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Abstract. A graph G is t-tough if any induced subgraph of it with x > 1 connected components is obtained
from G by deleting at least tx vertices. It is shown that for every t and g there are t-tough graphs of girth strictly
greater than g. This strengthens a recent result of Bauer, van den Heuvel and Schmeichel who proved the above for
g = 3, and hence disproves in a strong sense a conjecture of Chvatal that there exists an absolute constant t0 so that
every t0-tough graph is pancyclic. The proof is by an explicit construction based on the tight relationship between
the spectral properties of a regular graph and its expansion properties. A similar technique provides a simple
construction of triangle-free graphs with independence number m on £2(m4/3) vertices, improving previously
known explicit constructions by Erdos and by Chung, Cleve and Dagum.
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1. Introduction

The toughness t(G) of a graph G is the largest real t so that for every positive integer x > 2
one should delete at least tx vertices from G in order to get an induced subgraph of it with
at least x connected components. G is t-tough if t(G) > t. This parameter was introduced
by Chvatal in [10], where he observed that Hamiltonian graphs are 1-tough and conjectured
that 2-tough graphs are Hamiltonian. This conjecture is still open, despite a considerable
amount of attention. Recall that a graph G on n vertices is pancyclic if it contains cycles
of all lengths, from 3 to n. Another conjecture raised by Chvatal in [10] is the following.

Conjecture 1.1 ([10]) There exists an absolute constant to so that every to-tough graph
is pancyclic.

This conjecture has been recently disproved by Bauer, van den Heuvel and Schmeichel
[8] who constructed, for every real to, a t0-tough triangle-free graph. In this note we show,
by explicit construction, that a much stronger result holds. Recall that the girth of a graph
G is the length of a shortest cycle in it.

Theorem 1.2 For every t and g there exists a t-tough graph of girth greater than g.

This theorem can be proved by considering random graphs; one can show that for an
appropriate d = d(t) a random d-regular graph on n vertices is t-tough and has girth
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greater than g with positive probability, provided n is sufficiently large. The proof we
present here is different and is by an explicit construction. We first apply some of the
known results concerning the tight relationship between the spectral properties of regular
graphs and their expansion properties (see [5], [23], [2]) to show that regular graphs with
well separated eigenvalues are tough. This suffices to show that the Ramanujan graphs of
[18], [19] with an appropriate choice of parameters provide explicit examples for proving
Theorem 1.2.

One can easily check that t-tough graphs on n vertices cannot have an independent set
of size greater than n/(t + 1). Therefore, tough graphs have small independence numbers
and Theorem 1.2 is a strengthening of the well known fact, proved by Erdos in [14], that
there are graphs of arbitrarily high girth, whose independence number is an arbitrarily small
fraction of the number of vertices (implying that the corresponding chromatic numbers are
arbitrarily high). The special case of girth 4 is a well studied Ramsey-type problem. Let
R(3, m) denote the maximum number of vertices of a triangle-free graph (i.e., a graph of
girth at least 4) whose independence number is at most m. Erdos showed in [15], by a
subtle probabilistic argument, that R(3, m) > fi((m/log m)2), (see also [22] or [7] for a
simpler proof). Ajtai, Koml6s and Szemeredi proved in [1] that R(3, m) < O(m2 / logm),
(see also [21] for an estimate with a better constant). The problem of finding an explicit
construction of triangle-free graphs of independence number m and many vertices seems
more difficult. Erdos [16] gave an explicit construction of such graphs with

2. Eigenvalues and toughness

It is easy and well known that the largest eigenvalue of (the adjacency matrix of) a d-regular
graph is d. An (n, d, ^)-graph is a d-regular graph on n vertices, in which every eigenvalue
H besides the largest satisfies |/A| < A. It is well known (see, e.g., [5], [23], [2], [7] Chapter
9) that (n, d, A)-graphs, with A much smaller than d have certain pseudo-random properties.
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vertices. This has been improved by Cleve and Dagum [12], and improved further by
Chung, Cleve and Dagum in [11], where the authors present a construction with

vertices.
Here we combine our eigenvalue technique with known results about the Hamming

weights of words of an appropriate dual BCH code to obtain a very simple explicit con-
struction with fi(m4/3) vertices, improving the above mentioned bounds. The simple
triangle-free graph we construct has several additional interesting properties, and its con-
struction can be extended to yield simple explicit graphs with small indepedence numbers
and no short odd cycles.

The rest of this note is organized as follows. In Section 2 we establish the connection
between the spectral properties of a regular graph and its toughness and apply it to prove
Theorem 1.2. In Section 3 we construct triangle free graphs that show explicitly that
R(3,m) > £2(m4/3).



TOUGH RAMSEY GRAPHS WITHOUT SHORT CYCLES 191

In this section we show that the toughness of each such graph is high. This is shown in the
next proposition, in which we make no attempt to optimize the constant factors.

Proposition 2.1 Let G = (V, E) be an (n, d, A)-graph. Then the toughness t = t(G) of
G satisfies

In the proof of the above proposition we need the following simple lemma implicit in [3],
(see [7], page 122 for the proof).

Lemma 2.2 Let G = (V, E) be an (n, d, \)-graph, and let B be a set of vertices of G.
For a vertex v e V let N(v) denote the set of all neighbors of v. Then

Corollary 2.3 Let G = (V, E) be an (n, d, \)-graph and let A, B be two subsets of
vertices of G so that there is no edge of G joining a vertex of A with a vertex of B. Then

Proof: By Lemma 2.2, since \N(v) D B\ = 0 for all v e A,

implying the desired result. d

Proof of Proposition 2.1: Let W be a set of vertices of G and suppose that G — W has
x > 2 connected components and that \W\ < tx. We must show that t satisfies (1). Let
C1, C2 , . . . , Cx be the sets of vertices of the connected components of G — W and suppose
that |C1 | < |C2| < . . . < \CX\. Define A = Ui<Lx/2]Ci and B = U i>Lx/2]C i. Let y denote
the number of vertices in A. Clearly \B\ > \A\ = y > \.x/2\. By (2)

and hence

In addition, since |A| = y > [_x/2\ > x/3 it follows that \W\ < tx < 3ty. Thus
\B\ =n - \A\ - \W\ > n - (3t + 1)y and n - \B\ < (3t + 1)y. Substituting in (2) this
implies that
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i.e.,

Hence, by (3),

implying that

and completing the proof. O

Remark A.E. Brouwer (private communication) proved, independently, a similar result
relating the toughness of a graph to its spectrum. Moreover, by combining his approach
with the above one he showed that the assertion of the proposition can be strengthened to
t > d/A — 2, which is best possible, up to the additive constant 2.

In [18], [19] the authors describe explicitly, for every d = p + 1 where p = 1(mod 4) is
a prime, and for every n = q(q2 - 1)/2 where q = 1 (mod 4) is a prime and p is a quadratic
residue modulo q,(n, d, X) graphs Gn with A = 2-Jd — 1, where the girth of Gn is at least
2log q > | logd-1 n. By Proposition 2.1 and by the known results about the distribution
of primes in arithmetic progressions (see, e.g., [13]) this supplies, for any integer g > 3,
infinitely many values of n with an explicit graph Gn on n vertices with girth at least g
and toughness at least nc/g, for some absolute positive constant c. We have thus proved the
following.

Corollary 2.4 There exists a positive constant c so that for every integer g > 3 there are
infinitely many values of n with an explicit graph Gn on n vertices whose girth is at least g
so that t(Gn) >nc/g.

The assertion of Theorem 1.2 is an immediate consequence of Corollary 2.4. D

Note that the last corollary is tight, up to the constant factor c. Indeed, if G is a t -tough graph
on n vertices which is not a complete graph, then the minimum degree in G is at least 2t.
Thus, if the girth of G is g > 2r, an easy known argument (see, e.g., [9], Chapter 3), implies
that n > (2t — l)r. The last corollary provides explicit triangle-free graphs with n vertices
and toughness nf for some absolute positive €. For this special case larger toughness (as a
function of the number of vertices) can be obtained using a simpler construction. This is done
in the next section, where the connection to the Ramsey numbers R(3, m) is also discussed.

3. Constructive lower bound for the Ramsey numbers R(3, m)

In this section we construct a family of graphs, which we call the code graphs. These graphs,
whose construction is extremely simple, have several interesting properties, that follow from
the eigenvalue technique and some known results in the theory of Error Correcting Codes.



For a positive integer k, let Fk = GF(2k) denote the finite field with 2* elements. The
elements of Fk are represented, as usual, by binary vectors of length k. If a and b are two
such vectors, let (a, b) denote their concatenation, i.e., the binary vector of length 2k whose
first k coordinates are those of a and whose last k coordinates are those of b. Let Gk be the
graph whose vertices are all n = 22k binary vectors of length 2k, where two vectors u and
v are adjacent if and only if there exists a non-zero z e Fk so that u + v = (z, z3), where
here u + v is the sum modulo 2 of « and v, and where the power z3 is computed in the field
Fk. The following theorem summarizes some of the properties of these graphs.

Theorem 3.1 For every k > 1, Gk is a dk = 2k - 1-regular graph on nk = 22k vertices
with the following properties.

1. Gk is triangle-free and has diameter 3.
2. Every eigenvalue fj of Gk, besides the largest, satisfies

where x is a multiplicative character of Z2k
2. It follows that these eigenvalues can be

expressed in terms of the Hamming weights of the linear combinations (over GF(2)) of the
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3. The independence number of Gk is at most

and hence its chromatic number is at least 1/2n1/4
k .

4. The toughness t(Gk) satisfies

Proof: The graph Gk is the Cayley graph of Z2k
2 with respect to the generating set Sk =

{(z, z3): 0 # z e Fk}. It is obvious that Gk has 22k vertices and that it is \Sk\ = 2k - 1
regular. Let Ak be the 2k by 2k - 1 binary matrix whose columns are all the vectors in Sk.
This matrix is the parity check matrix of a binary BCH-code of designed distance 5 (see,
e.g., [20], Chapter 9). The fact that Gk is triangle-free is equivalent to the fact that the sum
(modulo 2) of any set of at most 3 columns of Ak is not the zero-vector. But this is simply the
statement that the distance of the above code is greater than 3, which is, of course, correct.
The diameter of Gk cannot be 2 by simple counting, as the number of vertices of distance
at most 2 from a given vertex is at most 1 + dk + (dk/2) < nk. The fact that it is at most 3 is
equivalent to the statement that every vector in Z2k

2 is a sum of at most 3 members of Sk,
which is proved in [20], pages 279-280. (In the language of Coding Theory this is simply
the fact that the corresponding BCH-code is quasi-perfect, or that its covering raduis is 3.)
This proves part 1 of the theorem.

In order to prove part 2 we argue as in the last section of [6]. Recall that the eigenvalues
of Cayley graphs of abelian groups can be computed easily in terms of the characters of the
group. This result, described in, e.g., [17], implies that the eigenvalues of the graph Gk are
all the numbers



rows of the matrix Ak. Each such linear combination of Hamming weight w corresponds to
the eigenvalue dk - 2w. However, the linear combinations of the rows of Ak are simply all
words of the code whose generating matrix is Ak, which is the dual of the BCH-code whose
parity-check matrix is Ak. It is known (see [20], pages 280-281) that the Carlitz-Uchiyama
bound implies that the Hamming weight w of each non-zero codeword of this dual code
satisfies
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Since the zero vector corresponds to the largest eigenvalue of Gk this implies that every
eigenvalue IL of Gk besides the largest satisfies

implying the assertion of part 2 of the theorem.
Part 3 follows easily from part 2 as follows. In [3], Lemma 2.3 it is shown that the

number of edges of any induced subgraph on an vertices in an (n, d, A)-graph deviates
from dct2n/2 by at most X a ( 1 — a)n/2. Thus, if there is an independent set of size an in
such a graph then

implying that a < v/(d + A). By part 2, Gk is an (nk, 2
k - 1, 2 . 2k/2 + l)-graph and the

assertion of part 3 follows.
Part 4 is an immediate consequence of part 2 and Proposition 2.1. This completes the

proof of the theorem. D

Theorem 3.1 shows that the code-graph Gk is an explicit triangle-free graph on nk vertices
whose chromatic number exceeds 0.5n1/4

k . In addition, the graphs Gk are explicit examples
showing that R(3, m) > n(m4/3).

The construction above can be extended by applying BCH codes with designed distance
2h + 1 > 5 in the obvious way. This gives an explicit family of graphs Gk,h, for all k, h > 1,
where Gk,h is a 2* — 1-regular graph on nk,h = 2kh vertices which contains no odd cycle of
length at most 2h — \. Every eigenvalue of Gk,h besides the largest is, in absolute value, at
most 2(h — 1) • 2k/2 + 1 and hence it is £2(2k/2/(h - l))-tough and has no independent set
of size at least

It is possible to use other (binary and nonbinary) error correcting codes to construct other
graphs in a similar manner. In [6] it is shown that by applying some of the codes constructed
in [4] one can construct graphs with high expansion properties, and other codes may very
well yield additional graphs with interesting properties.

It would be interesting to determine or estimate, for every t and g, the smallest possible
n = n(t, g) for which there are t-tough graphs on n vertices whose girth is at least g. Using
the techniques of Section 2 we can show that there are two positive constants c\ and c2 so
that for all t > 1 and g > 3,



The problem of finding an accurate estimate remains open, although by using random graphs
we can somewhat improve the estimates that follow from the arguments in Section 2.

Note added in Proof: Using related ideas, the author has recently found explicit triangle-
free graphs with independence number m on Q (m3/2) vertices. The details appear in:
N. Alon, "Explicit Ramsey graphs and orthonormal labelings," The Electronic J. Combina-
torics 1 (1994), R12, 8.
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