
                       

P1: rbaP1: rba

Journal of Algebraic Combinatorics KL365˙01(Baum) October 31, 1996 17:6

Journal of Algebraic Combinatorics6 (1997), 5–26
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

On Flat Flag-Transitive c.c∗-Geometries

BARBARA BAUMEISTER
Fachbereich Mathematik und Informatik, Institut für Algebra und Geometrie, Martin Luther Universität, D-06099,
Halle/Saale, Deutschland

ANTONIO PASINI
Dipartimento di Matematica, Universitá di Siena, Via del Capitano 15, I-53100, Siena, Italia

Received May 31, 1995; Revised February 21, 1996

Abstract. We study flat flag-transitivec.c∗-geometries. We prove that, apart from one exception related to
Sym(6), all these geometries are gluings in the meaning of [6]. They are obtained by gluing two copies of an
affine space over GF(2). There are several ways of gluing two copies of then-dimensional affine space over
GF(2). In one way, which deserves to be called the canonical one, we get a geometry with automorphism group
G = 22n · Ln(2) and covered by the truncated Coxeter complex of typeD2n . The non-canonical ways give us
geometries with smaller automorphism group (G ≤ 22n · (2n − 1)n) and which seldom (never ?) can be obtained
as quotients of truncated Coxeter complexes.
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1. Introduction

We follow [21] for the terminology and notation of diagram geometry, except that we use the
symbol Aut(0) instead of Auts(0) to denote the group of type-preserving automorphisms
of a geometry0.

A c.c∗-geometryis a geometry with diagram as follows:

(c.c∗)• • •
c c∗

1 s 1
points lines planes

wheres is a positive integer, called theorderof the geometry. We recall that the stroke

• •
c

1 s

means the class of circular spaces withs+ 2 points and

• •
c∗

s 1
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has the dual meaning. We also recall that a circular space is a complete graph with at least
three vertices, viewed as a geometry of rank 2 with vertices and edges as points and lines,
respectively. Thus, given a setV of size |V | ≥ 3, a group of permutations ofV is flag-
transitive on the circular space with set of pointsV if and only if it is doubly-transitive onV .

A c.c∗-geometry0 is said to beflat if all points of0 are incident with all planes of0. In
this paper we shall focus on flatc.c∗-geometries admitting a flag-transitive automorphism
group.

Getting control on these geometries turns out to be useful to aquire information on
universal covers of other geometries. The reader may see [20] (Section 5.3) for an example
of this.

The paper is organized as follows. In Sections 2 and 3 we survey some examples ofc.c∗-
geometries which we need to have at hand in this paper. We will focus on flat ones, but some
non-flat examples will be considered, too. The Main Theorem of the paper is stated and
proved in Section 4. Our Theorem does not finish the investigation of flatc.c∗-geometries.
Rather, it points at a number of problems. We study some of them in Section 5.

2. Examples by gluing

2.1. On 1-factorizations of complete graphs

We need to recall some facts on 1-factorizations of complete graphs before describing the
gluing construction.

Let 0 = (V, E) be a finite complete graph of valencyk ≥ 1, with set of verticesV and
set of edgesE. A 1-factorizationof 0 is a mappingχ from E to a setI of sizek, calledthe
set of colours ofχ , such that, for every vertexa ∈ V , the restriction ofχ to the setEa of
edges containinga is a bijection fromEa to I . That is, denoted by‖ the equivalence relation
on E defined by “being in the same fiber ofχ ”, ‖ is a parallelism of the circular space0, in
the meaning of [6]. According to the notation of [6], we denote the set of coloursI by0∞

and, given an edgee∈ E, we write∞(e) for χ(e). We call∞(e) thepoint at infinityof e.
We recall that a complete graph of valencyk admits a 1-factorization if and only ifk is

odd (see [16]).
Let χ1, χ2 be 1-factorizations of a complete graph0 = (V, E), with the same set of

colours0∞. An isomorphismfrom χ1 to χ2 is a permutationf of V that maps the fibers
of χ1 onto the fibers ofχ2. That is, a permutationf of V is an isomorphism fromχ1 to χ2

if and only if there is a permutationα of 0∞ such thatχ2( f (e)) = α(χ1(e)) for every edge
e∈ E. Clearly, such a permutationα, if it exists, is unique. We call it theaction at infinity
of the isomorphismf and we setf∞ = α.

In particular, given a 1-factorizationχ of 0, the isomorphisms fromχ to χ are called
automorphismsof χ . We denote the automorphism group ofχ by Aut(χ).

The function mappingf ∈ Aut(χ) onto f∞ ∈ Aut(0∞) is a homomorphism from
Aut(χ) to Aut(0∞). We denote its image byA∞ and its kernel byK , in slight variation
to [6]. We call A∞ theaction at infinityof A andK thetranslation groupof χ .

Clearly, K acts semi-regularly on the setV of vertices of0 and, given a vertexa ∈ V ,
its stabilizerAa in A acts faithfully on0∞. It is not difficult to see that, ifK is transitive
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(hence regular) onV , thenA∞ = A∞a (∼=Aa). In this case the extensionA = K · A∞ splits,
andA is doubly-transitive onV if and only if A∞ is transitive on0∞.

Let 0 = (V, E) be a finite complete graph of odd valencyk. Whenk = 2n − 1 and
whenk = 5, 11 or 27, a 1-factorizationχ can be defined on0 in such a way that Aut(χ)
is doubly-transitive onV . We shall describe these 1-factorizations in detail, since we will
refer to their properties later on.

(1) Let k= 2n − 1. Then0 can be viewed as the point-line system of then-dimensional
affine geometry AG(n, 2) over GF(2). The case ofn = 1 is too trivial to be worth a
discussion. Thus, we assumen > 1.

Take the points of PG(n − 1, 2) as colours and letχ be the function mapping
every line of AG(n, 2) onto its point at infinity. Clearly,χ is a 1-factorization of0
and Aut(χ) = 2n : Ln(2), then-dimensional affine linear group over GF(2), doubly-
transitive on the setV of points of AG(n, 2). The translation groupK of χ is just the
translation group of AG(n, 2), andA∞ = Ln(2).

Aut(χ) also contains proper subgroups doubly-transitive onV . Whenn 6= 7, all
of them have the following form (see [9]):G = K · X, with X a proper subgroup of
Ln(2) transitive on0∞ (for instance, a Singer cycle, or its normalizer). On the other
hand, whenk = 7 (that is,n = 3) an exceptional phenomenon also occurs. We have
L2(7) ∼= L3(2) (see [10]) and there is bijective mappingϕ from the setV of points
of AG(3, 2) to the set of points of PG(1, 7) such that the groupG = {ϕ−1gϕ | g ∈
L2(7)} ∼= L2(7) ∼= L3(2) is contained in the 3-dimensional affine linear group over
GF(2) (see [9]). That is,G ≤ Aut(χ). As L2(7) is doubly-transitive on PG(1, 7), G is
also doubly-transitive onV . However,G ∩ K = 1.

It will be useful to have a symbol and a name for the pair(0, χ) with 0 andχ as
above. We will denote it by AS(n, 2) and we call it then-dimensional affine space
overGF(2), keeping the symbol AG(n, 2) for then-dimensional affine geometry over
GF(2), viewed as a geometry of rankn.

(2) Let k = 5. Then0 admits just one 1-factorizationχ , which can be constructed as
follows ([7, 17]).

We can assume thatV = H , for a hyperovalH of PG(2, 4). As set of colours
we take a lineL of PG(2, 4) external toH and, given any two distinct pointsa, b ∈
H , we defineχ({a, b}) as the meet point ofL with the line of PG(2, 4) joining a
with b.

The stabilizer ofH in P0L3(4) is Sym(6), the full permutation group on the six
points of H . The stabilizer ofL in this group is Sym(5), acting doubly-transitively
and faithfully both onH and onL (it acts as PGL2(5) on the six points ofH and as
P0L2(4) on L). Hence Aut(χ) = Sym(5), K = 1 andA∞ = Aut(χ).

The group Alt(5) ≤ Aut(χ) ∼= L2(5) ∼= L2(4) also acts doubly-transitively onH .
It is the only proper subgroup of Aut(χ) with this property.

(3) Let k = 11. We can now assume thatV = C, with C a nondegenerate conic of
PG(2, 11). Thus, the edges of0 can be viewed as the secant lines ofC. The stabilizer
of C in L3(11) is PGL2(11), doubly-transitive onC. Its commutator subgroupL2(11)
is also doubly-transitive onC and acts imprimitively on the 66 secant lines ofC, with
11 classes of size 6. Furthermore, it is doubly-transitive on that set of imprimitivity
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classes [7]). Since the secant lines ofC are the edges of0, we can take those imprim-
itivity classes as the fibers of a 1-factorizationχ of 0. We have Aut(χ) = L2(11)
(see [7]), doubly-transitive both onV = C and0∞ and faithful on0∞. Thus,K = 1.
No proper subgroup of Aut(χ) is doubly-transitive onV (see [7]; also [8]).

(4) Finally, let k= 27. As vertices of0we can take the 28 points of the Ree unitalUR(3).
There are nine subgroupsX = 23 : 7 in L2(8) = R(3)′, forming a complete conjugacy
classX both in R(3)′ and in R(3) = L2(8) · 3 (see [10]). AnX ∈ X is maximal in
R(3)′, whereas it has index 3 in its normalizer inR(3), which is maximal inR(3). A
group X ∈ X is transitive onV = UR(3), with point stabilizer of order 2, contained
in the maximal subgroupY = 23 of X (see [10]). ThereforeX acts imprimitively on
V , with seven imprimitivity classes of size 4. LetC be one of those classes and let
Xa be the stabilizer inX of a pointa ∈ X. SinceY is abelian,Xa is normal inY.
Furthemore,Y transitively permutes the four points ofC. HenceXa fixes all points
of C andY acts as 22 on C. That is, viewingC as a copy of AG(2, 2), Y acts onC
as the translation group of AG(2, 2). Therefore, if{L1, L2} is a partition ofC in two
pairs,{L1, L2} has seven images byX, one for each of the imprimitivity classes ofX
on V . These seven pairs give us a partition ofV in 14 pairs. We call this partition a
parallel class contributed by X. SinceC can be partitioned in pairs in three ways,X
contributes three parallel classes. Clearly, it stabilizes each of them. Let nowX vary
in X . Thus we obtain 3× 9= 27 parallel classes, which can be taken as the fibers of a
1-factorizationχ of 0. It is clear by the above construction thatR(3)′ is not transitive
on the set of fibers ofχ , but it has three orbits on it, each of size 9 (note thatR(3)′ is
transitive, but not doubly-transitive onV). For everyX ∈ X , the three parallel classes
contributed byX belong to distinct orbits. However,R(3) permutes the fibers ofχ .
Indeed, in order to getR(3) from R(3)′ we only need a 3-element belonging to the
normalizer inR(3) of someX ∈ X , and that element cyclically permutes the three
parallel classes contributed byX. This also shows thatR(3) is transitive on the set of
fibres ofχ . This amounts to say thatR(3) is doubly-transitive onV (compare [8]). It is
clear from [8] that no group of permutations ofV properly containingR(3) preserves
χ . Hence Aut(χ) = R(3), doubly-transitive onV .

R(3)′ is the only proper nontrivial normal subgroup ofR(3). ThereforeK = 1.
Note also that no proper subgroup ofR(3) is doubly-transitive onV (see [8]).

(The above construction is due to Cameron and Korchmaros [9]. The exposition they
give for it in [9] is fairly concise. We have expanded it a bit.)

Proposition 1 (Cameron and Korchmaros [9]) Let 0 = (V, E) be a complete graph
of odd valency k and letχ be a1-factorization of0 such that Aut(χ) is doubly-transitive
on V . Then k= 2n − 1, 5, 11or 27andχ is as in the above Examples(1)–(4).

2.2. Gluings

Let0 = (V, E) be a complete graph of odd valencyk > 1 and letχ1, χ2 be 1-factorizations
of 0 with the same set of colours0∞ = 0∞1 = 0∞2 . Let α be a permutation of0∞. We
define ac.c∗-geometry0 as follows.
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We takeV × {1} (respectively,V × {2}) as the set ofpoints( planes) of 0. As lineswe
take the pairs(e1, e2) ∈ E × E with α(χ2(e2)) = χ1(e1). We state that all points of0 are
incident with all planes of0. A point or a plane(a, i ) (wherei = 1 or 2) and a line(e1, e2)

are declared to be incident whena ∈ ei .
It is not difficult to check that0 is in fact ac.c∗-geometry of orders = k − 1 and it is

clear by the definiton that0 is flat. We call it thegluingof (0, χ1) with (0, χ2) via α (also
theα-gluing ofχ1 with χ2, for short), and we denote it by the symbol Glα(χ1, χ2).

The above construction is in fact a special case of a more general construction described
in [6]. The properties we shall mention in what follows are also specializations of properties
proved in [6] (Section 3.4).

For i = 1, 2, let Ki be the translation group ofχi and letA∞i be the action at infinity
of Ai = Aut(χi ). Every type-preserving automorphismg of Glα(χ1, χ2) induces onV an
automorphismgi of χi , i = 1, 2. As Aut(Glα(χ1, χ2)) acts on the lines of the gluing, we
haveg∞1 = αg∞2 α

−1. On the other hand, giveng1 ∈ A1 andg2 ∈ A2 such thatg∞1 =
αg∞2 α

−1, the functiong that maps(v, 1) onto(g1(v), 1) and(v, 2) onto(g2(v), 2) defines
an automorphism of Glα(χ1, χ2). Thus we may identifyK1 (K2) with the automorphism
group of the gluing that inducesK1 (K2) on the points (planes) and the trivial automorphism
on the planes (points). Therefore

Aut(Glα(χ1, χ2)) = (K1× K2) ·
(
A∞1 ∩ αA∞2 α

−1
)

(1)

The following is an obvious consequence of this description of Aut(Glα(χ1, χ2)).

Proposition 2 Let K1 and K2 be transitive on V . Then Glα(χ1, χ2) is flag-transitive if
and only if A∞1 ∩ αA∞2 α

−1 is transitive on0∞.

Assume that bothK1 andK2 are transitive onV . Chosen a vertexa ∈ V , we can identify
A∞1 with (A1)a andA∞2 with (A2)a, andα can be viewed as a permutation ofV\{a}. Thus,
the groupXα,a = (A1)a ∩ α(A2)aα

−1, which is the stabilizer in Aut(Glα(χ1, χ2)) of the
flag {(a, 1), (a, 2)}, is isomorphic withA∞1 ∩ αA∞2 α

−1 and the extension (1) splits:

Aut(Glα(χ1, χ2)) = (K1× K2) : Xα,a (2)

Giveng ∈ Xα,a andx ∈ V , we have

g((x, 1)) = (g(x), 1) and g((x, 2)) = (α−1gα(x), 2) (3)

Assumeχ1 = χ2 = χ , say. The following holds (see [6], Theorem 3.9):

Proposition 3 Given two permutationsα, β of 0∞, we have Glα(χ, χ) ∼= Glβ(χ, χ) if
and only ifα ∈ A∞βA∞.

Therefore

Corollary 4 The number of non-isomorphic gluings ofχ with itself is equal to the number
of double cosets of A∞ in the group of all permutations of0∞.
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A gluing Glα(χ, χ) is said to becanonicalif α ∈ A∞. In particular, Glι(χ, χ) is canonical,
whereι denotes the identity permutation of0∞.

By Proposition 3, the canonical gluings ofχ with itself are pairwise isomorphic. Thus,
if Glα(χ, χ) is canonical, then we can assume thatα = ι. By (1) we have the following:

Aut(Glι(χ, χ)) = (K × K ) · A∞ (4)

In short, the automorphism group of a canonical gluing is as large as possible.

2.3. Gluing two copies of AS(n, 2)

The canonical gluing of the affine space AS(n, 2)with itself (see 2.1.2(1)) is flag-transitive.
Its automorphism group has the following structure

(2n × 2n) · Ln(2)

whereLn(2) acts in the natural way on both factors isomorphic to 2n.
By Corollary 4, the number of non-isomorphic gluings of two copies of AS(n, 2) equals

the number of double cosets ofLn(2) in Sym(2n − 1). Whenn = 2 we haveL2(2) =
Sym(3), hence only one gluing is possible, namely the canonical one.

Let n = 3. Exploiting the information given onL3(2) and Alt(7) in [10] and [5] (p. 69),
it is not difficult to check thatL3(2) has four double cosets in Sym(7), corresponding to
elementsα, β, γ , δ with

α ∈ L3(2),

L3(2) ∩ βL3(2)β
−1 ∼= Frob(21),

L3(2) ∩ γ L3(2)γ
−1 ∼= Alt(4),

L3(2) ∩ δL3(2)δ
−1 ∼= Sym(4).

Thus, we have three non-canonical ways of gluing two copies of AS(3, 2). Only one of
these gluings is flag-transitive, namely the gluing viaβ. Indeed Frob(21) is transitive on the
set0∞ of points of PG(2, 2) (it is even flag-transitive on PG(2, 2)), whereas no subgroup
of Sym(7) isomorphic to Sym(4) or to Alt(4) can be transitive on0∞.

Needless to say, the largern is, the more ways exist of gluing AS(n, 2) with itself. Most
of these gluings are not flag-transitive. However, flag-transitive non-canonical gluings exist
for everyn > 2, as we will see in Section 5.

3. More examples

In this section we describe a few morec.c∗-geometries we shall deal with in this paper.
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3.1. The truncated Coxeter complex of type Dm

Let1m be a Coxeter complex of typeDm (m> 3). We take+,−, m− 2, m− 3, . . . ,2, 1
as types, as follows:

HHH

��
�

•+

•−
•

m− 2
•

m− 3
..... •

2
•
1

A c.c∗-geometry of orderm− 2 is obtained from1m by removing all elements of type
i = 1, 2, . . . ,m− 3. We denote this geometry by Tr(1m) and we call itthe truncated
Coxeter complex of type Dm. (In [3] Tr(1m) is calledthe two-coloured hypercube). Tr(1m)

is simply connected (see [3], p. 327).

Theorem 5 The universal cover of the canonical gluing of AS(n, 2)with itself is Tr(1m),

with m= 2n.

Proof: Let0 be the canonical gluing of AS(n, 2)with itself. Since we consider a canonical
gluing, α can be assumed to be the identity in (3) of Section 2.2. Thus, we can apply
Corollary 3.5 of [3] and we get the result. 2

3.1.1. Quotients of Tr(∆m). We firstly recall some properties of1m. The elements of
1m of type 1 and 2 from a completem-partite graph11,2

m , with the elements of type 1 as
vertices and those of type 2 as edges. The elements of1m of type i = 3, 4, . . . ,m− 2
are thei -cliques of this graph, and those of type+ and− are the maximal cliques. The
maximal cliques of11,2

m have sizem and two maximal cliquesX, Y are of the same type
whenm− |X ∩ Y| is even. The blocks of11,2

m have size 2.
Given a maximal cliqueA = {a1,a2, . . . ,am} of 11,2

m , let B = {b1, b2, . . . ,bm} be the
(unique) maximal clique of11,2

m disjoint from A, with indices chosen in such a way thatai

andbj are joined in11,2
m if and only if i 6= j .

For J ⊆ I = {1, 2, . . . ,m}, let eJ be the automorphism of11,2
m interchangingaj with

bj for all i ∈ J and fixing the other vertices of11,2
m . We call|J| theweightof eJ .

For every permutationσ ∈ Sym(m), let gσ be the automorphism of11,2
m that mapsai

ontoaσ(i ) andbi ontobσ(i ), for i ∈ I .
The elementseJ of even weight form an elementary abelian 2-groupE of order 2m−1,

whereasS= {gσ }σ∈Sym(m) is a copy of Sym(m). The Coxeter group of typeDm is E : S.
This is also the automorphism group of Tr(1m). Indeed1m can be recovered from Tr(1m)

(the graph11,2
m uniquely determines1m, the elements of Tr(1m) are the maximal cliques

and the(m− 2)-cliques of11,2
m , and11,2

m can be recovered from these cliques).
Comparing the conditions given in Section 11.1 of [21] for a group to define a quotient,

it is not difficult to see that a subgroupX of E defines a quotient of Tr(1m) if and only if
all non-identity elements ofX have weight at least four.

We shall now describe a subgroupX̄ ≤ E for which Tr(1m)/X̄ is the canonical gluing
of two copies of AS(n, 2). (The subgroups with this property are pairwise conjugated in
E : S, by a well known property of universal covers.)
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As m= 2n, we can takeI = {1, 2, . . . ,m} as the set of points of a modelA of AG(n, 2).
Let I be the set of affine subspaces ofA of dimension≥2 and letX̄ = {eJ}J∈I∪{∅}. It
is not difficult to check thatX̄ is a linear subspace ofE and that all non-zero vectors
of X̄ have weight≥4. HenceX̄ defines a quotient of Tr(1m). Furthermore,E/X̄ ∼=
V(n, 2). Consequently the quotient Tr(1m)/X̄ is flat. The normalizer ofX̄ in E : S is
E : ASL(n, 2) = (2n × 2n)Ln(2). By the Main Theorem of this paper (Section 4) the
quotient Tr(1m)/X̄ is the canonical gluing of two copies of AS(n, 2).

3.1.2. A special case: n= 2. Let n = 2. The center ofE : S is the unique non-trivial
subgroup ofE defining a quotient. This quotient is the canonical gluing of two copies of
AS(2, 2).

Note that a model of Tr(14) can also be constructed as follows: given a planeπ of
PG(3, 2) and a pointp ∈ π , removeπ and the star ofp. By a result of Levefre-Percsy and
Van Nypelseer [18], what remains is isomorphic to Tr(14). The center ofE is generated
by the elation of PG(3, 2) of centerp and axisπ .

3.1.3. The case of n= 3. Let n = 3 and letX̄ = {eJ}J∈I∪{∅} be the subgroup ofE such
that Tr(1m)/X̄ is the canonical gluing of two copies of AS(n, 2), as in Section 3.1.1. (Note
that the elements ofI are the setI and hyperplanes ofA).

The normalizer ofX̄ in Scontains a subgroupL ∼= L3(2) which is doubly-transitive on
I (see Section 2.1, Example (1)). Hence the automorphism group of Tr(18)/H contains a
flag-transitive subgroupG with the following properties:

(i) G ∼= 23 : L3(2);
(ii) Ga

∼= L3(2) for every elementa of Tr(1m)/H of type+ (or −). Furthermore, the
action ofGa on the 8 elements of type− (respectively+) incident toa is the doubly-
transitive action ofL3(2) on the 8 points of AG(3, 2).

On the other hand, Tr(18)/X̄ is the only flat quotient of Tr(18) admitting a flag-transitive
automorphism group like that. Indeed, letX ≤ E : Sdefine a flat quotient of Tr(18)/X with
Aut(Tr(18)/X) admitting a flag-transitive subgroupG with the above properties (i) and (ii).

As Tr(18) is flat,X has order 16. Its normalizerN in E : ScontainsX ·G=24(23 · L3(2)),
flag-transitive on Tr(18) becauseG is flag-transitive on Tr(18)/X. Let L = S∩ X ·G be
the stabilizer inX ·G of the maximal cliqueA of11,2

8 . By (ii), L ∼= L3(2), doubly-transitive
on A. It is now clear thatX must be a subgroup ofE. Since it defines a quotient of Tr(18)

its non-identity elements have weight at least 4. If one of them has weight 6, then we get
24 elements of weight 6 inX, by the doubly-transitive action ofL on A and becauseL
normalizesX. This is impossible, because|X| = 16. It is now clear thatX contains 14
elements of weight 4 and one element of weight 8. By (ii), the action ofL on A is a copy of
the doubly-transitive action ofL3(2) on the 8 points of AG(3, 2). Thus, the 14 elements of
X of weight 4 represent the 14 planes of AG(3, 2). That is,X = X̄ (up to conjugacy inS).

3.2. The two JVT-geometries

Let p andπ be a point and a plane of PG(3, 4), with p 6∈ π . Let O be a hyperoval ofπ .
We can define a rank 3 geometry0(p,O), as follows.
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Let C be the set of line of PG(3, 4) joining p with points ofO and letC =⋃L∈C L. We
takeP = C\({p} ∪ O) as the set of points of0(p,O). As planes we take the planesu of
PG(3, 4) such thatp 6∈ u andu ∩ O = ∅. Two points ofP not on the same line ofC are
said to form a line of0(p,O). The incidence relation is the natural one, inherited from
PG(3, 4). It is straightforward to check that0(p,O) is a flag-transitivec.c∗-geometry of
order 4.

We have Aut(0(p,O)) = H · Sym(6), whereH = Z3 is the group of homologies of
PG(3, 4) of centerp and axisπ . (Note thatH ·Alt(6) also acts flag-transively on0(p,O).)
It follows from [4] (Theorem B, (3) (ii)) that0(p,O) is simply connected.
0(p,O) can be factorized byH and0(p,O)/H is flat and flag-transitive, with Aut(0(p,

O)) = Sym(6) (but Alt(6) also acts flag-transitively on it).
We call0(p,O) thenon-flat JVT-geometry, after its discoverers Janko and van Trung [14]

(but they gave a different description for this geometry). The quotient0(p,O)/H will be
called theflat JVT-geometry.

The flat JVT-geometry is not a gluing. Indeed there is a unique way of gluing two
complete graphs with six vertices, but that gluing is not flag-transitive ([6], Section 6.2.4,
p. 385).

4. The main theorem

Theorem 6 (Main theorem) Let0 be a flag-transitive flat c.c∗-geometry. Then0 is one
of the following:
(i) the flat JVT-geometry;

(ii) the canonical gluing of two copies of AS(n, 2), n ≥ 2;
(iii) a non-canonical gluing of two copies of AS(n, 2), n ≥ 3,with Aut(0) ≤ (K1×K2) ·F,

where K1
∼= K2

∼= 2n and F≤ 0L1(2n).

In case (i), Aut(0) = Sym(6) and the universal cover of0 is the non-flat JVT-geometry
(see Section 3.2). In case (ii), the universal cover of0 is the truncated Coxeter complex of
type Dm with m= 2n (Theorem 5), and Aut(0) = (2n × 2n) · Ln(2) (see Section 2.2).

We shall prove the above theorem in the next subsection. The following corollary is
easily got by assembling Theorems 5 and 6:

Corollary 7 A flag-transitive flat c.c∗-geometry is the canonical gluing of two copies of
AS(n, 2) if and only if its automorphism group is a quotient of the Coxeter group of type
Dm, with m= 2n.

4.1. Proof of Theorem 6

Let0 be a flatc.c∗-geometry of orders. Since0 is flat, there are justs+2 points ands+2
planes in0. Furthermore, given any two distinct points (planes)x and y and any plane
(point) z, there is just one line incident withx, y andz. Therefore, given any two distinct
points (planes), there are(s+ 2)/2 lines incident with them both. (By the way, this forces
s to be even).
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Let0 be flag-transitive and letG a flag-transitive subgroup of Aut(0). Given an element
x of 0, we denote the stabilizer ofx in G by Gx. If x is a point or a plane, thenGx acts
faithfully on the residue0x of x, whereas, ifx is a line, then the kernelKx of the action
of Gx on0x is the stabilizer of any of the four chambers containingx, andGx/Kx = 22

(by [3], Lemma 3.1).
Given two linesl andm of 0, if l andm are incident with the same pair of planes (points),

then we writel ‖+ m (resp.,l ‖− m). Clearly,‖+ and‖− are equivalence relations on the
set of lines of0 and, if l ‖+ m (resp.l ‖− m), thenl andm have no points in common (are
not incident with any common plane).

For every plane (point)x, we denote by‖x the equivalence relation induced by‖+ (resp.
‖−) on the set of lines incident tox.

Lemma 8 For every plane or point x, the classes of‖x are the fibers of a1-factorization
of the complete graph0x.

Proof: Let x be a plane, to fix ideas. Ifl , m are lines of0x such thatl ‖x m, thenl andm
have no points in common. On the other hand, given a planey 6= x, there are just(s+2)/2
lines incident with bothx andy. The lemma is now obvious. 2

Corollary 9 If 0 is not the flat JVT-geometry, then s= 2n − 2 for some n≥ 2 and the
following hold, with x any point or plane of0:
(i) 0x, equipped with‖x, is a model of AS(n, 2);

(ii) Gx is a doubly-transitive subgroup of AGLn(2) and either it contains the translation
subgroup of AGLn(2), or n = 3 and Gx

∼= L3(2).

Proof: By Lemma 8 and Proposition 1, eithers = 2n − 2 and (i), (ii) hold, or we have
one of the following:

(a) s= 4 andGx = Sym(5) or Alt(5) (see Section 2.1, Example (2));
(b) s= 10 andGx = L2(11) (see Section 2.1, Example (3));
(c) s= 26 andGx = R(3) (see Section 2.1, Example (4)).

In case (a) the universal cover of0 is the non-flat JVT-geometry, by Theorem B of [4]. In
this case0 is the flat JVT-geometry.

Case (b) is impossible by Theorem B of [4]. Assume we have (c). LetK be the stabilizer
in G of all points of0. By Lemma 3.1 of [3],K is semi-regular on the set of planes of0.
Thus,|K | is a divisor of 28, since0 has 28 planes. However,Gx = R(3) for every point
x, andR(3) does not contain any normal subgroup of order 2, 4, 7, 14 or 28. Therefore
K = 1. Consequently,G acts faithfully on the 28 points of0. It is also doubly-transitive
on them and it has order|G| = 28 · |R(3)| = 25337. However, no doubly-transitive group
of degree 28 exists with that order (see [8]). Thus, (c) is impossible. 2

Lemma 10 Let s= 6 and Gx
∼= L3(2) for a point or a plane x. Then0 is the canonical

gluing of two copies of AS(3, 2) (hence G= 23 · L3(2) is a proper subgroup of Aut(0) =
26 : L3(2)).
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Proof: The universal cover of0 is Tr(18), by Theorem A of [4]. The statement follows
from what we said in Section 3.1.3. 2

Henceforth we assume thats= 2n − 2. Hence (i) and (ii) of Corollary 9 hold. The case
of n = 3 with Gx = L3(2) (x a point or a plane) has been examined in Lemma 10. Thus,
whenn = 3 we also assume thatGx 6∼= L3(2), for any point or planex. Therefore, for any
point or planex, the pair(0x, ‖x) is a model of AS(n, 2) andGx contains the translation
groupTx of the affine space(0x, ‖x).

Lemma 11 We have Tx = Ty for any two planes or two points x, y of0.

Proof: Let x be a plane (a point) of0. SinceTx fixes all classes of‖x, it also fixes all
planes (points) of0, since those classes bijectively correspond to the planes (points) of0

distinct fromx. ThereforeTx ≤ Gy for every plane (point)y of 0. Let y be any of them.
SinceTx fixes all planes (points) of0, it also fixes all classes of‖y. HenceTx = Ty. 2

Given a paire= {x, y} of distinct points (planes) and a plane (a point)z, we denote byl z
e

the line of0z incident to bothx and y. Given two pairs of distinct points (planes)e1, e2

and a plane (point)z, if l z
e1
‖z l z

e2
then we writee1 ‖[z] e2.

Lemma 12 We have‖[x] = ‖[y] for any two planes( points) x and y.

Proof: For every plane (point)x, the classes of‖[x] are the orbits ofTx on the set of points
(planes) of0. The conclusion follows from Lemma 11. 2

We write‖1 or ‖2 for ‖[x] , according to whetherx is a plane or a point. (This notation is
consistent, by the previous lemma.) We also denote by01 (resp.02) the complete graph
with the points (planes) of0 as vertices. Thus(01, ‖1) (resp. (02, ‖2)) is a model of
AS(n, 2).

Given a linel of 0, we denote byσ1(l ) (resp.σ2(l )) the pair of points (planes) incident
to l .

Lemma 13 Given any two lines l,m of0, we haveσ1(l ) ‖1 σ1(m) if and only ifσ2(l ) ‖2
σ2(m).

Proof: Let σ1(l ) = {a,a′}, σ2(l ) = {u, u′}, σ1(m) = {b, b′} and σ2(m) = {v, v′}.
Assume{u, u′} ‖2 {v, v′}, to fix ideas. This means thatl ‖a m′, with m′ the line of
0a joining v with v′. We haveσ1(m′) = σ1(l ), by the definition of‖a. On the other
hand,σ2(m′) = σ2(m) = {v, v′}, by the choice ofm′. Hencem′ ‖v m. Therefore
σ1(m′) ‖1 σ1(m). That is,{a,a′} ‖1 {b, b′}. 2

Lemma 14 The geometry0 is a gluing of two copies of AS(n, 2).

Proof: Fix a pointa and a planeu of 0. For i = 1, 2 and for every edgee of 0i , let
χi (e) be the linel ∈ 0a,u such thatσi (l ) ‖i e. It is clear thatχi is a 1-factorization of
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0i , with the classes of‖i as its fibers and0a,u as set of colours. By Lemma 13, we have
χ1(σ1(l )) = χ2(σ2(l )) for every linel of 0. It is now clear that0 is the gluing Glα(χ1, χ2)

of (01, χ1) with (02, χ2) with α = 1. On the other hand, both(01, χ1) and(02, χ2) are
isomorphic to AS(n, 2). The statement follows. 2

Thus,0 is the gluing of two copiesS1, S2 of AS(n, 2) via some permutationα of the set
0∞ of the points of PG(n− 1, 2). Modulo replacing0 with some of its isomorphic copies
if necessary, we can assume thatS1 = S2 = S.

Forx a point or a plane and forG a flag-transitive automorphism group of0 the stabilizer
Gx acts doubly-transitively on the planes or points in its residue0x, respectively. Moreover
we haveG = (V1 × V2)X, with X = Ga,u, a a point of0, u a plane of0 incident toa,
V1 = O2(Ga) = Ka andV2 = O2(Gu) = Ku. Note thatX = Ln(2) ∩ αLn(2)α−1 (see
Section 2.2, (1)).

Lemma 15 Letα 6∈ Ln(2). Then n≥ 3 and X≤ 0L1(2n).

Proof: We haven ≥ 3 becauseL2(2) = Sym(3). We can assume thata andu are the
same element ofS, say p0, and we can take the elements ofS∞ := S\{p0} as points of
PG(n− 1, 2). BothV1 andV2 act regularly onS. Givenx, let x1 (x2) be the element ofV1

(V2) mappingp0 ontox. Giveng ∈ X, we denote byg(x) andg[x] the images ofp0 by xg
1

andxg
2 respectively. Thusg(p0) = g[ p0] andg(x) = gα[x] for everyx ∈ S∞.

Clearly, X ≤ 0Lm(q) with q = 2n/m, for some divisorm of n (possibly,m = 1 or
m = n). SinceGa is an affine doubly-transitive permutation group over GF(2), by [19]
eitherm= 1 or X contains a normal subgroupY isomorphic to SLm(q), Spm(q) (m even),
G2(q)′, A6 or A7, with m= 6 whenY ∼= G2(q)′ andm= n = 4 whenY ∼= A6 or A7.

We need to prove thatm = 1. Assumem > 1, by contradiction. Let4 be a natural
geometry for the action ofY on V2. The elements of4 are linear subspaces ofV2 (in fact,
they are subspaces ofV(m,q)). Thus they can be viewed as subsets (possibly, points) of
S∞, via the one-to-one correspondence we have stated betweenV2 andS. Given p ∈ S∞,
we will denote by〈p〉 the point of4 containingp.

The groupY is transitive onS∞. Furthermore,Yα is contained inLn(2), asY ≤ X =
Ln(2) ∩ αLn(2)α−1. On the other hand, there is exactly one conjugacy class inLn(2) of
subgroups isomorphic toY and transitive onS∞ (see [1] (21.6)(1) and [15]). This means
that there exists an elementϕ ∈ Aut(V2) = Ln(2) such thatYαϕ = Y. The permutation
ψ = αϕ of S∞ induces an automorphism ofX. As X is transitive onS∞, by multiplying
by some element ofX if necessary we can also assume thatψ stabilizes some element
p ∈ S∞.

We claim that there is ag ∈ Aut(V2), such thatψg centralizesY. Assume the contrary.
If Y ∼= SLm(q), Spm(q) ((m,q) 6= (4, 2), Sp4(2)′ ∼= A6 or G2(q)′, thenψ induces
some graph automorphism onY. On the other handψ , stabilizing p, also normalizes the
stabilizerYp of p in Y and maps stabilizers of points of4 onto stabilizers of maximal
subspaces of4, since it acts as a graph automorphisms onY. Therefore,Yp stabilizes〈p〉
and some maximal subspace of4. However, this is impossible. (Note thatYpZ(GLm(q))
contains the stabilizer of〈p〉 in Y.) This contradiction forcesY ∼= A7, 〈Y, ψ〉 ∼= S7 and



                

P1: rbaP1: rba

Journal of Algebraic Combinatorics KL365˙01(Baum) October 31, 1996 17:6

ON FLAT FLAG-TRANSITIVE c.c∗-GEOMETRIES 17

Yp
∼= L3(2). This gives again a contradiction asNS7(L3(2)) = L3(2), [10]. Hence there is

someg ∈ Aut(V2), such thatψg centralizesY.
Thus we are able to chooseϕ ∈ Aut(V2) so that the permutationψ (= αϕ) centralizesY.

On the other hand, the stabilizer inY of a point of4 does not fix any other point of4. This
forcesψ to stabilize all subsets ofS∞ corresponding to points of4. Let p1 ∈ S∞. Asψ
stabilizes〈p1〉, we haveψ(p1) = λ1 p1 for someλ1 ∈ GF(q)\{0}. On the other hand, for
everyλ ∈ GF(q)\{0} there is some elementg ∈ Y such thatg(p) = λp for everyp ∈ 〈p1〉.
Asψ andg commute, we have

ψ(λp1) = ψ(g(p1)) = g(ψ(p1)) = λψ(p1) = λλ1 p1 = λ1 · λp1

Consequently, the action ofψ on 〈p1〉 is the multiplication byλ1. We claim thatλ1 does
not depend on the choice ofp1. Given another elementp2 ∈ S∞ with 〈p2〉 collinear with
〈p1〉 in 4, let λ2 ∈ GF(q) \{0} be such thatψ(p) = λ2 p for every p ∈ 〈p2〉. Let g ∈ Y
map〈p1〉 onto〈p2〉. Asψ commutes withg, we have

λ2 · g(p1) = ψ(g(p1)) = g(ψ(p1)) = g(λ1 p1) = λ1 · g(p1)

(the last equality holds by linearity). Thereforeλ1 = λ2. By the connectedness of4,λ1 does
not depend on the choice ofp1, as claimed. Consequently,ψ acts by scalar multiplication
on V(m,q). That is,ψ ∈ Z(GLm(q)). Therefore,α = ψϕ−1 ∈ Ln(2); a contradiction.
Hencem= 1. 2

Lemma 15 finishes the proof of Theorem 6.

5. On non-canonical gluings

It is quite natural to ask how many examples exist for case (iii) of Theorem 6, for a given
n ≥ 3. (We recall that the canonical gluing is the only possibility whenn = 2, as stated in
Theorem 6). Two questions ask for an answer:

(1) Which possibilities forX = Aut(0)/(K1× K2) ≤ 0L1(2n) really occur?
(2) Chosen a feasible isomorphism typeX for Aut(0)/(K1 × K2), how many non-

isomorphic examples exist with Aut(0)/(K1× K2) = X?

In Section 5.1 we shall describe a family of examples withX = 0L1(2n). In Section 5.2
we shall count the number of non-isomorphic examples withX = 0L1(2n). More detailed
information on the cases ofn = 3, 4, 5, 6 will be given in Section 5.3. As a by-product,
we will see that whenn = 6 there is at least one example withX < 0L1(2n). Perhaps, the
same is true whenever 2n − 1 andn are not relatively prime (compare Corollary 17).

5.1. A family of examples with X= 0L1(2n)

Non-canonical gluings of two copies of AS(n, 2) with X = 0L1(2n) can be obtained as
quotients of the elation semi-biplane associated with PG(2, 2n). We shall describe these
quotients in Section 5.1.2, after recalling the definition of elation semi-biplanes.
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5.1.1. Elation semi-biplanes. Homology, elation and Baer semi-biplanes have been in-
troduced by Hughes [12]. We will only consider elations semi-biplanes here.

Given a linel of PG(2,q) (q = 2n, n > 1) and a pointp ∈ l , let ε be an elation of
PG(2,q) of centerp and axisl . We denote byP the set of points of PG(2,q) not onl and
by L the set of lines of PG(2,q) that do not pass through the pointp.

Let5ε be the incidence structure defined as follows. The orbits ofε on P are the points
of 5ε. As blocks we take the setsu ∪ v, with {u, v} an orbit ofε on L. The incidence
relation is defined as symmetrized inclusion. This incidence structure is a semi-biplane. It
is called anelation semi-biplane.

It is well known that ac.c∗-geometry0 can be obtained from every semi-biplane5. The
elements of0 are the points and the blocks of5 and the unordered pairs of points of5
contained in a common block. We call these pairs of pointslinesand the blocksplanes, to
be consistent with the terminology we have chosen forc.c∗-geometries. According to [21],
we call0 theenrichmentof 5.

Returning to5ε, let0ε be its enrichment.0ε is ac.c∗-geometry of orderq−2= 2n−2.
The centralizerG of ε in P0L3(q) has the following structure

G = H · ((K1× K2) · 0L1(q))

with H the group of elations of centerp and axisl andK1
∼= K2

∼= 2n. It is not difficult to
check thatG acts flag-transitively on0ε with kernel〈ε〉. ThereforeG/〈ε〉 is a flag-transitive
automorphism group of0ε (compare [4], Example 6).

Let us write Hε for H/〈ε〉 and Gε for G/〈ε〉, for short. Whenn = 2, a theorem of
Levefre-Percsy and Van Nypelseer [18] implies that0ε is isomorphic to the truncatedD4

Coxeter complex. In this case it is clear thatGε = Aut(0ε).
Assumen > 2. We shall prove in Section 5.1.2 that0ε/Hε is a non-canonical gluing.

HenceG/H = Aut(0ε/Hε) by Theorem 6(iii) and becauseHε is normal inGε. Therefore
Gε is the normalizer ofHε in Aut(0ε). On the other hand,Hε is normal in Aut(0ε), as we
shall prove in a few lines. Therefore,

Gε = Aut(0ε)

Thus, let us prove thatHε is normal inA = Aut(0ε). “Being non-collinear” is an equiv-
alence relation on the set of points of0ε with 2n classes of size 2n−1. The groupHε acts
regularly on each of these classes and the stabilizer inGε of a pointa of 0 acts as a cyclic
group on the classXa containinga, with at least one orbit of sizen. Consequently, the
stabilizer Aa of a in A has at least one orbit of size≥ n on Xa. On the other hand, it
acts faithfully on the residue ofa ([2], Lemma 2.1) and it is doubly-transitive on the set of
planes incident witha. Thus,Aa is a doubly-transitive group of degree 2n. It also has at
least one orbit of size≥ n on Xa. Exploiting this information and comparing the list of
[8], by easy calculations one can see thatAa is almost simple only if it is placed between
L2(3r ) and P0L2(3r ), for some positive integerr . If this is the case, then 1+ 3r = 2n.
However, 2n ≡ 0 (mod 8) (because we have assumedn > 2), whereas 1+3r ≡ 2 or 4 (mod
8), according to whetherr is even or odd. This contradiction forcesAa to be affine. The
same forAu, with u a plane. HenceAx = O2(Ax)Aa,u andO2(Ax) ≤ Gε for x = a or u.
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In Gε we see thatH is the center of〈O2(Aa),O2(Au)〉. As Aa,u normalizes bothO2(Aa)

andO2(Au), H is normal both inAa and inAu, whence it is normal inA = 〈Aa, Au〉.

5.1.2. A flat quotient ofΓε. Let us keep the notation of the previous paragraph.H/〈ε〉
defines a quotient̄0ε of 0ε, which is flat. The group

G/H = (K1× K2)0L1(q)

acts flag-transitively on̄0ε. By Theorem 6, this forces̄0ε to be a gluing of two copies of
AS(n, 2). Del Fra [11] has proved that whenn ≥ 3 this gluing is non-canonical (hence
Aut(0̄ε) = G/H , by Theorem 6).

The argument by Del Fra runs as follows. Givep the coordinates(0, 0, 1) and l the
Plücker coordinates(0, 1, 0), and letε be represented by the following matrix:1 0 0

0 1 0
0 1 1


We need some notation. Denoting the additive groups of GF(q) and GF(2) by GF+(q) and
GF+(2), we set [GF(q)]2 = GF+(q)/GF+(2) and, givenx ∈ GF(q), by [x]2 me mean the
image ofx by the projection of GF+(q) onto [GF(q)]2.

It is not difficult to see that the points and the planes of0ε are represented by pairs
(x, x′) ∈ GF(q) × [GF(q)]2, a point(a,a′) being incident with a plane(u, u′) precisely
when [au]2+ a′ + u′ = 0.

An unordered pair of pairs{(a,a′), (b, b′)} with a 6= b represents a pair of coplanar
points of0ε, namely a line of0ε. The two planes on that lines are represented by the two
solutions in GF(q)× [GF(q)]2 of the following system of equations:

[ax]2+ a′ + x′ = 0

[bx]2+ b′ + x′ = 0

Note that the two solutions(u, u′), (v, v′) of this system satisfy the relation(u+ v)(a+ b)
= 1.

The projection of0ε onto 0̄ε maps a point(a,a′) ontoa ∈ GF(q) and a plane(u, u′)
ontou ∈ GF(q).

Let the points(a,a′), (b, b′) form a line and let(u, u′), (v, v′) be the two planes on that
line. The image of that line in̄0ε can be represented as a pair({a, b}, {u, v}), wherea 6= b,
u 6= v and(a+ b)(u+ v) = 1. On the other hand, every such pair represents a line of0̄ε.

Note that GF+(q) can also be viewed as a copy of then-dimensional vector spaceV(n, 2)
over GF(2). The non-zero elements of GF(q) are the non-zero vectors ofV(n, 2). Hence
they correspond to the points of PG(n− 1, 2). Thus, the above description of0̄ε amounts
to the following. The vectors ofV(n, 2) give us both the points and the planes of0̄ε. The
lines of 0̄ε are obtained by pairing two linese1 = {a, b} ande2 = {u, v} of AS(n, 2), in
such a way that(a + b)(u + v) = 1 in GF(q). However,a + b andu + v represent the
points at infinity∞(e1) and∞(e2) of e1 ande2. Thus, two linese1, e2 of AG(n, 2) are
paired to form a line of̄0ε whenever∞(e2) = ∞(e1)

−1 in GF(q).
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Therefore0̄ε is a gluing of two copies of AS(n, 2)and the permutationα of PG(n−1, 2) =
GF(q)\{0}we use for this gluing maps every element of GF(q)\{0}onto its inverse in GF(q).
Whenn ≥ 3, no element ofLn(2) behaves like that. Therefore, whenn ≥ 3 this gluing is
non-canonical.

(The same conclusion cannot be drawn whenn = 2, asL2(2) = Sym(3). In fact, as we
noticed at the beginning of Section 2.3, there is only one gluing of two copies of AG(2, 2),
namely the canonical one.)

Remark We noticed in Section 2.3 that there is only one flag-transitive non-canonical
gluing of two copies of AS(3, 2). That gluing is0̄ε. Here is another way to construct it.

Let P be the set of points of PG(2, 2). It is well known that PG(2, 2) admits a sharply
flag-transitive automorphism groupF = Frob(21) and that, for every pointp ∈ P, the
stabilizer ofp in F has two orbits of size 3 onP\{p}. One of them is a line. The other
one is a non-degenerate conic, sayCp. It is not difficult to check that(P, {Cp}p∈P) is a
model of PG(2, 2). Therefore, there is a permutationβ of P that maps the lines of PG(2, 2)
onto the conicsCp, (p ∈ P). Clearly, L3(2) ∩ βL3(2)β−1 = F , which is transitive on
P. Therefore, the gluing of AS(3, 2) with itself via β is flag-transitive, by Proposition 2.
Clearly,β 6∈ L3(2). Hence that gluing is not the canonical one. Thus, it is isomorphic to
0̄ε.

Letα be the permutation ofP mapping every element ofP = GF(8) \{0} onto its inverse
in GF(8). Thenβ = f αg for suitable f, g ∈ L3(2), by Proposition 3.

5.1.3. A conjecture. Whenn = 2 the elation semi-biplane0ε is isomorphic to the truncated
D4 Coxeter complex, which is simply connected. It will turn out from the results of
Section 5.3.2 that0ε is simply connected whenn ≤ 6. Furthermore, the first author has
obtained the following partial result:0ε is simply connected when 2n − 1 is prime. Thus,
it is quite natural to conjecture that0ε is always simply connected.

5.2. The number of examples with X= 0L1(2n)

Theorem 16 The number of non-canonical gluings0 as in (iii) of Theorem6 with
Aut(0)/(K1× K2) ∼= 0L1(2n) is equal to

ϕ(2n − 1)

n
− 1

with ϕ the Eulerian function(i.e., ϕ(2n − 1) is the number of positive integers less then
2n − 1 and relatively prime with2n − 1).

Proof: The isomorphism classes of gluings of two copies of AS(n, 2) bijectively corre-
spond to the double cosetsA∞αA∞ of A∞ = Ln(2) in Sym(2n−1) (Proposition 3). Given
a permutationα ∈ Sym(2n − 1), the automorphism group of the gluing obtained byα is
(K1× K2)X with X = A∞ ∩ αA∞α−1 (Proposition 2).
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Given any two permutationsα, β ∈ Sym(2n−1), if A∞αA∞ = A∞βA∞ thenαA∞α−1

andβA∞β−1 are conjugated by an element ofA∞. On the other handA∞, being a copy
of Ln(2), is its own normalizer in Sym(2n − 1). Therefore, ifaαA∞α−1a−1 = βA∞β−1

for somea ∈ A∞, thenβ−1aα ∈ A∞, whenceA∞αA∞ = A∞βA∞. Consequently,
A∞αA∞ = A∞βA∞ if and only if αA∞α−1 andβA∞β−1 are conjugated by an element
of A∞.

By the above, the gluings of two copies of AS(n, 2) bijectively correspond to the orbits
of A∞ on the set of conjugates ofA∞ in Sym(2n − 1). In particular, the orbitO0 =
{A∞} corresponds to the canonical gluing, whereas the gluings with Aut(0)/(K1× K2) =
0L1(2n) correspond to the orbits whose members intersectA∞ in a subgroup isomorphic
to 0L1(2n). Denoted the family of these orbits byC, let us setC0 = C ∪ {O0}.

Given a copyX of 0L1(2n) in A∞, let SX be its cyclic subgroup of order 2n − 1. The
subgroupSX is generated by a Singer cycle ofA∞ ∼= Ln(2) andX is its normalizer inA∞.
HenceX is its own normalizer inA∞. Moreover, the subgroups generated by Singer cycles
form one conjugacy class inLn(2). Therefore, all subgroups ofA∞ isomorphic to0L1(2n)

are conjugated withX in A∞. Consequently, givenO ∈ C, some members ofO intersect
A∞ in X. Let αA∞α−1 be one of them. ThengαXα−1g−1 = X for someg ∈ αA∞α−1.
Let f = α−1gα. Thengα = α f andX = α f X f−1α−1. Thus, by replacingα with α f if
necessary, we can assume thatαXα−1 = X.

Assume thataαXα−1a−1 also intersectsA∞ in X, for somea ∈ A∞. ThenaαA∞α−1a−1

contains bothX andaXa−1. On the other hand, bothX andaXa−1 are contained inA∞ and
aαA∞α−1a−1 ∩ A∞ = X. ThereforeX = aXa−1. However,X is its own normalizer in
A∞. Hencea ∈ X. Consequently,aαA∞α−1a−1 = αAα−1, becausea ∈ X ⊆ αA∞α−1.

Thus, there is precisely one element ofO intersectingA∞ in X and, ifαA∞α−1 is that
element, we can assume thatαXα−1 = X. The permutationα, acting by conjugation
on X, determines an automorphismγα of X. Let β be another permutation such that
βA∞β−1 = αA∞α−1 andβXβ−1 = X. Thenβ = aα for somea ∈ A∞ becauseA∞

is its own normalizer in Sym(2n − 1). Furthermore,aXa−1 = X because bothβ andα
stabilizeX. Hencea ∈ X, sinceX is its own normalizer inA∞. Consequently,γα andγβ
represent the same element of the outer automorphism group Out(X) of X. Let us denote
that element byγ (O). Thus, we have defined a mappingγ : C → Out(X). We extend it
to C0 by stating thatγ (O0) is the identity of Out(X).

Clearly, every automorphism ofX is induced by some permutationα ∈ Sym(2n − 1)
normalizing X. This implies that the above mappingγ is surjective. As|Out(X)| =
ϕ(2n − 1)/n, in order to finish the proof we only need to prove thatγ is injective.

Let αA∞α−1, βA∞β−1 be conjugates ofA∞ with αXα−1 = βXβ−1 = X and assume
that (γβ)−1γα is an inner automorphism ofX. Theng−1β−1α centralizesX, for some
g ∈ X. In particular,g−1β−1α centralizes the cyclic subgroupSX of X of order 2n − 1.
Therefore,g−1β−1α ∈ SX, that isα = β f for some f ∈ SX. HenceαA∞α−1 = βA∞β−1.
Thus,γ is injective. 2

Remark The first author has proved that the−1+ ϕ(2n − 1)/n non-canonical gluings
mentioned in Theorem 16 have non-isomorphic universal covers. We are not going to prove
this result here.
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5.3. A report on the cases of n= 3, 4, 5, 6

The possibilities for (iii) of Theorem 6 can be checked case-by-case by writing feasible
sets of relations and computing the size of the amalgams by CAYLEY. We have done this
work for n = 3, 4, 5 and (partially) forn = 6. We shall now report on the results we have
obtained.

5.3.1. Preliminaries. Let G = (K1× K1)X be a flag-transitive subgroup of Aut(0), with
0 a gluing of two copies of AS(n, 2), X ≤ 0L1(2n), K1

∼= K2
∼= V(n, 2) andn ≥ 3. (Note

that we are not assuming thatG = Aut(0). In particular, if the gluing0 is the canonical
one, thenG is a proper subgroup of Aut(0) = (K1× K2)Ln(2).)

The flag-transitivity ofG amounts to the transitivity ofX on the non-zero vectors of each
of the two copiesK1 andK2 of V(n, 2). Thus, letX be such a subgroup of0L1(2n) and
let v, w be non-zero vectors ofK1 andK2 respectively.

Then〈v, X〉 is the stabilizerGx in G of a planex of 0 and〈w, X〉 is the stabilizer inG
of a point p incident withx. The subgroupX is the stabilizer of the flag{p, x}. If l is a
line of0 incident withp andx, its stabilizerGl is generated by a non-zero vectorv′ ∈ K1,
a non-zero vectorw′ ∈ K2 and a suitable subgroupY of index 2n−1 in X. We can assume
to have chosenl in such a way thatv′ = v andw = w′. Thus,Gl = 〈v,w,Y〉.

In order to search for examples we need to chooseX andY and to fix their actions on
K1 andK2. We get a set of relations, we search for the groupG̃ presented by it and, in the
non-collapsing cases, we determine the geometry0̃ associated with̃G.

By Theorem 6, we havẽ0 = Tr(12n) whenG is a subgroup of(K1 × K2)Ln(2). As
we saw in Section 5.1.2, flat quotients of elation semi-biplanes are non-canonical gluings
and their automorphism group is(K1× K2)0L1(2n). Thus, we also get universal covers of
elation semi-biplanes forX = 0L1(2n) and for a suitable choice of its actions onK1 andK2.
Furthermore, we also know in advance how many flat examples exist withX = 0L1(2n),
by Theorem 16. Let us consider these, to begin with.

5.3.2. The case of X= ΓL1(2n). Let X = 0L1(2n). This group is generated by two
elementsc and f of order 2n − 1 andn, respectively. Thus,

Gp = 〈w, c, f 〉, Gx = 〈v, c, f 〉, Gl = 〈v,w, f 〉

andY = 〈 f 〉. The generatorsv,w, c, f satisfy the following relations:

v2 = w2 = c2n−1 = f n = 1[
v, vci ] = 1 (i = 1, 2, . . . ,n− 1)[
w,wci ] = 1 (i = 1, 2, . . . ,n− 1)

[v, f ] = [w, f ] = 1

c f = c2

v p(c) = wq(c) = 1

[v,w] = 1
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with p(t) andq(t) polynomials of degreen irreducible over GF(2) and not dividingta− 1
for any proper divisora of 2n − 1. As we said above, the group̃G presented by these
relations, if it does not collapse, defines the universal cover0̃ of 0. The groupG ≤ Aut(0)
which we started from is obtained from̃G by factorizing over the subgroup generated by
the following commutators

[
vci
, wcj ]

, (i, j = 1, 2, . . . ,n− 1)

The polynomialsp(t) andq(t) depend on the choice ofc. Thus, we can fix one of them as
we like, compatibly with the above conditions. Letp(t) be the one we fix. Then we try all
possibilities forq(t). Note that whenq(t) = p(t) we getG ≤ (K1 × K2)Ln(2). That is,
the canonical gluing corresponds to the choice ofq(t) = p(t).

Whenn = 3 we can choosep(t) = t3+ t+1. Thenq(t) = t3+ t2+1 is the only choice
for q(t) 6= p(t). In this case0 is the flat quotient of the elation semi-biplane of order 6 and
0̃ is its universal cover. Coset enumeration shows that|G̃| = 2821= 4|G|. Hence0̃ is a
4-fold cover of0. Thus,0̃ is the elation semi-biplane of order 6.

Whenn = 4 we can takep(t) = t4+ t+1. Then eitherq(t) = p(t) orq(t) = t4+ t3+1.
Chosent4+ t3+1 asq(t), the geometry0 is the flat quotient of the elation semi-biplane of
order 14 and̃0 is its universal cover. We now have|G̃| = 8|G|. Therefore0̃ is the elation
semi-biplane of order 14 (as above).

Whenn = 5 we can takep(t) = t5 + t2 + 1. Then the following are the only choices
for q(t) 6= p(t):

t5+ t3+ 1
t5+ t4+ t3+ t2+ 1
t5+ t4+ t2+ t + 1
t5+ t3+ t2+ t + 1
t5+ t4+ t3+ t + 1

In the first case0 is the flat quotient of the elation semi-biplane of order 30 (the action of
c on K2 is the inverse of that onK1). Again, the elation semibiplane of order 30 is the
universal cover of0.

In the remaining four cases̃0 has 210 points (thus, it is a 32-fold cover of0). Theorem
16 says that the four flat geometries corresponding to these four cases are pairwise non-
isomorphic.

Let n = 6. We now takep(t) = t6 + t + 1 and the following are the possibilities for
q(t) 6= p(t):

t6+ t5+ 1
t6+ t4+ t3+ t + 1
t6+ t5+ t4+ t + 1
t6+ t5+ t3+ t2+ 1
t6+ t5+ t2+ t + 1
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In the first case0 is the flat quotient of the elation semi-biplane of order 62 (the actions of
c on K1 andK2 are mutually inverse). It turns out that the elation semibiplane of order 62
is the universal cover of0 (a 32-fold cover, in fact).

In two of the remaining four cases̃0 has 213 points, whereas it has 216 points in the
other two cases. The four flat geometries corresponding to these four cases are pairwise
non-isomorphic, by Theorem 16.

5.3.3. An example with X< ΓL1(2n). In order to get examples of gluings different from
those considered in the previous subsection we need a subgroupX of 0L1(2n) transitive on
the 2n − 1 non-zero vectors ofV(n, 2) but not containing the cyclic subgroup of0L1(2n)

of order 2n − 1. No subgroup exists with these properties when 2n − 1 andn are relatively
prime. Thus, by Theorem 16 we get the following.

Corollary 17 Let2n − 1 and n be relatively prime. Then

ϕ(2n − 1)

n
− 1

is the total number of flag-transitive non-canonical gluings of two copies of AS(n, 2). If 0
is any of them, then Aut(0) = (K1× K2)0L1(2n).

In particular, whenn ≤ 5 no flag-transitive non-canonical gluings exist besides those
considered in the previous subsection. This is no more true whenn = 6, as we shall show
now.

Let n = 6. Given elementsc and f of 0L1(26) of order 63 and 6 respectively and such
that c f = c2, let a = c3, b = c f 2 and X = 〈a, b〉. Thena andb have order 21 and 9
respectively,ab = a4 andb3 = a7. Thus,c 6∈ X andX ∼= Z21Z3.

Let v ∈ K1 andw ∈ K2 so that [v, f ] = [w, f ] = 1 and letG̃ be the group presented
by the following relations:

v2 = w2 = a21 = b9 = 1[
v, vai ] = 1 (i = 1, 2, 3, 4, 5)[
w,wai ] = 1 (i = 1, 2, 3, 4, 5)

v p(a) = wp(a) = 1

vr (a)vb = wr (a)wb = 1

[v,wa] = 1

with

p(t) = t6+ t5+ t4+ t2+ 1

r (t) = t4+ t3+ 1
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Let us consider the following subgroups ofG̃:

Gx = 〈v,a, b〉 = K1X, whereK1 = 〈vX〉, X = 〈a, b〉,
Gp = 〈w,a, b〉 = K2X, whereK2 = 〈wX〉 and

Gl = 〈v,wa〉.

Clearly, Gp and Gx are subgroups ofA0L1(2n) = 2n0L1(2n), Gl = 22 and the coset
geometry0(G̃, (Gp,Gl ,Gx) defines a simply connectedc.c∗-geometry0̃ of order 62 with
G̃ as a flag-transitive automorphism group.

The size ofG̃ can be computed by coset enumeration. It turns out that|G̃| = 218327.
Therefore0̃ has 212 points. So in particular̃0 is not theD64-truncation. (This can also be
seen using [3], Corollary (3.5)). On the other hand, the subgroupN of G̃ generated by the
commutators [vai

, wbj
] (i, j = 1, 2, 3, 4, 5) is normal inG̃ and it has trivial intersections

with each ofGp, Gx and Gl . Thus it defines a flag-transitive quotient0 = 0̃ of 0.
Furthermore,|G̃ : N| = 26. Hence0 has 26 points. That is,0 is flat. By Theorem 6,0 is a
gluing of two copies of AS(6, 2).

DenotedG̃/N by G, we have Aut(0) ≥ G = (K1× K2)X.

Statement 18 We have Aut(0̃) = G̃ and Aut(0) = G.

Proof: We show Aut(0̃) = G̃. As each automorphism of0 can be lifted to an automor-
phism of0̃, we then obtain Aut(0) = G as well.

AssumeA = Aut(0̃) > G̃. Since forp a point andc a planeAp
∼= Ac are doubly-

transitive permutation groups, we haveAp
∼= Ac

∼= A64, S64, 26L6(2) or Ap
∼= Ac is

isomorphic to a subgroup of 260L1(64), see [8] and [19]. As̃0 is not theD64-truncation,
Ap
∼= Ac are not isomorphic toA64 or S64, see [4].

Let B be the Borel subgroup ofA and letF be a flag in0̃. Then for the stabilizers̃GF , AF

of F in G̃ andA, respectively, we haveAF = G̃F B. HenceB normalizesK1 andK2, which
gives [B, v] = [B, wa] = 1 andNB(X) 6= 1. Let h ∈ NB(X)\{1}. Then on one hand
h ∈ NAut(Ki )(〈c, f 〉) = X, i = 1, 2, and on the other hand [v, h] = [wa, h] = 1. Since
CX(〈v〉) = 〈 f 〉 andCX(〈wa〉) = 〈 f a〉we obtain [K1, h−1 f i ] = 1 and [K2, h−1( f j )a] = 1
for somei, j ∈ {1, . . . ,6}. The Three-subgroup Lemma, [1] (8.7), yields [〈c, f 〉, h−1 f i ] =
1 and [〈c, f 〉, h−1( f j )a] = 1. So f i and( f j )a are inducing the same automorphism onX.
Thus f −i ( f j )a = f j−i a−2 j+1 centralizesX. SinceC〈c, f 〉(X) = 〈a7〉, we obtaini = j = 3
andB ∼= Z2.

On the other hand,〈X, f 3〉 = 〈c, f 〉 yieldsB ∼= Z6, in contradiction to the above. Hence
A = Aut(0̃) = G̃. 2

Added in proof. Conjecture 5.1.3 has been answered in the affirmative by the first author
and by D. Pasechnik [22].
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