expression for p € P, then it is also reduced
in the corresponding Coxeter group (W, S). All reduced expressions for w = s1s2 • • • sk in
W are also reduced expressions for p in P, and vice versa. In other words, the intervals
[0, p] c P and [e, w] C (W, S, >) are isomorphic.

Proof: By Tits's Word Theorem, any non-reduced expression s1s2 • • 'Skfor w e W can
be transformed to any reduced expression for w by only using M-simplifications of the
first and second kind. In other words, an expression for w & W is reduced if no adjacent
repeated letters arise after any sequence of M-simplifications of the first kind. Thanks to the
half-polygon property of P, all words obtainable from s 1 s 2 - • -sk by repeated half-polygon
exchanges are also reduced expressions for p. By property (a), no reduced expression for p
has adjacent repeated letters. Hence s1s2- • -st must be reduced also in the Coxeter group.

Since all reduced expressions for w in W are obtained from S} s2 • • • sk by repeated M-
simplifications of the first kind, again the half-polygon property of P guarantees that all
these expressions are also reduced expressions for p.

The converse follows from the lemma above. n

Now recall the definition of a join ideal in a A-semilattice P, given in §1. l is a join
ideal in P if it is an order ideal in P, that is, p ^ q e P => p e P, and / further satisfies
p , q = » I pvq € I ifp and q have a least upper bound. Recall the easy fact that in
a A-semilattice, if p and q have any common upper bound at all, they must have a least
upper bound.

Theorem 12 (a) Any polygon poset P is isomorphic to a join ideal in (W, S, >).
(b) If (W, S) has no pair s, t e 5 where st has infinite order, then every join ideal in

(W, S, >:) is a polygon poset.

Proof: (a) We want to define a map

that is an isomorphism onto its image. For an element p e P with a reduced expression
^1^2 • • • * * . let A ( p ) = s1s2 • • • sk, computed as a product in W. The proposition above
implies that the image </)(P) is an order ideal / in (W, S, >) and that <j> is an isomorphism
from P to I. Due to this isomorhism, I is also a polygon poset.

Suppose <>(p) and (/)(q) have a least upper bound <j)(p) V (j)(q) = u e W. Then we
must show that u belongs to / as well. Since [e, u] is a polygon poset and / is a polygon
poset containing e, the intersection / n [e, u] = /' is a polygon poset. /' is finite, hence
has a unique maximum element v ;< u, and /' contains both <t>(p) and <p(q), so v is also an
upper bound of these elements. This is possible only if v = u, so u belongs to / n [e, u]
and hence to I.

of transformations between reduced expressions:
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(b) Every join ideal / in W clearly inherits the hat and half-polygon properties of
(W, S, >). It remains to be proved that 7 has the cup property. A cup in / would consist
of three elements: w, ws and wt, where s, t € S, such that l(ws) = l(wt) = l(w) + 1.
Since m(s, t) < oo, there exists an upper bound w(sts- • -)m(s,t)

(W, S, >)). Hence there exists a least upper bound ws V wt in (W, S, >), which therefore
also is in the join ideal /. The interval [e, ws v wt] c / is a polygon poset that contains
w, ws and wt, so the cup property of this interval gives the cup property in I. D

Note that the condition in part (b), saying that no m(x, y) = oo, cannot be omitted.
Consider for example the infinite dihedral group W generated by S = [s,t] where m (s, t) =
oo. Then [e, s, t] is a join ideal (since s v t does not exist) which is not a polygon poset.

Corollary 13 The concepts of 'lower interval in the weak order' and 'finite polygon
poset' are equivalent.

Proof: We know from before that lower intervals in the weak order are finite polygon
posets. The theorem says that polygon posets are join ideals, in particular they are order
ideals, in the weak order. Finite polygon posets have a unique maximal element. A finite
order ideal with a unique maximal element is a lower interval. Q

Corollary 14 Any infinite polygon poset is a complete /\-semilattice with no maximal
elements. Any finite polygon poset is a lattice.

Proof: We already know that the weak order is a complete A-semilattice. Clearly every
order ideal inherits this property; in particular every polygon poset. By strong convergence,
a finite polygon poset has a unique maximal element, hence is a lattice, while an infinite
polygon poset has no maximal elements. D

A subset U of W has the chain property under Bruhat order if, whenever u,weU
and u -<B w> there exists a chain u= u 0 < B u1<B • • • ^B uk = u0 in 17 such that
l(u) = l(M) + i, for 1 < (' < k. A subset U of W is directed under Bruhat order if every
pair of elements in U has a common upper bound in U.

Bjorner and Wachs showed that W/ V is directed and has the chain property under Bruhat
order. (In fact, they proved the stronger assertion that Bruhat order on W/ V is CL-shellable.)

Under left weak order, W/ V was shown to be a complete A-semilattice with no maximal
elements if it is infinite, and with a unique maximal element if finite. As we saw in Corollary
14, this is true also for polygon posets. This similarity is no coincidence—indeed, every
generalized quotient is a polygon poset order ideal in the left weak order >L on (W, S).

5. Polygon posets and generalized quotients

In this section we will discuss the connections with the work of Bjorner and Wachs [2] on
generalized quotients in Coxeter groups. They define, for an arbitrary subset V C W, the
generalized quotient
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Proposition 15 W/ V under left weak order is a polygon poset.

Proof: It is obvious from the definition of generalized quotients that W/ V is an order
ideal in (W, S, >i). Thereby, it inherits the hat and half-polygon properties. If s(w)(v)
and 0 t ( w ) ( v ) are both reduced, then (sts- • • ) m ( s , t ) ( w ) u u ) s reduced by the cup property of
(W, S, >L). Hence W/ V has the cup property under >L. D

Bjorner and Wachs also considered an alternative definition of generalized quotient. In
a Coxeter group (W, S), let T be the set of conjugates of S, that is T = [w s w -1: w e W,
s 6 S}. For any subset A of T, define WA = [w e W: t e A => wt >B ui}. According to
Bjorner and Wachs, every W/ V is also an alternative generalized quotient WA for some
A c 71. The sets WA can be characterized as the convex order ideals in W under left weak
order, where a subset U of a poset P is said to be convex if for all u, w 6 U, every minimum
length path from u to w in the Hasse diagram of P is in U. We will now show that every
polygon poset is isomorphic to some (WA, >L).

Theorem 16 Every polygon poset P is isomorphic to a convex subset of(W, S, xl,), the
Coxeter group (W, S) under weak order.

Proof: Identify P with the isomorphic join ideal in (W, S, >i). We must show that
every reduced expression for wu-1

l gives a path from u to w in P. First note that there
is at least some path between u and w, since they are connected via e. Since P is a
polygon poset, one can easily deduce that all paths that can be constructed from some
initial path in P by repeated M-simplifications are also in P. The M-simplifications of the
second kind correspond to eliminating from the path edges traveled back and forth. The
M-simplifications of the first kind means exchanging one half-polygon for the other. If the
first half-polygon contains either a hat or a cup, then the exchange is possible thanks to the
hat resp. cup properties of P. Otherwise the half-polygons are 'vertical' so to speak, so the
half-polygon exchange can be done in P thanks to the half-polygon property.

By Tits's Word Theorem, all reduced expressions are obtained in this way. Thus P is
convex. D

Corollary 17 The class of generalized quotients is contained in the class of polygon
posets, which is in turn contained in the class of alternative generalized quotients:

6. Construction of polygon posets

We shall now acquire a means to construct polygon posets.

Both inclusions are in fact strict. Strictness of the first one follows from the fact, as will
be discussed in the coming section, that every W /V is a greedoid, which is not true foIv
polygon posets. For the second one, consider the subset U = {e, x, y} of the Coxeter group
(W, S) where S = {x, y} and m(x, y) = 3. Then U is a convex subset of the weak order,
and hence a 0WA , but U is not a polygon poset, since it does not have the cup property.
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the smallest subset of (W, S, >L) having the cup property and containing U. Obviously,
o(U) c < 0 U ) .

Lemma 18 Suppose (W, S) is a Coxeter group with x, y,z 6 S, where m(x, y) > 3,
m(x, z) > 3 and m(y, z) > 3. If U is an order ideal in (W, S, >L) containing (z, xy], then
a(U) is infinite.

Proof: In a(U) we can complete polygons in x, y, z as shown in Fig. 4. It is clear from
the figure that we get a repeating pattern, so the completing process will go on forever.
Hence a (U), and thereby a (U), is infinite. D

Definition 6.2 In the following we will say that a Coxeter group is mperhexagonal if
m(x, y) > 3 for all pairs of generators x, y.

Figure 4. Repeating pattern0 in a(U).

Definition 6.1 Let G(w,s) be the set of all order ideals in (W, S, >/.) that are polygon
posets. For any order ideal U in (W, S, >L), define a closure operator a by
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The intersection of polygon subposets with the same least element is a polygon poset, so
we have (U) e G(W-S). a(U) is in a natural sense the polygon poset generated by U.

Let G(w.s) be the set of all subsets of (W, S, >L) that have the cup property. Since
having the cup property is a much weaker condition than being a polygon poset, we have
G(w,s) C G(W,S)- For any order ideal U in (W, S, >L), define
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Figure 5. Impossible situation!

Theorem 19 Suppose (W, S) is a superhexagonal Coxeter group. IfU is an order ideal
in (W, S, >L) then a(U) = a(U).

Proof: Let V = a (U). V has the cup property, so we only have to show that V is an order
ideal, since every order ideal in the weak order has the hat property and the half-polygon
property. Suppose that V is not an order ideal. Then there must be some shortest element
w e V with a reduced expression (remember that this is left weak order) w = yu, where
M V. The minimality of cr(U) guarantees that all elements can be reached from U by
repeated completion of upward polygons, like in Fig. 4. Therefore, there is also a reduced
expression w = xv with v e V, and the x edge must have been added when completing
some polygon, say an ;cz-polygon, where z = y. See Fig. 5 for a sketch of the situation. In
particular there must be some reduced expression for v ending with z. By choice of w, all
reduced expressions for v must be in V. By the hat property of (W, S, >L), one such must
end with yx. But then [e, v - 1 ] , which is the dual of [e, v], would be a finite polygon poset
containing {z, x y ] , thereby contradicting the lemma above, which says that such apolygon
poset must be infinite. D

As a first application of this construction method, we shall show that (the language
induced by) a polygon poset need not be a greedoid.

Definition 6.3 A language L is a greedoid if it is left-hereditary, which means that

and if £ further satisfies the following exchange condition (stronger exchange conditions
may sometimes apply):
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See [3] for greedoid theory. Every polygon poset induces a language consisting of the
words given by the labels of upward-going paths from 0. For every generalized quotient,
Bjorner and Wachs showed that this language is a greedoid. This is not true for polygon
posets in general, as we shall show by constructing a counterexample. See Fig. 6. Let
(W, S, >) be the right weak order of a superhexagonal Coxeter group with generators
x, y, z, w. (We use right order here for compatibility with the greedoid conditions). Let U be
the order ideal generated by {yx,xwz}. Now generate a polygon poset V = a(U) = a(U).
Then |xwz | > \yx\, but neither of x, w and z can be used to extend yx in V, so the exchange
condition of greedoids is not satisfied.

Since the language is a greedoid for all generalized quotients, by Bjorner and Wachs, we
can conclude that the set of generalized quotients is a proper subset of the set of polygon
posets.

7. The Bruhat order on polygon posets

Bjorner and Wachs asked whether the chain property and directedness under Bruhat order
of W/V were true also for WA in general. We will now answer this question by showing
that not even polygon posets have these properties in general.

7.1. Counterexample to the chain property

Let (W, S) be a superhexagonal Coxeter group with generators S = {x,y,z,w}. There
exists a polygon poset V contained in (W, S, >L) that does not have the chain property
under Bruhat order. We will now give a construction of it.

Let U be the order ideal in (W, S, >L) generated by {zy, zwyx}. Let V =a(U) = a(U).
We have zwyx >B zy, but any chain must include either zwy or zyx, and clearly neither
of them is in o(U). See Fig. 7.

7.2. Counterexample to directedness

Let (W, S) be a superhexagonal Coxeter group with generators S = [x,y,z,w,v]. There
exists a polygon poset V contained in (W, S, >L) that is not directed under Bruhat order.

Figure 6. The polygon poset generated will not be a greedoid.
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Figure 7. Neither zwy nor zyx will appear when completing cups to polygons in this poset.

Let U be the order ideal generated by {vz, wxy) in (W, S, >L). Let V = a(U) = a(U) .
See Fig. 8. As in Lemma 18, we get an infinitely high 'wall' in the middle of V, generated
by z and xy. When completing polygons, we may draw all polygons involving v on the
left side of the wall, and all polygons involving w on the right side of the wall. Thus, this
wall will separate all words containing w from all words containing v, so no word will
contain both w and v. Thus there can be no common upper bound in V to vz and wxy in
Bruhat order.

8. Sharp quotients

This section contains another example of a class of polygon posets.

Definition 8.1 For V c W, let

Figure 8. No word with both v and w will appear when completing polygons in this poset.



WiiV is called a sharp quotient. The difference from the definition of W/V is the '<$»'
instead of '=>', so WflV c W/V.

In order to show that the sharp quotient Wjt V under left weak order is a polygon poset, we
must have the following lemma, which is an easy consequence of the Exchange Condition.

Lemma 20 if sk
... s1 and sr • • • s1s (k > r) are reduced expressions, but sk • • • s1s is not

reduced, then sk • • • s1 = sk • • • s i • • • s 1 s f o r some index i > r.

Proof: By the Exchange Condition, sk • • • s1 = sk • • • s1 • • • s1s for some index i. If we
cancel identical factors from the left, we get si

... s1 = si-1 • • - s 1 s , so si • • • 1\s is not
reduced. Thus we must have i > r. D

Proposition 21 Sharp quotients are closed under meet in the left weak order, i.e. if
u,w & WQV then u A w e WtJV.

Proof: Take w, u e WflV. Let a be a lower bound of w and u in (W, S, >L), such that
a $ W$V. We must show that a = w A u, that is, that a is not the greatest lower bound.

First note that w, u e wiiV implies that
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but not the other way around, since a £ WftV. There must be some shortest t; such that
l(av) = l(a) + l(v) while l(wv) < l(w) + l(v), in which case of course also l(uv) <
l(u) + l(v). Split (v) as (B ) s , where s e S. Then ( w ) ( B ) , ( u ) ( b ) and ( a ) ( f b s are reduced
while (w)(f})s and ( u ) ( b ) s are not reduced.

Let w = skSk-1 • • • s1 (a) be a reduced expression for w. Then for some i between 1 and
k, by the lemma, we have wb = SkSk-1 • • • s1 (aft) = sk • • • si• • • • si (aft)s, so wfi is an upper
bound for afis and aB. Let(y){aft) be a reduced expression for abt s vaf. Then l(y) > 1.
We have wft >L YaP> so w >L yet. By a similar argument we have also u >L ya. Hence
ya is a lower bound of « and w. Since l(y) > 1 and ya >L a. cannot be the greatest
lower bound of u and w. n

Theorem 22 (W (t V, > L ) w is a polygon poset.

Proof: From the proposition above we deduce that (W$V, >L) has a least element, as
well as the hat property, in the same way as the cup property followed from join ideals
being closed under join in Theorem 12. Obviously it has the half-polygon property. The
cup property follows in the same way as for generalized quotients, in Proposition 15. D

Since a is a lower bound of u; and u, we have in particular that w >L <*, which implies
that
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9. Connections with FSA recognizing the language of reduced words

It has recently been proved that there exists a finite state automaton that recognizes the
language £ of reduced words of a given Coxeter group (W, S). For different approaches,
see Brink and Hewlett [5], Davis and Shapiro [6], H. Eriksson [7], Headley [11]. In this
section we shall see how this result can be interpreted in terms of the concepts that were
discussed in the previous sections: sharp quotients and generalized quotients. We will also
apply the polygon poset construction technique of §6 to give a new very short proof of the
existence of an FSA when (W, S) is superhexagonal.

An automaton recognizing reduced words can be modeled as a directed graph with the
states as vertices, and with an edge (u, v) labeled x if reading x in state u causes a transition
to state v.

Let A be a minimal automaton that recognizes L. For any w e W, define

We know that there are only finitely many different Cw. Since

there will only be finitely many non-isomorphic generalized quotients in right weak order.
However, this carries over bijectively to left weak order, since W/{w] is the set of inverse
elements to W / K { w - 1 } :

that is, the sharp quotients. Observe also that W$V ^ 0 implies that V = Cv for some
veW.

By the existence of & finite automaton, we have the following result.

Proposition 23 There are only finitely many different subsets of W that can arise as sharp
quotients.

Note in particular that the sharp quotients induce a partitioning of (W, S, >L) into a finite
number of disjoint polygon posets.

Note further that Cw is equal to a 'right weak order generalized quotient' W/R{w},
defined in analogy with the ordinary generalized quotients by

Thus Cw is the set of possible continuations of a reduced expression for w. Let Sw be the
state in A that is reached after reading a reduced expression for w. Clearly, we can have
Sv = Sw only if Cv = Cw, and since A is minimal it will have Sv = Sw if and only if
Cu = Cw. Since A is finite, there can only be finitely many different continuation sets. If
W is infinite, there must thus be many elements with the same continuation set. Define a
relation ~ on W by v ~ w if C = Cw. Then ~ is an equivalence relation, so we can define
the quotient Wf/~. Obviously W/~ can be identified with the set of states of A.

The elements of w/ are equivalence classes of the type
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Proposition 24 There are only finitely many different subsets of W that can arise as
generalized quotients.

9.1. FSA for superhexagonal Coxeter groups

Now, let (W, S) be a superhexagonal Coxeter group. We shall use our techniques to show in
a quick way that the language L of reduced words is recognized by a finite state automaton.
As pointed out in above, this is equivalent to showing that there are only finitely many
different continuation sets Cw = [v e W: l(wv) = l(w) + /(u)} when w runs through all
of W, since the states in a minimal automaton recognizing £ must correspond one-to-one
with the different continuation sets. Define C* to be the fc:th level of Cw, that is,

Figure 9. Where does the edge labeled s go? The shaded part is Un=1 Ck, translated by w.
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and let N = max{m(s, t): s, t e S, m(s, t) < oo}, the length of the longest finite polygon.
We shall prove that Cw is uniquely determined if UNk=1 ̂ w ls known. Since there are only
finitely many possible candidates to Ut=i ^u>> tnere can be only finitely many different
^w

It is enough to prove that we can construct C£,+1 given U*=i £»• wnere n > W, as the
desired result then follows by induction. Thus we must prove that for any v e CJJ, and any
generator s we can determine if vs e Cp, i.e. if ( e ){u)s is reduced.

If (v)es is not reduced then (w)(v)s cannot be reduced, so in that case we are done.
Otherwise a reduced expression for v must end with some t = s.

Let r be the greatest integer such that there is a reduced expression (u ) ( • • -tst)r for v.
If m(s, t) = oo then ( W ) ( v ) s must be reduced, since there would otherwise be a polygon
hat to an infinite polygon, which is absurd. Thus we can assume that r < m(s, t) < N.
However, the case when r = m(s, t) is already covered since then (v)s is not reduced.

Case 1. Suppose that r = m(s, t) — 1. If both us and ut are elements in Cn-r+1 then,
by the cup property, vs = u(sts- • -)m(.s.) € C£n+1.
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Otherwise, if us, say, is not in Cn- r+1 then{w){u)s is not reduced, so there must be some
reduced expression ( b ) s for wu. Hence wv can be expressed ( b ) ( s t s . . . ) m ( s , t ) > so (w){v)s
is not reduced. Thus vs <£ Cn+1.

Case 2. r < m(s, t) — 2. Then l(u) = n — r > N — r >2, so a reduced expression for
M must end with some z, different from s and t. Thus by Lemma 18 (used as in Theorem
19) it is impossible that (w}(u) end with ts or st, hence ( w ) ( v ) = (IUD)(- • -tst)r does not
end with (• • -tst)r+2, and thereby it cannot end with (• • •tet)m(s,t) Thus (w)(u)s is reduced,
so vs e Cn+1.

10. Position posets and the numbers game

Finally we comment on the connection to the numbers game of Mozes [12]. This is a
1-player game played on graph G = (V, E), with real numbers placed on the nodes. The
rules are that any node s with a negative number x, may be fired. This means that to the
number on every neighbor t of the fired node s, one adds the number kstxs, where kst > 0
is the weight of edge (s, t) e E. Finally the sign of xs is reversed. Figure 10 shows the
possible ways to play the game from a certain position on a little graph, where all edge
weights are equal to 1.

The game goes on until all numbers are nonnegative. If the position is represented by
the vector (in R'v') of node numbers, the moves are linear transformations on this vector.

For certain choices of the edge weights, this game is strongly convergent. In these
cases, the language of all legal play sequences (over the alphabet of nodes) is a subset of
the language of reduced words in an associated Coxeter group (W, S), where 5 can be
identified with the set V of nodes of the graph. Conversely, to every Coxeter group can

Figure JO. How the numbers game is played.



be associated a game of this kind. If some play sequence s1s2 • • • sn is legal, then every
reduced expression of the element s1s2 • • • sn in the group (W, S) is a legal play sequence,
and such play sequences are equivalent (denoted by =) in the sense that they have the same
effect on the position. This can be restated as follows: if a = ft, then any start position p
for which a and ft are legal play sequences will result in u(p) = ft(p). See Eriksson [9,
10] for all details.

If the positions do not recur during play, then the set P(p) of positions that are reachable
from a given start position p can be partially ordered by letting pi > p\ if p2 can be reached
by playing from p1. This position poset, with edge labeling given by the fired nodes, is
almost always a polygon poset, in the following sense. We know that the cup property and
the half-polygon property hold [9, 10]. A hat in P(p) signifies two play sequences such
that a(p) = P(p), and if a = ft, then the hat property of (W, S, >) provides the polygon
under the hat in P(p). Thus, if for some p the position poset P(p) does not have the
hat property, it is because for some play sequences a = ft we have a(p) = B ( p ) for this
particular position p. This is equivalent to a - 1 p ( p ) = p. If p is regarded as a vector in
R|V| and a, ft as matrices, then this implies that p is an eigenvector with eigenvalue 1 to
the matrix a-1B, which is not the identity matrix. Hence, the eigenspace corresponding to
eigenvalue 1 has dimension less than \V|, so it has measure zero relative to R|V|.

Theorem 25 To each finite polygon poset Q there is a numbers game graph G and a start
position p, such that the position poset P(p) is isomorphic to Q.

Proof: We know that Q is isomorphic to some interval [e, w] in (W, S, >). Let G be
the graph of a game associated with this Coxeter group W. Let q be the position where
every node of G has number —1. Play from q according to ( w - 1 ) . Let p1 be the resulting
position.

Now, let p = —p', i.e. all numbers in p have the reverse sign of corresponding numbers
in p'. Clearly we can now play the moves of (w-1) in reverse order, i.e. according to (w),
and this must result in the position — q where all numbers are 1, so — q is terminal. Thus
P(p) is isomorphic to [e, w], and hence to Q. D

For infinite polygon posets the situation is quite different. In [9] was shown that the
language of legal play in a numbers game is always a greedoid, but as we saw in §6, infinite
polygon posets are not greedoids in general. Thus the class of polygon posets is larger than
the class of positin posets.

However, Bjorner and Wachs [2] proved that all generalized quotients are greedoids as
well. It is an open question whether the position posets have also the other properties
special to generalized quotients; the chain property, CL-shellability and directedness under
Bruhat order.
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