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Abstract. We give a simple combinatorial proof of Ram’s rule for computing the characters of the Hecke Algebra.
We also establish a relationship between the characters of the Hecke algebra and the Kronecker product of two
irreducible representations of the Symmetric Group which allows us to give new combinatorial interpretations to
the Kronecker product of two Schur functions evaluated at a Schur function of hook shape or a two row shape.
We also give a formula for the regular representation of the Hecke algebra.
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1. Introduction

Frobenius began the study of the representation theory and character theory of the symmetric
group Sf at the turn of the century [5]. There is one irreducible representation ofSf

corresponding to each partitionλ of f . Frobenius gave the following remarkable formula
for the irreducible characters of the symmetric group. Ifpµ denotes the power symmetric
function andsλ is the Schur function, then

pµ =
∑
λ` f

χλSf
(µ)sλ, (1)

whereχλSf
(µ) is the value of the irreducible characterχλSf

(µ) evaluated at a permutation of
cycle typeµ ([13] I Section 7 and [12] contain proofs of this formula which are essentially
the same as that of Frobenius). This formula can be used to give a combinatorial rules,
often called the Murnaghan-Nakayama rule, for computing the irreducible characters of the
symmetric group.
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A Frobenius type formula for the characters of the Hecke algebraH f (q) was derived in
[14] by studying the Schur-Weyl type duality between the Hecke algebra and the quantum
groupUq(s`(n)). The q-extension of the Murnaghan-Nakayama rule was also given in
[14]. It was derived there through a connection between the irreducible characters of the
Hecke algebras and Kronecker products of symmetric group representations. For each
partitionµ of f there is a symmetric function̄qµ (depending onq) such that for certain
special elementsTγµ ∈ H f

q̄µ =
∑
µ` f

χλH f
(Tγµ)sλ, (2)

whereχλH f
denotes the irreducible character of the Hecke algebra andsλ is the ordinary

Schur function. By specializingq = 1 in (2) one gets the classical Frobenius formula (1).
In this paper we begin with the Frobenius formula (2) derived in [14]. Using this for-

mula we give a direct proof of the combinatorial algorithm for computing the irreducible
characters of the Hecke algebra by using the Remmel-Whitney rule for multiplying Schur
functions. The Remmel-Whitney rule is a version of the Littlewood-Richardson rule which
is particularly nice for our purposes.

Following the proof of the combinatorial rule for the characters of the Hecke algebra, we
derive explicitly the connection between the Hecke algebra characters and Kronecker prod-
ucts of symmetric group representations which came into play in [14]. By understanding
this connection one gets a combinatorial rule for computing Kronecker coefficientsκλµν
whereν is the partition(1 f−mm), for somem. Furthermore one finds that this approach can
be generalized to compute Kronecker coefficients for other cases. We work this out explic-
itly to give a combinatorial algorithm for computingκλµν in the case whereν = ( f −m,m).
In the most general form, this approach gives a new proof of the Littlewood-Garsia-Remmel
formula [6] which is particularly painless.

In the final section of this paper we give two further applications of the Frobenius formula:

(1) We compute explicitly the character of the regular representationRof the Hecke algebra.
The formula is

χ R(Tγµ) =
f !(q − 1) f−k

µ1!µ2! · · ·µk!
,

(2) We compute explicitly the generic degrees of GLn(Fq).

A combinatorial proof of the rule for computing Hecke algebra characters has also been
given by van der Jeugt [20] by using the version of the Littlewood-Richardson rule given
in [13]. One can also give a combinatorial proof of the rule for computing Hecke algebra
characters which avoids the use of the Littlewood-Richardson (see the remark in Section 2).
Some of the methods used in this paper have been used in [18] to obtain further results on
Kronecker product decompositions. The formula for the trace of the regular representation
of the Hecke algebra is, to our knowledge, new. The generic degrees of GLn(Fq) are well
known, only the approach is new. For further background on generic degrees see [3] and [8].
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2. The Frobenius formulas and Murnaghan-Nakayama rules

We will use the notations in [13] for partitions and symmetric functions except that we will
use the French notation for partitions. In particular, ifλ is a partition,λ = (0< λ1 ≤ λ2 ≤
· · · ≤ λ`), then the length ofλ, `(λ), is the number of partsλi , the weight ofλ, |λ|, is the
sum of the parts, and we writeλ ` f to denote thatλ is a partition of f , i.e., |λ| = f . We
let Fλ denote the Ferrer’s diagrams ofλ whereFλ is the set of left justified rows of cells or
boxes withλi cells in thei th row from the top fori = 1, . . . , `. λ′ denotes the conjugate
partition toλ. If λ = (0 ≤ λ1 ≤ · · · ≤ λ`) andµ = (0 ≤ µ1 ≤ · · · ≤ µk), then we write
λ ⊆ µ if ` ≤ k andλ`−i ≤ µk−i for i = 0, . . . , ` − 1. If λ ⊆ µ, thenµ − λ is the set of
boxes in the Ferrers diagram ofµ that are not contained in the Ferrers diagram ofλ. |µ−λ|
is the number of boxes contained inµ− λ.

Let Sf denote the symmetric group of permutations off symbols and denote the group
algebra of the symmetric group overC byCSf . CSf can be defined as the algebra overC
generated bys1, s2, . . . , sf−1, with relations

si sj = sj si , if |i − j | > 1, (3)

si si+1si = si+1si si+1, (4)

s2
i = 1. (5)

Heresi may be thought of as an element ofSf by identifying si with the transposition
(i, i + 1). The irreducible representations ofSf are indexed by partitionsλ of f and we
shall denote the corresponding irreducible characters byχλSf

.
The Hecke algebraH f (q) is the algebra overC(q), the field of rational functions in a

variableq, generated byg1, g2, . . . , gf−1 with relations

gi gj = gj gi , if |i − j | > 1 (6)

gi gi+1gi = gi+1gi gi+1 (7)

g2
i = (q − 1)gi + q. (8)

The irreducible representations ofH f (q) are also indexed by partitions off and we shall
denote the corresponding characters byχλH f

.
Let σ ∈ Sf . A reduced decomposition ofσ is an expressionσ = si1si2 · · · sik with k

minimal. k is called the length ofσ and denoted bỳ(σ ). To each permutationσ ∈ Sf

we associate an elementTσ = gi1gi2 · · · gi f ∈ H f (q), whereσ = si1si2 · · · si f is a reduced
decomposition ofσ . It is well known that each elementTσ is independent of the reduced
decomposition ofσ and that the set of elements{Tσ }σ∈Sf form a basis ofH f (q).

Let γr be the permutation inSr given byγr = sr−1sr−2 · · · s1. Thus in cycle notation,
γr = (r, r − 1, . . . ,1). For any partitionµ = (µ1, µ2, . . . , µk) of f one has a natural
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imbedding ofSµ1 × Sµ2 × · · · × Sµk into Sf under which we can view the element

γµ = γµ1 × γµ2 × · · · × γµk (9)

as an element ofSf . Thus in cycle notation

γµ = (µ1, . . . ,1)(µ2+ µ1, . . . ,1+ µ1) · · ·
(

f, . . . ,1+
∑
i<k

µi

)
.

Tγµ is the corresponding element ofH f (q). Since any permutationσ ∈ Sf is conjugate
to aγµ for some partitionµ, we have that for any characterχSf of Sf , χSf is completely
determined by the valuesχSf (γµ). We shall sometimes writeχSf (µ) for χSf (γµ). The
following theorem is proved in [14].

Theorem 1 Any characterχH f of Hf (q) is completely determined by the values
χH f (Tγµ).

Let x1, x2, . . . , xn, (n > f ), be independent commuting variables. A column strict
tableau of shapeλ is a filling of the Ferrers diagram ofλ with numbers from the set
{1, 2, . . . ,n} such that the numbers are weakly increasing in the rows from left to right and
strictly increasing in the columns from bottom to top. Similarly, a row strict tableau of
shapeλ is a filling of Fλ with numbers from{1, . . . ,n} such that the numbers are weakly
increasing in columns from bottom to top and strictly increasing in rows from left to right.
The weight of a column strict tableauT is given by the product

xT =
n∏

i=1

xti
i

whereti is the number ofi ’s appearing in the tableauT . The Schur functionsλ is defined
by

sλ =
∑

T

xT ,

where the sum is over all column strict tableaux of shapeλ, andxT denotes the weight of
the tableauT .

For each integerr > 0 define the power symmetric function,pr , by

pr = pr (x1, x2, . . . , xn) = xr
1 + xr

2 + · · · + xr
n,

and for a partitionµ = (µ1, µ2, . . . , µk) define

pµ = pµ1 pµ2 · · · pµk .

TheFrobenius formulafor Sf is

pµ =
∑
λ` f

χλSf
(µ)sλ. (10)
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Define, for each integerr > 0,

q̄r = q̄r (x1, . . . , xn : q) =
∑

Ei=(i1,...,i r )
qN=(Ei )(q − 1)N<(Ei )xi1xi2 · · · xir (11)

where the sum runs over all weakly increasing sequencesEi = 1≤ i1 ≤ · · · ≤ i r ≤ n
and N=(Ei ) = |{ j < r : i j = i j+1}| and N<(Ei ) = |{ j < r : i j < i j+1}|. For a partition
µ = (µ1, µ2, . . . , µk), let

q̄µ = q̄µ1q̄µ2 · · · q̄µk . (12)

Note that forq = 1, q̄r = pr and q̄µ = pµ. TheFrobenius formulafor the irreducible
characters ofH f (q) is

q̄µ =
∑
λ` f

χλH f

(
Tγµ
)
sλ (13)

(see [14]).
The following algorithm for computing the valuesχλSf

(µ), called the Murnaghan-
Nakayama rule, can be derived from the Frobenius formula ([13] I Section 7 Ex. 9, [12]).

χλSf
(µ) =

∑
T

wt(T), (14)

where the sum is over allµ-rim hook tableauxT of shapeλ. Here a rim hook ofλ is a
sequence of cells along the north-east boundary ofFλ so that any two consecutive cells
in h share an edge and the removal fromFλ of the cells inh leaves one with a Ferrers
diagram of another partition. See figure 1 for a picture of all rim hooks of length 3 for
λ = (2, 2, 2, 3, 4).

If µ = (0 < µ1 ≤ · · · ≤ µk), aµ-rim hook tableauT of shapeλ is a sequence of
partitions

T = (∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(k) = λ)

Figure 1. Rim hooks.
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such that for each 1≤ i ≤ k, λ(i ) − λ(i−1) is a rim hook forλ(i ) of lengthµi . The weight
of a rim hookh is

wt(h) = (−1)r (h)−1 (15)

wherer (h) is the number of rows inh and the weight ofT is

wt(T) =
k∏

i=1

wt(λ(i ) − λ(i−1)). (16)

There is also aq-extension of the Murnagham-Nakayama rule giving a combinatorial
rule for computing the valuesχλH f

(Tγµ) derived in [14].

χλH f

(
Tγµ
) =∑

T

wtq(T) (17)

where the sum is over allµ-broken rim hook tableauxT of shapeλ. Here a broken rim hook
b of λ is a sequence of rim hooks(h1, . . . , hd) of λ (starting from the bottom) such that for
all 1≤ i < d, hi andhi+1 do not have any cells in common nor are there cellsc1 ∈ hi and
c2 ∈ hi+1 such thatc1 andc2 meet along an edge. We letn(b) denote the number of rim
hooks inb. See figure 2 for a picture of a broken rim hookb of λ = (2, 2, 3, 3, 7) where
n(b) = 3.
Note that any rim hook ofλ is a broken rim hookb of λ wheren(b) = 1. Then if
µ = (µ1, . . . , µk), aµ-broken rim hook tableauT is a sequence of partitions

T = (∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(k))

such that for each 1≤ i ≤ k, λ(i )− λ(i−1) is a broken rim hook ofλ(i ) of total lengthµi . In
this case the weight of a rim hookh is

wtq(h) = (−1)r (h)−1qc(h)−1 (18)

Figure 2. A broken rim hook.
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wherec(h) is the number of columns ofh. The weight of a broken rim hookb is

wtq(b) = (q − 1)n(b)−1
∏

rim hooksh∈b

wtq(h). (19)

For example the weight of the broken rim hook tableau pictured in figure 2 is(q − 1)2

(−q)(−1)(q2) = (q − 1)2q3. Finally the weight ofT is

wtq(T) =
k∏

i=1

wtq(λ
(i ) − λ(i−1)). (20)

We note that a more succinct way to describe broken rim hooks and rim hooks is the
following. A skew shapeλ− µ is a broken rim hook ifλ− µ contains no 2× 2 block of
boxes andλ−µ is a rim hook ifλ−µ contains no 2×2 block of boxes and it is connected
in the sense that any two consecutive cells ofλ− µ share an edge.

Finally, we note that if we setq = 1 in (19), then the weight of a broken rim hookb
is nonzero only ifb is a rim hook. Thus whenq = 1, the righthand side of (17) reduces
to the righthand side of (14) and hence theq-extension of the Murnagham-Nakayama rule
reduces to the Murnagham-Nakayama rule.

3. The combinatorial rule for the irreducible characters of Hf (q)

In this section we will give a proof of the combinatorial rule described in (17) for computing
the irreducible characters of the Hecke algebra by using the Frobenius formula and the
Remmel-Whitney rule for multiplying Schur functions.

The Remmel-Whitney algorithm [19] for expanding the product the Schur functionssλ
andsµ as a sum of Schur functions is the following. Place the shapesµ andν end to end so
that the lower right corner ofν is touching the upper left corner ofµ. Fill the resulting dia-
gram, which we shall callD, from right to left and bottom to top with the numbers 1 to|µ|+
|ν|. For example, in the case whereµ = (2, 4, 4) andν = (1, 3, 3), D is pictured in figure 3.

Figure 3. Filling for µ = (2, 4, 4) andλ = (1, 3, 3).
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Figure 4. R-W conditions.

This given, one constructs all tableauxT (fillings of Ferrers diagrams with the numbers
1 to |µ| + |ν|) that satisfy the following rules.

(1) x is weakly below and strictly to the right ofy in T if y is immediately to the left ofx
in D.

(2) y is strictly above and weakly to the left ofx in T if y is immediately abovex in D.

Any standard tableauxT satisfying (1) and (2) is calledD-compatible and the number of
D-compatible tableauxT of shapeλ is the coefficient ofsλ in sµsν which we denote by
cλµ,ν .

The two conditions (1) and (2) may be conveniently pictured as in figure 4.
One further remark about the Remmel-Whitney algorithm is to note that the rules (1) and
(2) will completely force the placement of the numbers in the lower Ferrers diagram ofD.
That is, ifµ = (µ1 ≤ · · · ≤ µk), then in allD-compatible tableaux, 1, . . . , µk lie in the
first row,µ1 + 1, . . . , µ1 + µ2 lie in second row, etc. Hence the numbers 1, . . . , |µ| will
fill a diagram of shapeµ in all D-compatible tableaux.

The first step in proving (17) is to give the expansion of the functionq̄r defined by (11)
as a sum of Schur functions.

Theorem 2 Let sλ denote the Schur function and letq̄r be as defined in(11). Then

q̄r =
r∑

m=1

(−1)r−mqm−1s(1r−m,m). (21)

Proof: Define a marked increasing sequence of lengthr to be a sequenceI = (i1, i2, . . . ,

i r ), 1 ≤ i1 ≤ i2 · · · ≤ i r ≤ n such that eachi j is either marked or unmarked according to
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the following rules.

(1) i1 is unmarked.
(2) If i j = i j+1 theni j+1 is unmarked.
(3) If i j < i j+1 theni j+1 may be either marked or unmarked. 2

Given a marked increasing sequenceI = (i1, i2, . . . , i r ), let U (I ) = # of unmarked
elements ofI andM(I ) = # of marked elements ofI . Then we define the weight ofI to be

wt(I ) = qU (I )−1(−1)M(I )xi1xi2 · · · xir .

It is easy to see from (11) that

q̄r =
∑

I

wt(I ),

where the sum is over all marked increasing sequences of lengthr .
To each marked increasing sequenceI with m unmarked elements, we associate the

column strict tableauT of shape(1r−m,m) containing

(1) i1 in the corner square.
(2) the unmarked elements ofI in the horizontal portion of(1r−m,m), and
(3) the marked elements ofI in the vertical portion of(1r−m,m).

See figure 5 for an example of this correspondence where we have underlined the marked
elements.

This gives a bijection between marked increasing sequences of lengthr and column strict
tableaux of shapes(1r−mm). We have

q̄r =
∑

I

wt(I ) =
r∑

m=1

(−1)r−mqm−1
∑

T

xT

=
r∑

m=1

(−1)r−mqm−1s(1r−m,m)

Figure 5. The column strict tableau of a marked sequence.
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where the inner sum in the second line is over all column strict tableauT of shape
(1r−m,m). 2

Theorem 3 The irreducible characters of the Hecke algebra are given by

χλH f

(
Tγµ
) =∑

T

wtq(T),

where Tγµ is the element of Hf (q) described in Section1 and the sum is over allµ-broken
rim hook tableaux T of shapeλ, and wtq(T) is as defined in(20).

Proof: Let ν be a partition. We use the Remmel-Whitney rule for multiplying Schur
functions and the formula (21)

q̄r =
r∑

m=1

(−1)r−mqm−1s(1r−m,m),

to compute the product̄qr sν . In order to compute the product(−1)r−mqm−1s(1r−m,m)sν
easily, modify the Remmel-Whitney rule slightly so that the boxes in the vertical part of
(1r−m,m) have a weight of−1 and the boxes in the horizontal part have weightq. Let the
corner box of(1r−m,m) have weight 1. 2

Now compute the coefficient ofsλ in s(1r−m,m)sν . Note that by our remarks following
figure 4, when one applies the Remmel-Whitney rule, everyD-compatibleT must contain
the shape ofν. Moreover, it is easy to see that the R-W conditions (1) and (2) corresponding
to the elements ofD in the hook(1r−m,m) force thatλ − ν does not contain any 2× 2
block. Thus the coefficient ofsλ in s(1r−m,m)sν is zero unlessλ ⊇ ν andλ − ν is a broken
rim hook. Moreover ifT is a D-compatible tableau of shapeλ andθ denotes the elements
of T which lie in the shapeλ− ν, then

(i) any box inθ which has a box to its right must be filled with an element in the horizontal
part of(1r−m,m) in D,

(ii) any box inθ which has a box inθ under it must be filled with an element which lies
in the vertical part of(1r−m,m) in D,

(iii) the lowest and rightmost box inθ must be filled with the element in the corner box of
(1r−m,m) in D,

(iv) any box ofθ which has neither a box ofθ below it or to its right could be filled with
either a box from the horizontal or the vertical part of(1r−m,m) in D depending on
the value ofm and the placement of the other elements.

In fact, it is easy to see that if we place 1c (for corner),m− 1 h’s (for horizontal), and
r −mv’s (for vertical) in the diagram ofθ following rules (i)–(iv) above, then we can easily
reconstructθ by filling the box with ac with the element in the corner element of(1r−m,m)
in D, filling the boxes withh’s from right to left with the elements in the horizontal part of



                       
P1: rba

Journal of Algebraic Combinatorics KL365-04(Ram) November 7, 1996 10:46

APPLICATIONS OF THE FROBENIUS FORMULAS 69

Figure 6. Correspondence for(−1)r−m qm−1 s(1r−m,m) sv .

(1m−n, n) in D, and filling in the boxes withv’s from bottom to top with the elements in
vertical part of(1m−r , r ) in D. See figure 6 for an example.

Now supposeλ ⊇ ν andλ− ν is a broken rim hook. It then follows that if we compute
the coefficientcλ of sλ in q̄r sν =

∑r
m=1 (−1)r−mqm−1s(1r−m,m)sν , thencλ equals the number

of all fillings of λ− ν with h’s, v’s, and 1c such that

(I) any box ofλ − ν with a box to its right must be filled with anh and hence have
weightq,

(II) any box ofλ − ν with a box ofλ − ν below must be filled with av and hence have
weight−1,

(III) the lowest and rightmost box must be filled withc and hence have weight 1, and
(IV) any box ofλ− ν with neither a box ofλ− ν below it or to its right can be filled with

either anh or av and hence contributes a factor ofq − 1 tocλ.

Note that the boxes ofλ− ν which satisfy condition IV above are precisely the lowest and
rightmost cell in a rim hookhi which lies strictly above the lowest rim hookh1 of λ− ν. It
thus follows that ifλ− ν = (h1, . . . , hk) where h1, . . . , hk are the consecutive rim hooks
of λ− ν starting from the bottom, then

cλ = (−1)r (h1)−1(q)c(h1)−1
k∏

j=2

(q − 1)(−1)r (h j )−1qc(h j )−1

= (q − 1)n(λ−ν)−1
∏

rim hook h∈λ−ν
(−1)r (h)−1(q)c(h)−1 = wtq(λ− ν).



                   

P1: rba

Journal of Algebraic Combinatorics KL365-04(Ram) November 7, 1996 10:46

70 RAM AND REMMEL

Thus we have proved that

q̄r sν =
∑
λ

wtq(λ− ν)sλ, (22)

where the sum is over all partitionsλ such thatλ− ν is a broken rim hook of lengthr and
the weight wtq(λ− ν) of the broken hookλ− ν is as in (19).

We know that

q̄µ =
∑
λ` f

χλH f

(
Tγµ
)
sλ, (23)

and that

q̄µ = q̄µ1q̄µ2 · · · q̄µk .

The theorem follows by induction on the length ofµ. 2

Remark The proof of (17) given in this section is probably the most straightforward
combinatorial proof if we allow the use of the Littlewood-Richardson rule. However one
can avoid the use of the Littlewood-Richardson rule and use only Pieri’s rules for expanding
the productssr sλ ands(1r )sλ as a sum of Schur functions by using the identity

s(1r−m,m) =
r∑

k=m

(−1)r−mhker−k (24)

which implies that

q̄r = 1

q − 1

∑
hmer−m(−1)r−mqm. (25)

using (25) to express the productq̄µ1q̄µ2 · · · q̄mk , one can easily derive formula (6.4) of [14]
and then follow the proof of [14] to derive Theorem 3. Moreover one can derive Theorem 3
without any use of Pieri’s rules or the Littlewood-Richardson rule byλ-ring manipulations,
see [15].

4. λ-ring notation for symmetric functions

In this section we introduce theλ-ring notation for symmetric functions. This notation
is the primary tool for deriving the connection between the Hecke algebra characters and
Kronecker products of symmetric group representations. See [10] and [11] for more details
onλ-rings.

An alphabet is a sum of commuting variables, so that, for example,X = x1 + x2 + · · ·
+ xn is the set of commuting variablesx1, x2, . . . , xn. In this notation, ifX = x1+ x2+· · ·
+ xn andY = y1+ y2+· · ·+ yn thenXY represents the alphabet of variables{xi yj }1≤i, j≤n.
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For each integerr > 0 the power symmetric function is given by

pr (0) = 0,

pr (x) = xr ,

pr (X + Y) = pr (X)+ pr (Y),

pr (XY) = pr (X)pr (Y),

wherex is any single variable andX and Y are any two alphabets. For each partition
µ = (µ1, µ2, . . . , µk) define

pµ(X) = pµ1(X)pµ2(X) · · · pµk(X).

Note that the above relations imply

pr (−X) = −pr (X),

pµ(XY) = pµ(X)pµ(Y),

wherer is a positive integer,µ is a partition andX andY are arbitrary alphabets.
If ρ is a partition andmi is the number parts ofρ equal to i , then we let

zρ = 1m12m2 · · ·m1!m2! · · · and define the Schur function by

sλ(X) =
∑
ρ+|λ|

χλSf
(ρ)

zρ
pρ(X) (26)

Note that (26) is a generalized Frobenius formula. Define the skew Schur functionsλ/µ(X)
by

sλ/µ(X) =
∑
ν

cλµνsν(X). (27)

wherecλµν are the Littlewood-Richardson coefficients computed by the Remmel-Whitney
rule in Section 2. Then we have the following properties of Schur functions, see [13].

sµ(X)sµ(X) =
∑
λ

cλµνsλ(X) (28)

sλ(X + Y) =
∑
µ⊆λ

sµ(X)sλ/µ(Y) (sum rule) (29)

sλ(−X) = (−1)|λ|sλ′(X) (duality) (30)

sλ(XY) =
∑
µ,ν

κλµνsµ(X)sν(Y) (product rule) (31)

In (31), κλµν is the Kronecker coefficient which is equal to the multiplicity of the irre-
ducible representationAλ of the symmetric group in the Kronecker product,Aµ × Aν , of
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the irreducible representationsAµ andAν and is defined by

κλµν =
∑
ρ` f

χλSf
(ρ)χ

µ

Sf
(ρ)χνSf

(ρ)

zρ

Define the homogeneous symmetric function by

hr (X) = s(r )(X),

for integersr > 0, and

hµ(X) = hµ1(X)hµ2(X) · · · hµk(X),

for partitionsµ = (µ1, µ2, . . . , µk). For each pair of partitionsλ andµ define numbers
K−1
µλ by

sλ(X) =
∑
µ

hµ(X)K
−1
µλ . (32)

The numbersK−1
µλ have the following combinatorial description (see [4]):

Given partitionsµ ⊂ λ, we say thatλ − µ is a special rim hook ifλ − µ is a rim hook
andλ−µ contains a box from the first column ofλ. A special rim hook tableauT of shape
λ is a sequence of partitions

T = (φ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(k) = λ)

such that for each 1≤ i ≤ k, λ(i ) − λ(i−1) is a special rim hook ofλ(i ). The type of the
special rim hook tableauT is the partition determined by the integers|λ(i ) − λ(i−1)|. The
weight of a special rim hookhi = λ(i ) − λ(i−1) is defined to be wt(hi ) = (−1)r (hi )−1 as in
(15) and the weight ofT is defined to be

wt(T) =
k∏

i=1

wt(λ(i ) − λ(i−1)). (33)

Then

K−1
µλ =

∑
T

wt(T), (34)

where the sum is over all special rim hook tableauxT of shapeλ and typeµ.
By (31) and the fact thatκλµ(r ) = δλµ,

hr (XY) =
∑
µ`r

sµ(X)sµ(Y), (35)
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and from (29)

hr (X + Y) =
r∑

m=0

hm(X)hr−m(Y).

5. Kronecker products

We now have the machinery to develop the connection between the characters of the Hecke
algebra and Kronecker product decompositions. We recall two lemmas from [14]. Our first
lemma easily follows from the sum formula (29).

Lemma 4 Let t be a variable andλ a partition of f . Then, in λ-ring notation,

sλ(1− t) =
{
(1− t)(−t) f−m, if λ = (1 f−m,m) for some m≥ 1;
0, otherwise.

(36)

Lemma 5 In λ-ring notation

q̄µ(X;q) = q|µ|

(q − 1)`(µ)
hµ(X(1− q−1)), (37)

where hµ denotes the homogeneous symmetric function.

Proof: Combining (35) and (36) we have

hr (X(1− q−1)) =
∑
µ`r

sµ(X)sµ(1− q−1)

=
r∑

m=1

s(1r−m,m)(X)(−q−1)r−m(1− q−1).

If we multiply both sides byqr and divide byq − 1, then by (21)

qr

q − 1
hr (X(1− q−1)) =

r∑
m=1

(−1)r−mqm−1s(1r−m,m)(X) = q̄r (X;q).

The lemma then follows from the definitions ofhµ andq̄µ. 2

We note that in light of Lemma 5, we can derive an alternative way to computeχλH f
(Tγµ).

Let

qµ(X;q) = hµ(X(1− q)). (38)
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qµ(X;q) is the Hall-Littlewoodq-function of [13]. Using (29) and (30), we have

qr (X;q) = hr (X(1− q))

= s(r )(X − q X)

=
r∑

p=0

s(p)(X)(−q)r−ps(1r−p)(X).

Thus ifµ = (0≤ µ1 ≤ · · · ≤ µk), then

qµ(X;q) =
µ1∑

p1=0

· · ·
µk∑

pk=0

(−q)|µ|−
∑

pi s(p1)(X) · · · s(pk)(X)s(1µ1−p1)(X)

× · · · s(1µk−pk )(X). (39)

Now let

K̄λ,µ(q) =
|µ|∑
r=0

(−q)r K̄ r
λ,µ (40)

whereK̄ r
λ,µ is the number of pairs column strict tableaux(T, S) such thatT is of shapeν

whereν ⊆ λ and content 1a1 · · · kak , Sis of shapeλ′ −ν ′ and content 1b1 · · · kbk , |λ−ν| = r ,
andaj + bj = µ j for j = 1, . . . , k. Here we say a column strict tableauP has content
1c1 · · ·ncn if there are exactlyci occurrences ofi in P for i = 1, . . . ,n. Another way to view
the pairs(T, S) is to replaceSby S′ whereS′ results fromSby transposingSabout the main
diagonal and then replacing each numberi in Sby i ′. ThenP = T+S′ is a filling of Fλ with
regular numbers plus primed numbers such that the regular numbers form a column strict
tableau of shapeν ⊆ λ, the primed numbers form a row strict tableau of shapeλ− ν, and
for anyi , the total number of occurrences ofi andi ′ in P isµi . Such tableauxP are called
(k, k)-semistandard tableau of typeµ by Berele and Regev [1]. For example, ifµ = (2, 2)
andλ = (1, 3), figure 7 pictures the 12(2, 2) semistandard tableau of shapeλ and typeµ
along with their associated power ofq and shows that̄Kλ,µ = −2q + 5q2− 4q3+ q4.

We note that clearlyK̄λ,µ(0) = Kλ,µ whereKλ,µ is the Kostka number which is equal
to the number of column strict tableaux of shapeλ and content 1µ1 · · · kµk .

This given, one can apply Pieri’s rules or the Remmel-Whitney rule to expand the right-
hand side of (39) and derive the following.

Theorem 6

qµ(X,q) =
∑
µ

K̄λ,µ(q)sλ(X). (41)

Combining Lemma 5, Theorem 6, and the Frobenius formula, we have the following.
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Figure 7. (1, 3) semistandard tableaux of type (2, 2).

Theorem 7

χλH f

(
Tγµ
) = q|µ|

(q − 1)`(µ)
K̄λ,µ(q

−1) = 1

(q − 1)`(µ)

|µ|∑
r=0

(−1)r q|µ|−r K̄ r
λ,µ.

Proof: By (2), (37), (38), and (41),

∑
λ` f

χλH f

(
Tγµ
)

sλ(X) = q̄µ(X,q) = q|µ|

(q − 1)`(µ)
qµ(X,q

−1)

= q|µ|

(q − 1)`(µ)
∑
λ

K̄λ,µ(q
−1)sλ(X).

The theorem then follows by taking the coefficient ofsλ(X) and using the definition of
K̄λ,µ. 2
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Theorem 8 Let κλµν denote the Kronecker coefficient, K−1
µν the inverse Kostka number

given in(33), andχλH f
the irreducible character of the Hecke algebra. Then

f∑
m=1

κλν(1 f−mm)(−1) f−mqm−1 =
∑
µ` f

(q − 1)`(µ)−1χλH f

(
Tγµ
)

K−1
µν . (42)

Proof: Using Lemma 5, (33), and the Frobenius formula (14) we have

sν(X(1− q−1)) =
∑
µ` f

hµ(X(1− q−1))K−1
µν

=
∑
µ` f

(q − 1)`(µ)

q|µ|
q̄µ(X;q)K−1

µν

=
∑
µ` f

∑
λ` f

(q − 1)`(µ)

q|µ|
χλH f

(
Tγµ
)

sλ(X)K
−1
µν .

On the other hand by the product rule and Lemma (4),

sν(X(1− q−1)) =
∑
λ,γ

κνλγ sλ(X)sγ (1− q−1)

=
∑
λ` f

f∑
m=1

κνλ(1 f−mm)sλ(X)(−q−1) f−m(1− q−1).

Setting these two equal and taking the coefficient ofsλ(X) on each side, we have

∑
µ` f

(q − 1)`(µ)

q|µ|
χλH f

(
Tγµ
)

K−1
µν =

f∑
m=1

κνλ(1 f−mm)(−q−1) f−m(1− q−1).

The theorem follows by multiplying each side byq f = q|µ| and dividing each side byq−1.
2

Recalling that the valuesχλH f
(Tγµ) and K−1

µν have combinatorial interpretations, given in
Theorem 3 and (34) respectively, we get the following.

Corollary 9 The Kronecker coefficientκνλ(1 f−mm) is equal to the coefficient of qm−1 in∑
µ` f

(−1) f−m(q − 1)`(µ)−1
∑
T,R

wtq(T)wt(R) (43)

where the inner sum is over all pairs(T, R) consisting of aµ-broken rim hook tableau T
of shapeλ and a special rim hook tableau R of shapeν and typeµ. The weights wtq(T),
wt(R) are as in(20) and(33).
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We note that calculating the polynomial in (42) gives an efficient way to compute the
multiplicity of the irreducible components corresponding to all hook shapes in the Kronecker
product of the irreducible modules corresponding toλ andµ. For example, ifλ = (1, 2, 3)
andν = (2, 4), then there are two special rim hook tableaux of shapeν.

Now R1 is of type(2, 4) and there are two broken rim hook tableauxT = (∅ ⊂ λ(1) ⊂
λ(2) = λ) of type(2, 4) where below we indicate the shapeλ(1) by placing 1’s in the boxes
of λ(1) and 2’s in the boxes ofλ(2) − λ(1).

There is one broken rim hook tableauT (2)
1 of type(1, 5).

Thus for our givenλ andν,∑
µ` f

(q − 1)`(µ)−1χλH f

(
Tγµ
)

K−1
µν = (q − 1)[−q2(q − 1)+ q(q − 1)] − (q − 1)q2

= −q4+ 2q3− 2q2+ q (44)

=
6∑

m=1

κλ,ν(16−m,m)(−1)6−mqm−1.
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We can then read off from (44) that

κλ,ν,(16) = 0, κλ,ν,(14,2) = 1, κλ,ν,(13,3) = 2

κλ,ν,(12,4) = 2, κλ,ν(12,5) = 1, and κλ,ν,(6) = 0.

Theorem (8) thus explicitly gives the connection between the irreducible charactersχλH f

of the Hecke algebra and the Kronecker coefficientsκνλ(1 f−m,m). Corollary 9 uses this result
to give a combinatorial algorithm for computing the Kronecker coefficientsκνλ(1 f−mm).

One finds that the same type of approach can be used to compute other Kronecker
coefficients. In some sense the Frobenius formula says thatq̄µ(X;q) is a generating function
for the irreducible characters of the Hecke algebra. In Lemma 5 we found thatq̄µ(X;q) can
be described via a homogeneous symmetric function in the alphabetX(1− q−1). The idea
is to use a homogeneous symmetric function in a different alphabet to compute different
Kronecker coefficients.

We shall work out the case where the alphabet isX(1 + t). This example gives a
combinatorial algorithm for computing the coefficientsκνλγ whereγ is a partition with two
rows. The analogous results to (36), (22) and (43) follow in (45), (46) and (49). We shall,
for the most part, omit the proofs as they are so similar to the previous case.

In λ-ring notation,

sλ(1+ t) =
 tm + tm+1+ · · · + t f−m, if λ = (m, f −m) for some

0≤ m≤ b f/2c;
0, otherwise.

(45)

Using the sum rule,

hr (X(1+ t)) = hr (X + t X)

=
r∑

m=0

tmhm(X)hr−m(X).

It follows then, from Pieri’s rule or the Remmel-Whitney rule, that

hr (X(1+ t))sν(X) =
∑
ν⊂µ⊂λ

t |µ−ν|sλ(X), (46)

where the sum is over all sequences of partitionsν ⊂ µ ⊂ λ such thatλ−µ andµ− ν are
both horizontal strips and such that|λ − ν| = r . Here a horizontal strip is a set of boxes
such that no two boxes are in the same column. This leads us to define aµ-double strip
tableauT of shapeλ to be a sequence of partitions

T = (∅ = λ(0) ⊆ λ(1) ⊆ λ(2) ⊆ · · · ⊆ λ(2k) = λ)
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such that for each 1≤ i ≤ 2k, λ(i ) − λ(i−1) is a horizontal strip and such that, for each
1≤ j ≤ k, |λ(2 j ) − λ(2 j−2)| = µ j , whereµ = (µ1, µ2, . . . , µk). Define

wt
d(T) =

k∏
j=1

t |λ
(2 j−1)−λ(2 j−2)|. (47)

Then, forµ = (µ1, µ2, . . . , µk),

hµ(X(1+ t)) =
∑
λ` f

[∑
T

wt
d(T)

]
sλ(X), (48)

where the inner sum is over allµ-double strip tableauxT of shapeλ.
Evaluatingsν(X(1+ t)) by way of the product rule and then using (45), one has

sν(X(1+ t)) =
∑
λ,γ

κνλγ sλ(X)sγ (1+ t)

=
∑
λ` f

b f/2c∑
m=0

κνλ(m, f−m)sλ(X)
f−m∑
j=m

t j

= 1

1− t

∑
λ

b f/2c∑
m=0

sλ(X)(t
m − t f+1−m)κνλ(m, f−m).

From this one gets that form≤ b f
2 c,

sν(X(1+ t))|tm − sν(X(1+ t))|tm−1 =
∑
λ

κνλ(m, f−m)sλ(X), (49)

wheresν(X(1+ t))|tm denotes the coefficient oftm in sν(X(1+ t)). On the other hand,
from (48),

sν(X(1+ t)) =
∑
µ

hµ(X(1+ t))K−1
µν

=
∑
µ

∑
λ

∑
T

wt
d(T)sλ(X)K

−1
µν , (50)

where, as before, the inner sum is over allµ-double strip tableauxT of shapeλ. Taking the
coefficient ofsλ(X) in (49) and (50) gives

κνλ(m, f−m) =
∑
µ

(∑
T

wt
d(T)

)
K−1
µν

∣∣
tm −

∑
µ

(∑
T

wt
d(T)

)
K−1
µν

∣∣
tm−1

from which we get the following combinatorial algorithm for computing the coefficients
κνλ( f−m,m).
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Theorem 10 Let cm(λ, ν) denote the coefficient of tm in∑
µ` f

∑
(T,R)

wt
d(T)wt(R), (51)

where the sum is over all pairs(T, R) consisting of aµ-double strip tableau T of shapeλ
and a special hook tableau R of shapeν and typeµ. The weightswt

d(T) and wt(R) are as
in (47) and(33) respectively. Then

κνλ(m, f−m) = cm(λ, ν)− cm−1(λ, ν).

In view of these examples one would like to find a general method for computing arbitrary
Kronecker coefficients. The general result coming out of this approach turns out to be
equivalent to a theorem of Littlewood and Garsia-Remmel, in fact this approach gives a
particularly nice proof of the Littlewood-Garsia-Remmel result.

The Littlewood-Garsia-Remmel result is as follows. Define an operation⊗ on symmetric
functions by defining

sλ(X)⊗ sµ(X) =
∑
ν

κλµνsν(X),

where theκλµν are the Kronecker coefficients. Extend linearly so that⊗ is defined on all
symmetric functions. In view of (31), we have that

sλ(X)⊗ sµ(X) = coefficient of sµ(Y) in sλ(XY),

and, more generally, for any symmetric functionA(X),

A(X)⊗ sµ(X) = coefficient of sµ(Y) in A(XY).

Theorem 11(Littlewood-Garsia-Remmel) If hµ and sλ denote the homogeneous sym-
metric function and the Schur function respectively, then

hµ(X)⊗ sρ(X) =
∑
(ρ)

k∏
i=1

sρ(i )/ρ(i−1) (X), (52)

where the sum is over all sequences of partitions(ρ) = (∅ = ρ(0) ⊂ ρ(1) ⊂ · · · ⊂ ρ(k) = ρ)
such that|ρ(i ) − ρ(i−1)| = µi .

Proof: The proof is by induction on the length ofµ. In view of formula (35),

hr (XY) =
∑
ρ`r

sρ(X)sρ(Y),

so thathr (X)⊗ sρ(X) = sρ(X) proving the formula wheǹ(µ) = 1, (µ = (r )). 2
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Now, letµ = (µ1, µ2, . . . , µk) and letµ̂ = (µ1, µ2, . . . , µk−1) and assume that

hµ̂(XY) =
∑
ρ̂`|µ̂|

sρ̂ (Y)
∑
ρ̂

k−1∏
i=1

sρ̂(i )/ρ̂(i−1) (X),

where the inner sum is over all sequences(ρ̂) = (∅ = ρ̂(0) ⊂ ρ̂(1) ⊂ · · · ⊂ ρ̂(k−1) = ρ̂)
such that|ρ(i ) − ρ(i−1)| = µi , 1≤ i ≤ k− 1. Then

hµ(XY) = hµk(XY)hµ̂(XY)

=
(∑
τ`µk

sτ (X)sτ (Y)

) [ ∑
ρ̂`|µ̂|

sρ̂ (Y)
∑
(ρ̂)

k−1∏
i=1

sρ̂(i ) / ρ̂(i−1) (X)

]
.

Using formula (28) to multiplysτ (Y) andsρ̂ (Y), we have

hµ(XY) =
∑
τ`µk

∑
ρ̂`|µ̂|

∑
ρ⊃ρ̂

cρ
τ ρ̂

sρ(Y)sτ (X)
∑
(ρ̂)

k−1∏
i=1

sρ̂(i )/ρ̂(i−1) (X).

Then, using (27) to rewrite
∑

τ cρ
τ ρ̂

sτ (X) and recalling that̂ρ = ρ̂(k−1), one obtains

hµ(XY) =
∑
ρ

sρ(Y)
∑

ρ̂(k−1)⊂ρ
sρ/ρ̂(k−1) (X)

∑
(ρ̂)

k−1∏
i=1

sρ̂(i )/ρ̂(i−1) (X)

=
∑
ρ

sρ(Y)
∑
(ρ)

k∏
i=1

sρ(i )/ρ(i−1) (X)

and the theorem follows. 2

In order to state this result in a fashion similar to the results in (43) and (51) define a
generalµ-skew tableau of shapeλ to be a sequence of partitions

T = (∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(k) = λ)

such that|λ(i )− λ(i−1)| = µi , whereµ = (µ1, µ2, . . . , µk). Define the weight of a general
µ-skew tableauT to be

wts(T) =
k∑

i=1

sλ(i )/λ(i−1) (X). (53)

Then we have the following corollary of Theorem 10.
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Corollary 12 Letκνλγ be the Kronecker coefficient. Thenκνλγ is the coefficient of sγ (X)
in ∑

µ` f

∑
(T,R)

wts(T)wt(R)

where the inner sum is over all pairs(T, R) consisting of a generalµ-skew tableau T of
shapeλ and a special hook tableau R of shapeν and typeµ. The weights wts(T) and
wt(R) are as in(53) and(33) respectively.

Proof: The product rule for Schur functions is

sν(XY) =
∑
λ,γ

κνλγ sλ(Y)sγ (X).

On the other hand we have, from Theorem 46, that

sν(XY) =
∑
µ

hµ(XY)K−1
µν

=
∑
µ

∑
λ

sλ(Y)
∑
(λ)

k∏
i=1

sλ(i ) / λ(i−1) (X)K−1
µν ,

where the inner sum is over all sequences(λ) = (∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(k) = λ) such
that, for each 1≤ i ≤ k, |λ(i ) − λ(i−1)| = µi . Taking the coefficient ofsλ(Y) in each of
these two expressions we have that∑

γ

κνλγ sγ (X) =
∑
µ

∑
T

wt(T)K−1
µν ,

where the inner sum is over all generalµ-skew tableauxT of shapeλ. The theorem follows
from (34). 2

We would like to point out that although this gives an algorithm for computing the
coefficientsκνλγ , the complexity of these computations can be enormous. In many cases,
these computations can be greatly simplified. For example, Remmel has found explicit
formulas forκ(1r−m,m),(1r−p,p),λ andκ(1r−mm,),(p,r−p),λ in [16] and [17] starting basically from
Corollary 7. Whitehead and Remmel [18], starting from Theorem 10, have developed an
algorithm to computeκ(m,r−m),(p,r−p),λ for anyλ, which will compute such coefficients for
r in the thousands.

6. q-analogues of the regular representation ofSf

In this section we use the Frobenius formula to give an explicit formula for the character of
the regular representation ofH f (q) and to compute the generic degrees of GLn(Fq). Each
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of these computations involves a character of the Hecke algebra which is aq-analogue of
the character of the regular representation ofSf . First we consider the trace of the regular
representation ofH f (q).

Let χ R denote the character of the regular representation ofH f (q), i.e., the trace of the
action ofH f (q) on itself by left multiplication. We want to compute the valuesχ R(Tγµ),
µ ` f whereTγµ is as in Section 1. We will need two facts from the representation theory
of semisimple algebras.

(1) The multiplicity of a given irreducible representationHλ in the regular representation
is equal to the dimension of the representationHλ.

(2) The dimension of a representationH with characterχ is given byχ(1) where 1 is the
identity element.

Denote the identity element ofH f (q) by 1H and the identity element ofSf by 1S. In the
notation of section 1, 1H = Tγ

(1 f )
and 1S = γ(1 f ). One can easily see from the combinatorial

rules for computing characters that the dimension of the irreducible representation ofH f (q)
corresponding toλ is

dλ = χλH f
(1H ) = χλSf

(1S).

Thus, from (1) above, for the character of the regular representationχ R,

χ R
(
Tγµ
) =∑

λ` f

χλH f

(
Tγµ
)
dλ

=
∑
λ` f

χλH f

(
Tγµ
)
χλSf

(1). (54)

Now, the classical Frobenius formula gives that

sλ(X) =
∑
ρ` f

χλSf
(ρ)

zρ
pρ(X).

Sincezρ = 1 f f ! = f ! whenρ is the partition(1 f )

sλ(X)|p1 f (x) =
χλSf

(1s)

f !
(55)

wheresλ(X)|p1 f denotes the coefficient ofp1 f in sλ(X). Combining (54) and (55) we have
that

χ R
(
Tγµ
) =∑

λ` f

χλH f

(
Tγµ
)

f !sλ(X)|p1 f .

However, by the Frobenius formula this is

χ R
(
Tγµ
) = f !q̄µ(X;q)|p1 f . (56)
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Theorem 13 If χ R denotes the character of the regular representation of Hf (q) then, for
each partitionµ = (µ1, µ2, . . . , µk) of f .

χ R
(
Tγµ
) = f !(q − 1) f−k

µ1!µ2! · · ·µk!
.

Proof: Lemma 5 gives that

q̄µ(X;q) = q|µ|

(q − 1)`(µ)
hµ(X(1− q−1)).

By the Frobenius formula (27)

hr (X(1− q−1)) = s(r )(X(1− q−1)) =
∑
ν`r

χ
(r )
Sf
(γν)

pν(X(1− q))

zν
.

From the combinatorial rule for computing the characters ofSf one can easily see that
χ
(r )
Sf
(γν) = 1 for all ν ` r . Thus

q̄µ(X;q) = q|µ|

(q − 1)`(µ)

`(µ)∏
i=1

hµi (X(1− q−1))

= q|µ|

(q − 1)`(µ)

`(µ)∏
i=1

∑
ν(i )`µi

pv(i ) (X(1− q−1))

zν(i )

= q|µ|

(q − 1)`(µ)

`(µ)∏
i=1

∑
ν(i )`µi

pv(i ) (X)pv(i ) (1− q−1)

zν(i )

= q|µ|

(q − 1)`(µ)
∑
ν(i )`µi

1≤i≤`(µ)=k

× pν(1) (X)pν(2) (X) · · · pν(k) (X)pν(1) (1− q−1)pν(2) (1− q−1) · · · pν(k) (1− q−1)

zν(1)zν(2) · · · zν(k)
.

Sincepν(1) (X)pν(2) (X) · · · pν(k) (X) = p(1 f )(X) if and only ifν(i ) = 1µi for all 1≤ i ≤ `(µ)
andzν(i ) = µi ! whenν(i ) = 1µi ,

qµ(X;q)|p1 f =
q|µ|

(q − 1)`(µ)
p1 f (1− q−1)

µ1!µ2! · · ·µk!

= q|µ|

(q − 1)`(µ)
(1− q−1) f

µ1!µ2! · · ·µk!
.

Sinceq|µ| = q f and`(µ) = k we have that

χ R
(
Tγµ
) = f !(q − 1) f−k

µ1!µ2! · · ·µk!
. 2
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Generic degrees of GLn(Fq)

Let χ I be the character of the Hecke algebraHn(q) given by

χ I
(
Tγµ
) = { [n]! , if µ = (1n);

0, otherwise.
(57)

where [i ] = 1+ q+ q2+ · · · + qi−1 and [n]! = [n][n− 1] · · · [1]. The generic degrees of
GLn(Fq) are the integersmλ such that for everyµ ` n

χ I
(
Tγµ
) =∑

λ`n

χλHn

(
Tγµ
)
mλ.

Background on generic degrees can be found in [3] and [8]. Although we do not need to
know the origin of the characterχ I for our computations we would like to motivate, very
briefly, their definition. LetG = GLn(Fq) whereFq is the finite field withq elements.
Let B be a Borel subgroup ofG (for example, the upper triangular matrices in GLn(Fq)).
Let I be theG module given by inducing the trivial representation ofB to G. There is an
action ofHn(q) on I such that the actions ofHn(q) and ofG on I each generate the full
centralizer of the action of the other in End(I ). The characterχ I is the trace of the action
of the Hecke algebra onI and themλ are the dimensions of the irreducible representations
of GLn(Fq) appearing inI .

The trick to computing themλ by using the Frobenius formula is to recognize thatχ I

is a Markov or Ocneanu trace for the Hecke algebra. For eachz ∈ C there is an Ocneanu
traceχ z on Hn(q), defined inductively using the inclusionsH1(q) ⊂ H2(q) ⊂ · · ·, by

χ z(1H ) = 1,

χ z(gkh) = zχ z(h) if h ∈ Hk(q).

Here 1H denotes the identity element of the Hecke algebra and thegk, 1≤ k ≤ n− 1, are
the generators ofHn(q).

King and Wybourne [9] and Gyojia [7] have proved the following result (see also [14]
for a proof). Letµ be a partition ofn. Then, inλ-ring notation

χ z
(
Tγµ
) = zn−`(µ) = q̄µ

(
w − z

1− q

)
, (58)

wherew = 1− q + z.
Applying the Frobenius formula to (59) we have that

χ z
(
Tγµ
) = q̄µ

(
w − z

1− q

)
=
∑
λ`n

χλHn

(
Tγµ
)
sλ

(
w − z

1− q

)
. (59)
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It is shown in [13] I Section 3 Ex. 3 that

sλ

(
w − z

1− q

)
=

∏
(i, j )∈λ

wqi−1− zqj−1

1− qh(i, j )
, (60)

where(i, j ) ∈ λ denotes the box in thei th row and thej th column of the Ferrers diagram
of λ and

h(i, j ) = λi − i + λ′j − j + 1,

λi being the length of thei th row ofλ andλ′j the length of thej th column ofλ. For each
partitionλ define the polynomialHλ(q), aq-analogue of the product of the hooks, by

Hλ(q) =
∏
(i, j )∈λ

1− qh(i, j )

1− q
.

Theorem 14 The generic degrees of GLn(Fq) are given by

mλ = qn(λ)[n]!

Hλ(q)

where n(λ) =
`(λ)∑
i=1

(i − 1)λi .

Proof: From the definitions of theχ I and the Ocneanu trace we have

χ I
(
Tγµ
) = [n]!χ0

(
Tγµ
)

for all µ partitions ofn, χ0 being the Ocneanu trace forz= 0. Thus, from (60) and (61)

χ I
(
Tγµ
) = [n]!

∑
λ`n

χλHn

(
Tγµ
) ∏
(i, j )∈λ

(1− q + 0)qi−1− 0q j−1

1− qh(i, j )

=
∑
λ`n

χλHn

(
Tγµ
)
[n]!

∏
(i, j )∈λ

qi−1(1− q)

1− qh(i, j )
. 2

Remark It follows easily from (57) and (58) that, for the charactersχ R andχ I of H f (q),

lim
q→1

χ R
(
Tγµ
) = lim

q→1
χ I
(
Tγµ
) = { f !, if µ = (1 f );

0, otherwise.

This shows that the regular representationR of H f (q) and the representationI of H f (q)
on the induced representation from a BorelB to G = GL f (Fq) are bothq-analogues (dif-
ferentq-analogues!) of the regular representation of the symmetric groupSf .
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