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Abstract. We give sign-reversing involution proofs of a pair of two variable Pfaffian identities. Applications to
symmetric function theory are given, including identities relating Pfaffians and Schur functions. As a corollary
we are able to compute the plethysm p2 ° skn •
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These identities are interesting in that they are related to the Weyl identities for the classical
root systems. In the proofs (Section 3) we will see how an identity of Littlewood corre-
sponding to the root system of type Dn plays a role in (1.2), and in Section 6 we generalize
this connection to types Bn and Cn.

In Sections 4 and 5 we give some applications to symmetric function theory, including
several identities which express Schur functions in terms of Pfaffians. In particular, we
obtain a Pfaffian expression for the plethysm p2 ° skn (Corollary 4.1) for which we are able
to give an explicit expansion into Schur functions (Theorem 5.3).

2. Two Pfaffian identities

In this section we state two-variable generalizations of (1.1) and (1.2) (Theorem 2.1). The
proofs are in Section 3. Many of the following definitions are taken from [7].

1. Introduction

Our main result (Theorem 2.1) is a two-variable generalization of the following pair of
identities:

*This work is partially supported by NSA grant MDA904-94-H-2011.



where the sum is over pairs of partitions A. = (a p , . . . , ap | a1 + 1 ap + 1) and
U = (B 1 , . . . , Bq | B1 + 1, . . . , (Bq + 1) in Frobenius notation, with a1, B1 < n — 1.

9/1— i
For example, aSn,sn(x,xn) = det(x i

2n-j) is the usual alternant in x, where Sn = (n -
1 1,0).

We are now ready to state the main result; (2.1) is also due to Proctor.

Theorem 2.1

In this way we view the Pfaffian as a weighted generating function for matchings. We often
write Pf(ai,j) for Pf (A).

In our main result, we express Pfaffians in terms of skew-symmetrizations of certain
monomials. Let x = {x 1 , x 2 x2n} and y = {y1 ,y2 , . . . , y 2 n } be two sets of variables
and let S2n act on each by permuting indices. For a and B compositions of length n define

Given it € f2n let e(n) = ( — 1 ) c r o s s , where cross(jr) is the crossing number of n, which
we can take to be the number of intersections when edges of n are drawn in the upper
half-plane as semicircular arcs between integer points of the x-axis.

If A = (aij) is a In x 2n skew-symmetric matrix then we define the Pfaffian of A to be

Let fin denote the set of perfect matchings on [2n]. The following two matchings in F2n

will be used in Sections 3 and 4:

Definitions For nan integer let [2n] = {1,2, ...,2n}. Let K2n denote the complete graph
on the vertex set [2n] (no loops or multiple edges.) We represent edges in K2n as ordered
pairs; by convention the first element of the pair is the smaller vertex. A perfect matching
(henceforth called a matching) is a set of edges
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Remark 2.1 Equations (2.1) and (2.2) are generalizations of (1.1) and (1.2) respectively.
Setting y = x in (2.1) gives
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Setting y = x in (2.2) we see that

The inner sum vanishes unless the exponents A1 + n,..., Un are distinct. Since y1, U1 < n,
the exponents must be a permutation of {0, 1,.. . , 2n - 1). We see immediately that
A-i = n — 1 and (j,n = 0. By induction we get X = (n — 1)" and /i = 0, as desired.

Remark 2.2 The shapes A. and fj, which occur in the last sum are those which occur in the
expansion of ]\(l + XiXj) into Schur functions. In fact (see [4, pp. 46,47])

where the sum is over all partitions X = (u1 ap | a1 + 1 ap + 1) with a\ <
n — 1. Moreover, the right hand side of (2.1) has a similar interpretation as a sum of terms
a^+s,n+&(x, y) where A. and U, range over all shapes in the expansion of I~J(jc, + Xj), namely
the single shape S. The reason for this will become apparent in the proofs.

3. Proofs

In our proofs we use sign-reversing involutions similar to those found in [1] and [3]. Our
involutions are defined on sets of matchings and tournaments. A tournament on [2n] is an
assignment of a direction (i -»• j or j -> i) to each edge (i, j) e K2n; let T2n denote the set
of tournaments on [2n]. We represent tournaments as sets of ordered pairs; the pair (i, j)
corresponds to the directed edge i -*• j. Pairs (j, i) e T with i < j are called upsets in
T, and for T e Ti, the sign of T is e(D = (-l)up(T) where up(T) is the number of upsets
in T. Given T € T-ji,, the degree (or more specifically, the outdegree) of the vertex k is

that is, the number of edges out of vertex k. In the proofs of (2.1) and (2.2) we make use of
the fact that a product of (^) binomials can be written as a weighted sum over 7 ,̂:



Proof: The Sign Lemma is closely related to a lemma of Stembridge [7, Lemma 2.1].
Using his argument we can reduce to the case where there are only four vertices, [i, j,k,l],
and so we have only to check a small number of cases. If neither k nor / is between i and
j then we have e(n) = —e(n') and it is easy to check that mup(jr, T) = mup(jr', T'). If
both k and l are between i and j then e(n) = — €(n) and in that case it is easy to see that
two matched upsets are changed, so again (-i)mup(jr,T) = (-1)mupvto'•*'). Finally, if exactly
one of k and / is between i and j, then e(;r) = e(n), and exactly one matched upset is
changed. D

Remark The interchange mentioned in the Sign Lemma occurs in our involutions and
will be called a simple i-j interchange.

To prove (2.1) we expand the left hand side as a sum over matchings and tournaments.

where udeg(i) is the number of unmatched edges out of i, and mdeg(i) is the number of
matched edges out of i.

Given (JT, T) e F2n x T2n, let V\ be the set of vertices with mdeg = 1 and V0 the set
of vertices with mdeg = 0. Let E\ be the set of unmatched edges between vertices of V\
and vertices of Vb. and let E2 be the remaining unmatched edges. We now describe an
involution on f2n

 x T2n by considering the subgraph on edges E1.

Description of (j>. Given (jr, T) find the lexicographically smallest pair of integers (i, j)
with mdeg(i) = mdeg(j) and degEl (i) = degEl (j); i.e., we seek a pair of vertices in V\ or
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Given a tournament T and a matching n, we refer to the undirected edges of T as either
matched or unmatched, according to whether or not they are contained in n. We will use
the following lemma to show that our involutions are sign-reversing.

Sign Lemma Let n be a matching and T a tournament. Let mup(n, T) denote the number
of edges in n which are upsets in T (matched upsets). Suppose i and j are matched (in n)
to k and I respectively. Let n' be the matching obtained by interchanging i and j, and let
T' be the tournament obtained by interchanging i and j in the edges which contain k or I.
Then



in V0 with the same degree in the subgraph induced by the edges E1. If no such pair exists
then (TT, T) is a fixed point of </>. Otherwise, suppose i is matched to k and j is matched
to l. We define a new pair (TT', T') = </>(TT, T) by making the following changes:
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Make a simple i-j interchange.
In T replace every pair of E1 edges of the form (i, s), (s, j) with (j, s), (s, i), and
conversely.

In almost all cases it is immediately clear that mdeg and udeg are preserved by these
operations, the only difficult cases being udeg(i) and udeg(j). Call a vertex type 1 if it
contributes to degE1 (j) but not to degE1 (j) and type 2 if it contributes to degE1 (j) but not to
degE1 ( i ) . By the choice of i and j we see that there are equal numbers of type 1 and type 2
vertices. After the interchange, the roles of type 1 and type 2 have switched, so udeg(i)
and udeg(j) are preserved as well. If we apply 0 to the pair (it1, T') we see that the same
pair (i, j) is selected (since the choice depends only on degrees) and repeating the switches
returns the original pair (n, T). This shows that </> is a weight-preserving involution, and
the Sign Lemma shows that </> is sign-reversing.

If (n, T) is a fixed point of <j>, the vertices of V1 and V0 must have distinct E1-degrees.
Since 0 < degE1 < n — 1, the E1 -degrees must be 0 ,1 , . . . , n — 1 for each set. Note: if
i e V1 is matched to j e V0 and degE1 (i) = n — 1 then all vertices in V0 other than j have
degE1 < n — 1, so degE1 (j) = n — 1 as well. By induction we see that degE1 (i) = degE1 (j)
whenever (i, j) € n.

Thus each fixed point of <t> determines a permutation a e S2n by the following equations:

that is, the match winners in E1 order determine the first half of a while the match losers in
reverse E1 order determine the second half of a. Let [a] be the equivalence class of fixed
points (TT, T) which correspond to a. Note that equivalence classes are exactly determined
by matched edges together with edges in E\, and so all pairs in [a] have the same sign.
Thus

the products arising from all possible choices of edge sets E2.
We claim that if (TT, T) e [a] then e(a) = e(7r)(-l)mup(jf'r). This is clear if a is the

identity since then pairs must be of the form (n1, T0) where n1 is defined in Section 2 and TO
satisfies mup(T1 , T0) = 0. Any other equivalence class can be obtained by making simple
interchanges or by interchanging the elements in a matched edge, both of which change the
sign of pairs in the class, and both of which correspond to acting on a by a transposition.



where uup(i) is the number of unmatched upsets that i is contained in. As before define
vertex sets V0 and V1 and edge sets E1 and E2. We now describe an involution 0 on F2n x T2n,
which preserves mdeg and uup.

Description 0/0. Given (TT, T) find the lexicographically smallest pair of integers (i, j)
with mdeg(i) = mdeg(j) and uupEl(i) = uupE1(j); i.e., we seek a pair of vertices in V1

or in VQ having the same number of E\ -upsets. If no such pair exists then (n, T) is a fixed

which completes the proof of (2.1).
The proof of (2.2) is entirely analogous; this time we use an involution on F2n x T2n

which preserves a pair of statistics to reduce to equivalence classes of fixed points which
have generating functions of the form x^x^yA 00 +•*<*/)• We begin as before by expand-
ing the left hand side over matchings and using a modification of (3.1) to expand products
over tournaments:

Now write this last sum as a sum over triples (A, p, r) where A (= [<r\,...,crn}) is an
n-element subset of [In] and p and T are permutations on A and A. Let inv(A) be the
number of / < j with i e A and j e A, and let V(XA) = YKxi + •*/) over ' < j in A.
Then
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Thus by induction we see that the sign is correct for all classes of fixed points. Now we
return to (3.2):
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point of (j>. Otherwise, suppose j is matched to k and j is matched to l. We define a new
pair (JT'', T') = <f>(n, T) by making the following changes:

141

Make a dual i-j interchange.
In T, whenever there is an E1 upset involving i and some vertex s together with an
E1 non-upset involving s and j, reverse both edges so that the upset status of each
changes. Similarly, reverse pairs with an E1 non-upset involving i and s and an E1
upset involving s and j.

A dual i -j interchange consists of a simple i -j interchange with the extra condition that after
the interchange, edges in T are reversed if their upset status was altered by the interchange;
i.e., the interchange does not effect the number of E1 upsets containing k or l. The proof
that 0 is a sign-reversing involution is the same as the proof that $ is a sign-reversing
involution.

If (n, T) is a fixed point of 4>, the statistic uup£l must be distinct on V1 and V0. Since
0 < uupEl < n — 1, the values must be 0,1 n — 1 for each set. Note: if i e V1 is
matched to j e V0 and uupE1 (i) = n -1 then all vertices in V0 other than j have uupE1 > 0,
so we must have uupEl (j) = 0. By induction we see that uupE1 (i) + uupE1 (j) = n — 1
whenever (i, j) e n. Thus equivalence classes of fixed points correspond to permutations
a e Sin and the weight of an equivalence class is

Now we proceed with a computation similar to the one at the end of the previous proof, the
crucial difference being that the identity

gets replaced by the corresponding Dn identity

where the last sum is over all A. = (a1 ap | a1 + 1 ap + 1•) with a1 < n — 1.
Setting W(XA) = HO + xiXj) over i < j in A we have the computation



Now we use the sign-reversing involution (/> to cancel terms leaving behind equivalence
classes of fixed points which correspond to permutations a e S2n- This gives:

The Schur function of shape A, is s^ (x) = a\+& (x)/as (x). In (2.1) or (2.2), if we replace x
and y by powers of x and divide both sides by ag(x) the right hand side is easily expressed
in terms of non-standard Schur functions. One case of interest is

Proposition 4.1

where D(2MSn+N, 2MSn) is the decreasing rearrangement of (2MSn+N, 2MSn), and the
sign is(—l)(i) times the sign of the permutation in £2/1 which rearranges (2MSn+N, 2MSn)
into D(2MSn + N, 2MB,).

Proof: In (2.1) replace x by XM, replace y by XN, and divide both sides by as(x). D

4. Pfaffians and Schur functions

In this section we obtain identities expressing Schur functions in terms of certain Pfaffians.
For a a composition of length 2n let
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This completes the proof of (2.2).
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The next corollary, originally due to Proctor [6], expresses the plethysm p2 o Skn in terms
of a Pfaffian.

Proof: Set N = (n + k) and M — 1/2 in Proposition 4.1 and replace x by x2. Then
A|^W = k" and the shuffle permutation is the identity. On the left hand side, the factors
Y[(x" + xM)/as(x) become l/as(x) as desired. D

There is another way to express Schur functions in terms of Pfaffians. More generally
any determinant can be written as a Pfaffian [2, 5]. Given an even order matrix A, choose
J skew symmetric with determinant 1 and set B = AJA'. Then

Remark 4.1 We can express a Schur function as a single Pfaffian by applying our method
to the Jacobi-Trudi identity. Let X be a partition of length at most 2n. For 1 < i < j < 2n let
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Corollary 4.1

For A of odd order let A = A ® (1) (matrix direct sum) so that A has even order and
det(A) = det(A).

Thus any Schur function can be written as a quotient of a Pfaffian by as (x) in many ways.
One such way is given by the following proposition, which is a special case of Theorem 5.1:

Proposition 4.2

where

Proof: Apply (4.1) to a^+s(x) where J has entries (—l) l + 1 on the antidiagonal.

(sums of Schur functions with two parts), and for i > j let Sjj = — j let Si,j. Then



Actually, this is a special case of a theorem of Stembridge [7, Theorem 3.1], but we can
also obtain it by applying (4.1) to the Jacobi-Trudi identity with J equal to a block diagonal
matrix with blocks (_° Q).

Remark 4.2 Using the matrix J with entries — 1 on the upper half of the antidiagonal and
1 on the lower half of the antidiagonal we can show

Then we have

To obtain this, multiply both sides of (2.1) by aSlll(x) = (—I)^a2i,,2tn(x, x). Then use
(4.2) to convert determinants to Pfaffians.

5. Symmetric function expansions

In this section we study how Pfaffians give rise to alternating functions and give a technique
for expanding such Pfaffians.

We say that the formal power series f ( x 1 , . . . , *2/i) is alternating it a f ( x ) = e(a) f ( x )
for all permutations a e S2n • We say that the formal power series f (u, v) (in two variables)
is skew symmetric if f ( u , v) = —f(v, u).

Lemma 5.1 Let f ( u , v) be skew symmetric and define ai,j = f(xi,xj). Then Pf(a i , j ) is
alternating.

Proof: Given a € S2n let P be the permutation matrix corresponding to a. Then a (a/j)
= P'(atJ)P. Hence
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Consequently we have

Theorem 5.1 Let f be a skew symmetric formal power series in two variables, f(u, v)
= £,., cr.sx

rys. Then

where CM is the skew symmetric matrix with entries c/j,hllj.



Proof: By Lemma 5.1 we know that the left hand side is a symmetric function so it suffices
to show that the coefficient of x* in Pf(f(x i, xj)) is Pf(Cu) for any shape U = A, + S. Let
(*") f denote the coefficient of x* in /. Then
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We give two applications of Theorem 5.1.

Theorem 5.2

where the sum is over all shapes with even length rows and even length columns.

Proof: To apply Theorem 5.1 we must expand (u - v ) / ( 1 - u2v2) = £r s cr_s u
r vs.

Evidently

Suppose Pf (Cn) ^ 0 for some U = A.+8. Let TT ̂  no be a matching that makes a non-zero
contribution to PffC^). There must be an edge (i, j) e n with j > i + 1. Since CM||M> ^ 0
and/i,,- > Uj, we must have Ui = Uj + l. But Ui > Ui+1 > Uj which is impossible. Hence
Pf(CV) = c^,^ • • • c ,̂.,,̂ . ^ 0. This forces c^.,,^ = 1 for all i, so U2i-1 = (in + 1
and fix must be even. But this is equivalent to A. having even rows and columns. D

Remark 5.1 We can use (2.2) to get a different expansion of the previous Pfaffian involving
plethysms.

where n has even rows and columns, v has Frobenius type (a 1 , . . . | a1+ 1 • • •) with a1 <
2n - 1, A, and U have Frobenius type (a1 , . . . |a1 + 1 • • •) with a1 < n - 1, A(A., /i) =
D(A + 2Sn + \,n + 2&n) -Sin, and € (A., /ti) is the sign of the shuffle that rearranges
(X. + 2Sn + l,n + 2Sn).



where the sum is overall self-complementary partitions inside the In x 2k rectangle, i.e.,
partitions satisfying A.,- + ^2n+i-i = 2k for i = 1 , . . . , n.

Proof: We apply Theorem 5.1 to Corollary 4.1. First we expand the formal power series
f(u, v) = (u2<-n+k) - v2(n+k))/(u + v) = £r s cr,,v u

r v*.

Suppose Pf(C^) 7^ 0 for some /j, = S + A. Then only n\ can contribute to PfCC^) since
(C^) has all its non-zero entries on the antidiagonal. Then

6. Remarks

Remark 6.1 Identity (2.2) corresponds to the root system Dn in the sense that the shapes
which occur in the expansion on the right hand side are those which appear in fj(l — xiXj),
the product half of Weyl's identity for the root system Dn [4, p. 46]. Other identities
corresponding to root systems Bn and Cn can easily be developed. More generally we
have
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Proof: In (2.2), move f[(l + *<*/) to the denominator of the right hand side, make the
change of variables x H> ix^ and y i-»- x, and then divide through by ag(x). D

As a second application, we can expand the Pfaffian in Corollary 4.1 to get an explicit
expansion of the plethysm p2 o s^ into Schur functions. This is also in [6].

Theorem 5.3

and fMi + /i2n+i-i = 2(n + &) — 1 for i = 1 n. This last condition is equivalent to
h + ^2n+\-i = 2k, and so also



Remark 6.2 It is easy to modify Theorem 5.2 to obtain other symmetric function expan-
sions. For example, it is known how to find the coefficient of JA(*) in

and all coefficients are — 1, 0, or 1 (see [8]). In some cases, the Pfaffian can be computed
from (1.2), resulting in a Littlewood formula.

Remark 6.3 The two-variable identities may have three-variable generalizations. For
instance, it is known that

This generalizes (2.1) since the change of variables x i->- x2, z i-» x yields (2.1). There is
also a conjecture for a three-variable version of (2.2). These and other generalizations will
be presented in a following paper.
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where the coefficients c[p) are determined by

The cases p = 1, p = 2, and p = oo correspond to root systems Bn, Cn, and Dn respec-
tively.

The factors (1 -xp
i) and (1 -xp

j) can be factored out of the Pfaffian in (6.1) as F(1 -xp
i).

This leads to the identity

We can similarly modify (2.1) to get

where the coefficients d(p) are determined by
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