Some New Cyclotomic Strongly Regular Graphs

C.L.M. DE LANGE

Pedagogisch-Technische Hogeschool, Eindhoven, Netherlands

Received September 20, 1994; Revised December 8, 1994

Given a finite field F and a subset D of F^* such that D = -D, we can define a graph Γ with vertex set F by letting $x \sim y$ whenever $y - x \in D$. (Here \sim denotes adjacency.) The spectrum of Γ consists of the numbers $\sum_{d \in D} \chi(d)$, where χ runs through the (additive) characters of F. In particular, the trivial character χ_0 yields the eigenvalue |D|, the valency of Γ .

One might wonder in what cases the graph Γ is strongly regular, and there has been done a lot of work on this question, see, e.g., Delsarte [4], van Lint and Schrijver [6], Calderbank and Kantor [3], Brouwer [1], de Resmini [7] and de Resmini and Migliori [8]. (As Delsarte showed, there is a one-to-one correspondence between (i) sets D closed under multiplication by elements of the prime field of F (and yielding a strongly regular Γ), and (ii) projective two-weight codes, and (iii) subsets of projective spaces such that the cardinality of the intersection with a hyperplane takes only two values. Work on this problem occurs in each of these three terminologies.)

In [5], we constructed four new examples, which will be described below. Our sets D will be unions of a number of cosets of a subgroup K of F^* , i.e., D = ZK for some set $Z \subseteq F^*$. The field F is described by its characteristic p and a primitive polynomial defining it over its prime field. For the resulting strongly regular graphs we give the standard parameters $v, k, \lambda, \mu, r, s, f, g$ (cf. Brouwer and van Lint [2]).

Examples

	P		F			K Z				
a b c	3 3 2	$3 \qquad \alpha^8 = \alpha^3 + 1$			(α	16)	$ \begin{array}{l} \{1, \alpha, \alpha^4, \alpha^8, \alpha^{11}, \alpha^{12}, \alpha^{16} \} \\ \{1, \alpha, \alpha^2, \alpha^8, \alpha^{10}, \alpha^{11}, \alpha^{13} \} \\ \qquad \qquad$			
		υ	k	λ	μ	r	5	f	8	
	a	6561	2296	787	812	28	-53	4264	2296	
	Ъ	6561	2870	1249	1260	35	-46	3690	2870	
	c d	4096	273	20	18	17	-15	1911	2184	
	d	4096	1911	95 0	840	119	-9	273	3822	

Here Example d is the dual of Example c. (Examples a and b are formally self-dual.)

Example c is interesting: it can be viewed as a graph with vertex set \mathbb{F}_q^3 for q = 16, such that each vertex has a unique neighbour in each of the $q^2 + q + 1 = 273$ directions. Probably some generalization is possible.

References

- 1. A.E. Brouwer, "Some new two-weight codes and strongly regular graphs," Discrete Applied Math. 10 (1985), 111-114. MR 86d:05023; Zbl 561.94008.
- A.E. Brouwer and J.H. van Lint, "Strongly regular graphs and partial geometries," *Enumeration and Design— Proc. Silver Jubilee Conf. on Combinatorics, Waterloo, 1982* (D.M. Jackson and S.A. Vanstone, Eds.), Academic Press, Toronto, 1984, 85-122. MR 87c:05033; Zbl 555.05016 Russian transl. in *Kibern. Sb. Nov. Ser.* 24 (1987), 186-229, Zbl 636.05013.
- 3. A.R. Calderbank and W.M. Kantor, "The geometry of two-weight codes," Bull. London Math. Soc. 18 (1986), 97-122.
- 4. Ph. Delsarte, "Weights of linear codes and strongly regular normed spaces," Discrete Math. 3 (1972), 47-64.
- 5. C.L.M. de Lange, "Cyclotomic graphs," Master's thesis, Eindhoven Univ. of Techn. (1990).
- J.H. van Lint and A. Schrijver, "Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields," *Combinatorica* 1 (1981), 63-73.
- 7. M.J. de Resmini, "A 35-set of type (2,5) in PG (2,9)," J. Combin. Th. (A) 45 (1987), 303-305. Zbl 646.51004.
- 8. M.J. de Resmini and G. Migliori, "A 78-set of type (2,6) in PG (2,16)," Ars Combinatoria 22 (1986), 73-75.