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Abstract. This note derives the characteristic polynomial of a graph that represents nonjump moves in a gener-
alized game of checkers. The number of spanning trees is also determined.
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Consider the graph onmn vertices{(x, y) | 1 ≤ x ≤ m, 1 ≤ y ≤ n}, with (x, y) adjacent
to (x′, y′) if and only if |x − x′| = |y− y′| = 1. This graph consists of disjoint subgraphs

ECm,n = {(x, y) | x + y is even},
OCm,n = {(x, y) | x + y is odd},

having respectivelydmn/2e andbmn/2c vertices. Whenmn is even,ECm,n andOCm,n are
isomorphic. The special caseOC2n+1,2n+1 has been called anAztec diamond of order nby
Elkies et al. [6], who gave several interesting proofs that it contains exactly 2n(n+1)/2 perfect
matchings. Richard Stanley recently conjectured [11] thatOC2n+1,2n+1 contains exactly
4 times as many spanning trees asEC2n+1,2n+1, and it was his conjecture that motivated the
present note. We will see that Stanley’s conjecture follows from some even more remarkable
properties of these graphs.

In general, ifG andH are arbitrary bipartite graphs having parts of respective sizes(p,q)
and(r, s), theirweak direct product G× H has(p+ q)(r + s) vertices(u, v), with (u, v)
adjacent to(u′, v′) if and only if u is adjacent tou′ andv to v′. This graphG× H divides
naturally into even and odd subgraphs

E(G, H) = {(u, v) | u ∈ G andv ∈ H are in corresponding parts},
O(G, H) = {(u, v) | u ∈ G andv ∈ H are in opposite parts},

which are disjoint. Notice thatE(G, H) andO(G, H) havepr + qsandps+ qr vertices,
respectively. Our graphsECm,n andOCm,n are justE(Pm, Pn) andO(Pm, Pn), wherePn

denotes a simple path onn points.
Let P(G; x) be the characteristic polynomial of the adjacency matrix of a graphG. The

eigenvalues ofE(G, H) andO(G, H) turn out have a simple relation to the eigenvalues
of G andH :



               
P1: KCU/JVE P2: SRM/RSA

Journal of Algebraic Combinatorics KL434-04-Knuth-I April 24, 1997 13:13

254 KNUTH

Theorem 1 The characteristic polynomials P(E(G, H); x) and P(O(G, H); x) satisfy

P(E(G, H); x)P(O(G, H); x) =
p+q∏
j=1

r+s∏
k=1

(x − µ jλk); (1)

P(E(G, H); x) = x(p−q)(r−s)P(O(G, H); x). (2)

Proof: This theorem is a consequence of more general results proved in [7], as remarked
at the top of page 67 in that paper, but for our purposes a direct proof is preferable.

Let A and B be the adjacency matrices ofG and H . It is well known [2; 12] that the
adjacency matrix ofG × H is the Kronecker productA ⊗ B, and that the eigenvalues
of A ⊗ B areµ jλk when A and B are square matrices having eigenvaluesµ j andλk,
respectively [10, page 24]. Since the left side of (1) is justP(G, H ; x), equation (1) is
therefore clear.

Equation (2) is more surprising, because the graphsE(G, H) andO(G, H) often look
completely different from each other. But we can expressA andB in the form

A =
(

Op C

CT Oq

)
, B =

(
Or D

DT Os

)
, (3)

whereC andD have respective sizesp×q andr ×s, and whereOk denotes ak×k matrix
of zeroes. It follows that the adjacency matrices ofE(G, H) andO(G, H) are respectively(

Opr C ⊗ D

CT ⊗ DT Oqs

)
and

(
Ops C ⊗ DT

CT ⊗ D Oqr

)
. (4)

We want to show that these matrices have the same eigenvalues, except for the multiplicity
of 0.

One way to complete the proof is to observe that thekth powers of both matrices have
the same trace, for allk. Whenk = 2l is even, both matrix powers have trace(tr(CCT )l +
tr(CTC)l )(tr(DDT )l + tr(DTD)l )by [10, pages 8, 18]; and whenk is odd the traces are zero.
The coefficientsa1,a2, . . . of P(G; x) = x|G|(1− a1x−1 + a2x−2 − · · · ) are completely
determined by the traces of powers of the adjacency matrix of any graphG, via Newton’s
identities; therefore (2) holds. 2

Corollary 1 The characteristic polynomials P(ECm,n; x) and P(OCm,n; x) satisfy

P(ECm,n; x)P(OCm,n; x) =
m∏

j=1

n∏
k=1

(
x − 4 cos

jπ

m+ 1
cos

kπ

n+ 1

)
; (5)

P(ECm,n; x) = xmnmod 2 P(OCm,n; x). (6)

Proof: It is well known [9, problem 1.29; or 3, page 73], that the eigenvalues of the path
graphPm are{

2 cos
π

m+ 1
, 2 cos

2π

m+ 1
, . . . ,2 cos

mπ

m+ 1

}
. (7)

Therefore (1) and (2) reduce to (5) and (6). 2
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Theorem 2 If m≥ 2and n≥ 2, the number of spanning trees of ECm,n is P(OCm−2,n−2; 4),
and the number of spanning trees of OCm,n is P(ECm−2,n−2; 4).

Proof: BothECm,n andOCm,n are connected planar graphs, so they have exactly as many
spanning trees as their duals [9, problem 5.23]. The dual graphEC∗m,n has vertices(x, y)
where 1< x < m and 1< y < n andx + y is odd, corresponding to the face centered
at (x, y); it also has an additional vertex∞ corresponding to the exterior face. All its
non-infinite vertices have degree 4, and whenEC∗m,n is restricted to those vertices it is just
OCm−2,n−2. Therefore the submatrix of the Laplacian ofEC∗m,n that we obtain by omitting
row∞ and column∞ is just 4I −M , whereM is the adjacency matrix ofOCm−2,n−2. And
the number of spanning trees ofEC∗m,n is just the determinant of this matrix, according to
the Matrix Tree Theorem [1; 9, problem 4.9; 3, page 38].

A similar argument enumerates the spanning trees ofOCm,n. The basic idea of this proof
is due to Cvetkovi´c and Gutman [4]; see also [5, pages 85–88]. 2

Combining Theorem 2 with Eq. (6) now yields a generalization of Stanley’s conjecture
[11].

Corollary 2 When m and n are both odd,OCm,n contains exactly4 times as many spanning
trees as ECm,n.

Another corollary that does not appear to be obvious a priori follows from Theorem 2
and Eq. (5):

Corollary 3 When m and n are both even, ECm,n contains an odd number of spanning
trees.

Proof: The adjacency matrix ofPm is nonsingular mod 2 whenm is even. Hence the ad-
jacency matrix ofECm,n ∪ OCm,n is nonsingular mod 2. HenceP(ECm,n; 4) ≡ 1 (mod 2).

2

Stanley [11] tabulated the number of spanning trees inOC2n+1,2n+1 forn ≤ 6 and observed
that the numbers consisted entirely of small prime factors. For example, the Aztec diamond
graphOC13,13 has exactly 232 · 37 · 55 · 73 · 113 · 132 · 732 · 1932 spanning trees. One way
to account for this is to note that the number of spanning trees inOC2n+1,2n+1 is

42n−1
n−1∏
j=1

n−1∏
k=1

(
4− 4 cos

jπ

2n
cos

kπ

2n

)(
4+ 4 cos

jπ

2n
cos

kπ

2n

)

= 42n−1
n−1∏
j=1

n−1∏
k=1

(4− (ω j + ω− j )(ωk + ω−k))(4+ (ω j + ω− j )(ωk + ω−k)), (8)

where ω = eπ i /2n is a primitive 4nth root of unity. Thus each factor such as
4− (ω j +ω− j )(ωk+ω−k) is an algebraic integer in a cyclotomic number field, and all
of its conjugates 4− (ω j t + ω− j t )(ωkt + ω−kt) appear. Each product of conjugate factors
is therefore an integer factor of (8).
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Let us say that the edge from(x, y) to (x′, y′) in the graph is positive or negative,
according as(x − x′)(y− y′) is+1 or−1. The authors of [6] showed that the generating
function for perfect matchings inOC2n+1,2n+1 is (u2 + v2)n(n+1)/2, in the sense that the
coefficient ofukvl in this function is the number of perfect matchings withk positive edges
and l negative ones. It is natural to consider the analogous question for spanning trees:
What is the generating function for spanning trees ofECm,n andOCm,n that use a given
number of positive and negative edges? A careful analysis of the proof of Theorem 2
shows that the generating function for cotrees (the complements of spanning trees) in
OCm,n is P(ECm−2,n−2; 2u + 2v), whereP now represents the characteristic polynomial
of the weighted adjacency matrix with positive and negative edges represented respectively
by u andv. There ared(m−1)(n−1)/2e positive edges andb(m− 1)(n− 1)/2c negative
edges altogether, so we get the generating function for trees instead of cotrees by replacingu
andv byu−1 andv−1, then multiplying byud(m−1)(n−1)/2evb(m−1)(n−1)/2c. A similar approach
works forECm,n.

Unfortunately, however, the polynomialP does not seem to simplify nicely for generalu
andv, as it does whenu = v = 1. In the casem = n = 3, the results look reasonably
encouraging because we have

P(EC3,3; x) = x3(x2− 2(u2+ v2)),

P(OC3,3; x) = (x + u+ v)(x − u− v)(x + u− v)(x − u+ v).
But whenn increases to 5 we get

P(EC3,5; x) = x4(x2− 2(u2+ uv + v2))(x2− 2(u2− uv − v2)),

P(OC3,5; x) = x(x2− (u2+ v2))(x4− 3(u2+ v2)x2+ 2(u2− v2)).

The quartic factor ofP(OC3,5; x) cannot be decomposed into quadratics having the general
form (x2 − (αu2 + βuv + γ v2))(x2 − (α′u2 + β ′uv + γ ′v2)), so it is unclear how to
proceed. Some simplification may be possible, because additional factors do appear when
we setx = 2u+ 2v:

P(EC3,5; 2u+ 2v) = 64(u+ v)4(u2+ 3uv + v2)(u2+ 5uv + v2)

P(OC3,5; 2u+ 2v) = 4(u+ v)3(3u2+ 8uv + 3v2)(3u2+ 14uv + 3v2)

P(EC5,5; 2u+ 2v) = 32(u+ v)5(3u2+ 8uv + 2v2)(2u2+ 8uv + 3v2)

× (2u4+ 24u3v + 53u2v2+ 24uv3+ 2v4)

P(OC5,5; 2u+ 2v) = 5(u+ v)4(u2+ 4uv + v2)(3u2+ 8uv + 3v2)

× (15u2+ 10uv + v2)(u2+ 10uv + 15v2).

However, these factors are explained by the symmetries ofECm,n andOCm,n.
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I was studying the related problem of spanning trees in grids [8]. After writing this note, I
learned from Richard Stanley that the eigenvalues of the adjacency matrices ofOC2n+1,2n+1

andEC2n+1,2n+1 were independently discovered by Timothy Chow. In May, 1996, Dr. Chow
wrote me that he has succeeded in generalizing the results to the two connected components
of the tensor product of any two connected bipartite graphs.

References

1. C.W. Borchardt, “Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante,”Jour-
nal für die reine und angewandte Mathematik57 (1860), 111–121.
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5. Dragoš M. Cvetković, Michael Doob, Ivan Gutman, and Aleksandar Torgaˇsev, “Recent Results in the Theory

of Graph Spectra,”Annals of Discrete Mathematics36 (1988).
6. Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, “Alternating-sign matrices and domino

tilings,” J. Alg. Combin.1 (1992), 111–132 and 219–234.
7. C. Godsil and B. McKay, “Products of graphs and their spectra,” inCombinatorial Mathematics IV, A. Dold

and B. Eckmann (Eds.), Lecture Notes in Mathematics560(1975), 61–72.
8. Germain Kreweras, “Complexit´e et circuits eul´eriens dans les sommes tensorielles de graphes,”Journal of

Combinatorial TheoryB24 (1978), 202–212.
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