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Abstract. A spin model is a triple(X,W+,W−), whereW+ and W− are complex matrices with rows and
columns indexed byX which satisfy certain equations (these equations allow the construction of a link invariant
from (X,W+,W−)). We show that these equations imply the existence of a certain isomorphism9 between
two algebrasM and H associated with(X,W+,W−). WhenM = H = A, A is the Bose-Mesner algebra
of some association scheme, and9 is a duality ofA. These results had already been obtained in [15] when
W+,W− are symmetric, and in [5] in the general case, but the present proof is simpler and directly leads to
a clear reformulation of the modular invariance property for self-dual association schemes. This reformulation
establishes a correspondence between the modular invariance property and the existence of “spin models at the
algebraic level”. Moreover, for Abelian group schemes, spin models at the algebraic level and actual spin models
coincide. We solve explicitly the modular invariance equations in this case, obtaining generalizations of the spin
models of Bannai and Bannai [3]. We show that these spin models can be identified with those constructed by Kac
and Wakimoto [20] using even rational lattices. Finally we give some examples of spin models at the algebraic
level which are not actual spin models.
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1. Introduction

1) A brief history of spin models for link invariants

The concept of spin models considered here was first introduced by Jones [19] to produce
invariants of links. Namely, a spin model is defined as a triple(X,W+,W−) of a finite set
X and two complex square matricesW+ andW− indexed by the elements ofX satisfying
certain conditions. The fact that association schemes and their Bose-Mesner algebras
provide a convenient and natural framework for the study of spin models was first pointed
out by Jaeger [15]. For several reasons, it is natural to consider the situation when the
matricesW+ andW− belong to the Bose-Mesner algebra of an association scheme.

First, let us recall the main results of Jaeger [15]. The Potts models for the Jones
polynomial link invariant can be regarded as spin models corresponding to complete graphs
(i.e., association schemes of classd = 1). Furthermore, the existence of spin models
which give specializations of the Kauffman polynomial link invariant is equivalent to the
existence of very special strongly regular graphs (i.e., symmetric triply regular self-dual
association schemes of classd = 2). In particular, an interesting example, corresponding
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to the Higman-Sims graph on 100 vertices, was discovered (cf. Jaeger [15], or de la Harpe
[13] for further discussions of this and related topics).

Another important part of Jaeger [15] is devoted to a general theory of spin models in
connection with association schemes, and is summarized as follows. Let(X,W+,W−) be a
symmetric spin model with loop variableD (cf. [15, 19]). LetM = 〈W+, J, ·〉 (generated
by W+ andJ as an algebra with respect to ordinary matrix product) and letH = 〈W−, I , ◦ 〉
(generated byW− andI as an algebra with respect to Hadamard product). Then there exists
a unique algebra isomorphism9 from M ontoH satisfying:

9(W+) = DW− and 9(J) = |X|I .

Moreover, if M = H (as sets), then it is the Bose-Mesner algebra of a formally self-
dual symmetric association scheme. Then9 defines a dual map, i.e.,9(Ej ) = Aj and
9(Aj ) = |X|Ej for suitable orderings of the adjacency matrices{A0, A1, . . . , Ad} and the
primitive idempotents{E0, E1, . . . , Ed}. Moreover, simplified conditions for the existence
of a spin model associated in this way with a self-dual Bose-Mesner algebra were described
(see, e.g., Proposition 5 in [15]).

Inspired by a preprint of Jaeger [15], a number of people, particularly those in Japan
including the first two authors of the present paper, started the study of spin models from
the point of view of association schemes. These researches headed for several directions
as mentioned below, and are related to each other:

a) generalization of the concept of spin models,
b) constructions of new spin models,
c) study of general properties of association schemes which contain spin models, and

classification of spin models with certain properties.

a) The concept of generalized spin model, which drops the symmetry conditions (in
the original definition of Jones [19]), was obtained and studied by Kawagoe et al. [23]. A
further generalization, namely the concept of 4-weight spin models(X,Wi (i = 1, 2, 3, 4)),
was introduced and studied by Bannai and Bannai [4].

b) Spin models on Hamming association schemesH(d,q) were constructed by Bannai
et al. [7], by using solutions of the modular invariance property of the Hamming schemes,
which had been previously studied in Bannai and Bannai [2]. However, these spin models
turned out to be nothing else than those obtained by a tensor product construction from
the Potts models. (cf. [13, 23]). A family of generalized spin models was constructed on
finite cyclic groups by Bannai and Bannai [3]. There, the complete solutions of the modular
invariance property for cyclic group association schemes were first obtained, and then for
each solution a generalized spin model was constructed. (This approach will be repeated in
the present paper for finite Abelian groups.) The reason why we began to give importance
to the modular invariance property is the following. In the context of fusion algebras at
algebraic level (cf. [1, 2]) we had been interested in the modular invariance property for
commutative association schemes. Then we noticed that some of the necessary conditions
(given in [15]) for the existence of a spin model in an association scheme are closely
connected to the solutions of the modular invariance property for the association scheme.
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Also, we noticed a similarity of the self-duality appearing in the theory of fusion algebras at
algebraic level and in the theory of association schemes admitting spin models. Recently,
motivated by the construction on cyclic groups by Bannai and Bannai [3], Kac and Wakimoto
constructed new examples of spin models [20]. They produced many generalized (and also
4-weight) spin models on finite Abelian groups by using rational valued bilinear forms. A
construction of spin models on Hadamard graphs was obtained by Nomura [25]. The link
invariants corresponding to Nomura’s spin models were determined by Jaeger [16, 18].

c) There are many recent works on the connection between spin models and association
schemes (for a survey on this topic, see [6, 16]). Bannai and Bannai [5] generalized most of
the general theory of (symmetric) spin models in symmetric association schemes (in Jaeger
[15]) to generalized spin models in non symmetric association schemes. Several properties
of association schemes related to the existence of spin models in their Bose-Mesner algebra
and to the effective computation of the corresponding link invariants are studied in [17]. In
particular a “matrix-free” approach to this computation is introduced in the case of self-dual
triply regular schemes, which covers all spin models discussed above except those of [7].

Recent work by Nomura [26] studied twisted extensions of spin models (which gener-
alizes the tensor product construction). Other important contributions by Nomura are (i)
study of spin models with small multiplicity of eigenvalues [27], and (ii) the determination
of distance-regular graphs which admit certain spin models ([28], see also [34]). Yamada
[31, 32] studied generalized and 4-weight spin models which are associated with Hadamard
matrices and generalized Hadamard matrices, and obtained another version of twisted ex-
tensions of such spin models. Bannai et al. [9] studied spin models with small sizes, and
for example gave a classification of spin models (in the sense of Jones) with up to 7 ver-
tices. Nomiyama [24] classified all association schemes with at most 10 vertices, which is
expected to be useful for the determination of various kinds of (including generalized and
4-weight) spin models with small sizes.

2) The contents of the present paper

In this subsection, we summarize what we will discuss in the present paper.
Section 2 is devoted to preliminaries.
Our first purpose is to give an alternative proof for results given in [15] (for the sym-

metric case) and [5] (for the nonsymmetric case). Namely, we give the following results in
Section 3.1.

Let (X,W+,W−) be a generalized spin model in the sense of [23]. Then, defining
M = 〈W+, tW+, J, ·〉 andH = 〈W−, tW−, I , ◦〉, we have a unique isomorphism9 from
M to H satisfying

9(I ) = J,

9(J) = nI,

9(W+) = DW−,
9(tW+) = D tW−,
9(W−) = D tW+,
9(tW−) = DW+.
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As before, we prove that ifM = H then it is the Bose-Mesner algebra of a formally self-dual
(not necessarily symmetric) commutative association scheme, and that9 defines the dual
map.

The second purpose of this paper is to study the modular invariance property for (the
character table of ) a (not necessarily symmetric) commutative association scheme. LetX

be a commutative formally self-dual association scheme (i.e., association scheme whose
Bose-Mesner algebra is self-dual, i.e.,P = Q̄ where P and Q are the first and second
eigenmatrices ofX (cf. [8, 12]). Then we say thatX satisfies the modular invariance
property (with respect toP) if

(P1)3 = (constant) · I

for an invertible diagonal matrix1. (Note that this property has many equivalent expres-
sions, and this will be studied carefully in Section 3.2.)

The third purpose is to show that the existence of a (generalized) spin model which
generates the Bose-Mesner algebra of a (commutative) association scheme implies the
modular invariance property for the association scheme. This result is proved in Corollary
3.5. Therefore, if we are interested in spin models which generate the Bose-Mesner algebra
of a commutative association scheme, then we shall first try to find the solutions of the
modular invariance property, and then check if those solutions give spin models.

The fourth purpose of this paper is to solve the problem just mentioned in the previous
paragraph for group association schemes of finite Abelian groups. Namely, letX(G) be the
group association scheme of a finite Abelian groupG, let9 be any fixed dual map onX, and
let P be the character table ofX(G) corresponding to the dual map9. Then in Theorem 4.4,
the complete explicit solutions of the modular equivalence equation(P1)3 = t0D3I are
given. On the other hand, in Proposition 4.1, it is shown that each solution of the modular
invariance equation (for an Abelian group scheme) gives a generalized spin model. This
completes the classification of spin models on Abelian groups which are associated with a
modular invariance property.

We also establish connections between the above construction of generalized spin models
and the Kac-Wakimoto construction of generalized spin models on finite Abelian groups
[20].

In the final Section 5, some examples are also discussed. In particular we study the
modular invariance property for the character tables of strongly regular graphs and also
of the Sylow 2-subgroup of the Suzuki simple groupSz(8) and remark that a spin model
can not be constructed from the solutions of modular invariance equation of the Sylow 2-
subgroup of the Suzuki simple groupSz(8). As for the strongly regular graphs we remark
that some do and some do not give spin models.

2. Spin models and association schemes: preliminaries

1) Association schemes

Let X be a finite non-empty set. We shall denote byM(X) the vector space of matrices with
rows and columns indexed byX and with complex entries. We denote bytA the transpose
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of the matrixA, by I the identity matrix, byJ the matrix with all entries equal to 1, and by
A◦B the Hadamard product of the matricesA, B defined by(A◦B)[i, j ] = A[i, j ]B[i, j ].

A (commutative)d-class association scheme on X(see [8]) is a(d + 1)-tuple X =
(Ai , i = 0, 1, . . . ,d) of non-zero matrices ofM(X) satisfying

(1) Ai ◦ Aj = δi, j Ai , whereδ is the Kronecker symbol.
(2) A0 = I .
(3)

∑d
i=0 Ai = J.

(4) For everyi in {0, 1, . . . ,d} there existsi ′ in {0, 1, . . . ,d} with tAi = Ai ′ .
(5) There exist integerspk

i, j (for all i, j, k in {0, 1, . . . ,d}) such that

Ai Aj = Aj Ai =
d∑

k=0

pk
i, j Ak (for all i, j in {0, 1, . . . ,d}).

In view of (1) and (3) we may consider the matricesAi , 0 ≤ i ≤ d as the adjacency
matrices ofd + 1 binary relations onX which form a partition ofX × X, and give a
combinatorial interpretation of properties (2), (4), (5). We shall not adopt this combinatorial
point of view here. On the other hand we shall need the following algebraic concepts.

The Bose-Mesner algebraof the schemeX is the linear span of the matricesAi , i =
0, 1, . . . ,d, which we shall denote byA. We observe thatA has the following properties:

(6) A containsI andJ.
(7) A is closed under Hadamard product.
(8) A is closed under ordinary matrix product, which is commutative when restricted toA.
(9) A is closed under transposition.

Conversely, it is easy to show that any vector subspaceA of M(X) satisfying properties
(6)–(9) is the Bose-Mesner algebra of some association scheme onX (this is a straight-
forward extension of [11], Theorem 2.6.1; see also [14]). Thus we shall call any such
subspace aBose-Mesner algebra(on X).

The matricesAi , i = 0, 1, . . . ,d, form a basis ofA, and property (1) means that this
is a basis of orthogonal idempotents for the Hadamard product. It is well known (see for
instance [8], Section 2.3) thatA has also a basis of orthogonal idempotents for the ordinary
matrix product, which is necessarily unique. One may denote these ordinary idempotents
by Ei , i = 0, 1, . . . ,d, in such a way that the following properties are satisfied:

(10) Ei 6= 0, Ei Ej = δi, j Ei .
(11) E0 = 1

|X| J.

(12)
∑d

i=0 Ei = I .

Theeigenmatrices PandQ of A relate the two bases of idempotents as follows:

(13) Aj =
∑d

i=0 Pi, j Ei .
(14) Ej = 1

|X|
∑d

i=0 Qi, j Ai .
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Thus

(15) P Q= |X|I .

We shall call the Bose-Mesner algebraA self-dualif P = Q̄ for an appropriate choice of
the indices of the idempotents (this corresponds to the property of formal self-duality for
the association schemeX).

Let9 be the invertible linear map fromA to itself defined by

(16) 9(Ei ) = Ai , i = 0, 1, . . . ,d.

In other words, in view of (13),9 is the linear map defined by the matrixP in the basis
{Ei , i = 0, 1, . . . ,d}. SinceEi is the conjugate of a diagonal (0, 1)-matrix by a unitary
matrix, Ei is hermitian (see [8], Section 2.3). Hence by (14) and (16):

tE j = Ē j = 1

|X|
d∑

i=0

Q̄i, j Ai = 1

|X|
d∑

i=0

Q̄i, j9(Ei ).

It follows that, denoting byτ the transposition map onA, Q̄ is the matrix of|X|9−1τ in
the basis{Ei , i = 0, 1, . . . ,d}. ThusP = Q̄ if and only if

(17) 92 = |X|τ .

Clearly the linear maps9 which satisfy (16) for some indexing of the idempotents are
characterized by the property

(18) 9(AB) = 9(A) ◦9(B) for everyA, B in A.

HenceA is self-dual if and only if there exists a linear map9 : A→ A which satisfies (17),
(18). We shall call any such map aduality ofA. It is easy to show that any duality9 of A

satisfies

(19) 9(A ◦ B) = 1
|X|9(A)9(B) for everyA, B in A.

2) Spin models

We shall consider here spin models as defined in [23] (see also [4]). Thus aspin model
will be a triple(X,W+,W−), whereX is a finite non-empty set of sizen andW+,W− are
matrices inM(X) satisfying the following properties:

(20) tW+ ◦W− = J,
(21) W+W− = nI,
(22)

∑
x∈X W+[α, x]W+[x, β]W−[x, γ ] = DW+[α, β]W−[β, γ ]W−[α, γ ] for all α, β,

γ in X, whereD2 = n.
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The square rootD of n appearing in (22) is theloop variableof the model. It is easy to
show (see [23] Section 3, or [4] Propositions 4 and 5) that, under the hypotheses (20), (21),
(22) there exists a non-zero complex numbera (called themodulusof the model) such that
the following two properties hold:

(23) I ◦W+ = aI, I ◦W− = a−1I ,
(24) J W+ = W+J = Da−1J, J W− = W−J = Da J.

The following result can be found in [23] (Proposition 2.1, cases (iii) and (vii)) and in
[4] as a special case of Theorem 1.

Proposition 2.1 Under the hypotheses(20), (21), the property(22) is equivalent to each
one of the following properties:
(25)

∑
x∈X W+[x, α]W+[x, β]W−[γ, x] = DW+[α, β]W−[β, γ ]W−[γ, α] for all α, β,

γ in X.
(26)

∑
x∈X W+[α, x]W+[β, x]W−[x, γ ] = DW+[α, β]W−[β, γ ]W−[γ, α] for all α, β,

γ in X.

Finally, we shall need the following auxiliary result which gives a matrix formulation of
equations such as (22), (25) or (26).

Proposition 2.2 For A, B,C, A′, B′,C′ in M(X), the following properties are equivalent.
(i)

∑
x∈X A[α, x]B[x, β]C[x, γ ] = D A′[α, β]B′[α, γ ]C′[γ, β] for all α, β, γ in X.

(ii) A(B ◦ (C M)) = D A′ ◦ (B′(C′ ◦ M)) for all M in M (X).

Proof: The [α, β]-entry of A(B ◦ (C M)) is

∑
x∈X

A[α, x]

(
B[x, β]

∑
γ∈X

C[x, γ ]M [γ, β]

)

=
∑
γ∈X

(∑
x∈X

A[α, x]B[x, β]C[x, γ ]

)
M [γ, β].

The [α, β]-entry of D A′ ◦ (B′(C′ ◦ M)) is

D A′[α, β]
∑
γ∈X

B′[α, γ ](C′[γ, β]M [γ, β])

= D
∑
γ∈X

(A′[α, β]B′[α, γ ]C′[γ, β])M [γ, β].

These two entries are equal for everyM if and only if∑
x∈X

A[α, x]B[x, β]C[x, γ ] = D A′[α, β]B′[α, γ ]C′[γ, β] for all α, β, γ in X. 2
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This yields the following proposition.

Proposition 2.3 Under the hypotheses(20), (21), the property(22) is equivalent to each
one of the following properties:
(27) tW+(tW− ◦ (W+M)) = D tW− ◦ (W+(W− ◦ M)) for all M in M(X).
(28) tW+(tW− ◦ (W+M)) = DW− ◦ (tW+(tW− ◦ M)) for all M in M (X).
(29) W+(W− ◦ (tW+M)) = D tW− ◦ (W+(W− ◦ M)) for all M in M (X).

Proof: Applying Proposition 2.2 withA = t W+, B = t W−, C = W+, A′ = t W−, B′ =
W+, C′ = W−, we see that (27) is equivalent to (25) whereβ and γ have been ex-
changed. We also observe that exchangingα andβ in (25) amounts to replacing the three
matrices appearing in the right-hand side by their transposes, and thus (27) and (28) are
equivalent. Finally (26) is obtained from (25) by transposing the three matrices appearing
in the left-hand side, and thus (27) and (29) are equivalent. The result now follows from
Proposition 2.1. 2

3. Duality and modular invariance

1) Duality

Let (X,W+,W−) be a spin model with loop variableD (so thatD2 = |X| = n) and
modulusa. Using Proposition 2.3, we may define a linear map9 : M(X)→ M(X) by the
following equivalent equations (for allM in M(X)):

(30) 9(M) = D−1a tW+(tW− ◦ (W+M))
(31) 9(M) = D−1aW+(W− ◦ (tW+M))
(32) 9(M) = a tW− ◦ (W+(W− ◦ M))
(33) 9(M) = aW− ◦ (tW+(tW− ◦ M))

It is clear from (20), (21) that9 is invertible. Choosing appropriately one of the above
expressions for9 and using (20), (21), (23) and (24), it is easy to check the following
equations.

(34) 9(I ) = J.
(35) 9(J) = nI .
(36) 9(W+) = DW−.
(37) 9(tW+) = D tW−.
(38) 9(W−) = D tW+.
(39) 9(tW−) = DW+.

Let M = 〈W−, tW−, J, ·〉 be the algebra generated byW−, tW−, J with product the
ordinary matrix product, and letH = 〈W+, tW+, I , ◦〉 be the algebra generated byW+,
tW+, I with product the Hadamard product.
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Remark It easily follows from (21) thatW+, tW+, I belong toM, and moreoverM =
〈W+, tW+, J, ·〉. Similarly, by (20),W−, tW−, J belong toH, andH = 〈W−, tW−, I , ◦〉.

Note that bothM andH are closed under transposition. We shall denote byτM (respec-
tively: τH) the restriction of the transposition map toM (respectively:H). Similarly we
denote by9M (respectively:9H) the restriction of9 to M (respectively:H).

Theorem 3.1 9M is an algebra isomorphism fromM onto H, and 1
n9H is an algebra

isomorphism fromH ontoM. HenceM is a commutative algebra. Moreover

9M9H = nτH and 9H9M = nτM

Proof: Let us show first that

(i) 9M is an algebra homomorphism fromM to H.

It will be enough to prove that, for everyM in M,

(i1) 9(W−M) = 9(W−) ◦9(M),
(i2) 9(tW−M) = 9(tW−) ◦9(M),
(i3) 9(J M) = 9(J) ◦9(M).

Indeed, by iterating (i1), (i2), (i3) we shall obtain that9 transforms any finite product
M1 · · ·Mr with Mi ∈ {W−, tW−, J} for i = 1, 2, . . . , r into9(M1)◦ · · · ◦9(Mr ), and this
Hadamard product will belong toH by (35), (38), (39).
Let us prove (i1). By (30),

9(W−M) = D−1a tW+(tW− ◦ (W+W−M))

= Da tW+(tW− ◦ M) (by (21)).

On the other hand, by (38) and (33),

9(W−) ◦9(M) = D tW+ ◦ aW− ◦ (tW+(tW− ◦ M))

= Da tW+(tW− ◦ M) (by (20))

= 9(W−M),

as required.
The proof of (i2) is exactly similar and is left to the reader. Finally, to prove (i3), we note
that (24) implies the existence of a linear one-dimensional representationθ∗ : M→ C of
M such thatJ M = θ∗(M)J for all M ∈M. Thus, by (35), (i3) is equivalent to

(i4) I ◦9(M) = θ∗(M)I for all M in M.
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Assume that (i4) holds for someM in M. Then

I ◦9(W−M) = I ◦9(W−) ◦9(M) (by (i1))
= D tW+ ◦ (I ◦9(M)) (by (38))
= D tW+ ◦ θ∗(M)I
= Dθ∗(M)aI (by (23))
= θ∗(W−)θ∗(M)I (by (24))
= θ∗(W−M)I .

Thus (i4) also holds forW−M . One shows in exactly the same way that (i4) holds for
tW−M . Now

I ◦9(J M) = I ◦9(θ∗(M)J)
= θ∗(M)nI (by (35))
= θ∗(M)θ∗(J)I = θ∗(J M)I .

Thus (i4) holds forW−M, tW−M and J M. Since it holds forM = I by (34), it follows
(by induction on length) that (i4) holds for any finite product of matrices in{W−, tW−, J}
and (by linearity) for allM in M. This completes the proof of (i).
The proof of

(ii) 1
n9H is an algebra homomorphism fromH to M

is quite similar and will be omitted.
Now since9 is invertible, both9M and9H are injective. Then dimM ≤ dimH and

dimH ≤ dimM. Hence dimM = dimH and both9M and9H are bijective. Since
H is commutative,M is also commutative. The equality9M(

1
n9H) = τH of algebra

automorphisms ofH is easily checked, using (34)–(39), on the generating setW+, tW+, I .
The other equality9H9M = nτM is proved similarly. 2

The above result was essentially proved in [15] whenW+,W− are symmetric and in [5]
for the general case. The proof given here is conceptually simpler and will lead us to a
clear understanding of the modular invariance property for self-dual Bose-Mesner algebras.
From now on we shall be mostly interested in the situation described by the following result.

Corollary 3.2 The following properties are equivalent.
(i) M is closed under Hadamard product.

(ii) H is closed under ordinary matrix product.
(iii) H =M is a self-dual Bose-Mesner algebra.

Proof: Clearly (iii) implies (i) and (ii). Conversely, if (i) holds,H ⊆M sinceW+, tW+, I
belong toM. ThenH =M because dimM = dimH. Similarly, if (ii) holds,H =M. It is
clear thatA = H =M then satisfies the properties (6)–(9) which characterize Bose-Mesner
algebras. Now9 = 9M = 9H satisfies (17), (18) and hence this map is a duality ofA. 2

Thus it is natural to look for spin models(X,W+,W−) such thatW+,W− belong
to some Bose-Mesner algebraA on X. As explained in [5, 15, 17] this allows a very
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significant simplification in the study of equations (20), (21), (23), (24), which bear on
dimA = d + 1≤ n variables rather than on dimM(X) = n2 variables.

In this setting it is useful to state the following result.

Corollary 3.3 Let A be a Bose-Mesner algebra on X, and let(X,W+,W−) be a spin
model with loop variable D and modulus a such that W+,W− belong toA. The following
properties are equivalent:
(i) W−, tW−, J generateA under ordinary matrix product.
(ii) W+, tW+, I generateA under Hadamard product.

Moreover if(i) and (ii) hold, A has a duality9 satisfying properties(30)–(33) for all M
in A, and hence also satisfying(34)–(39).

If (i) and (ii) hold in Corollary 3.3, we shall say that(X,W+,W−) generatesA.

2) Modular invariance

LetA be a self-dual Bose-Mesner algebra onX with eigenmatricesP, Q satisfyingP = Q̄.
The following property has been considered in relation with fusion algebras of conformal
field theories [1] and with the construction of spin models [3, 7]. We shall say thatA

satisfies themodular invariance propertywith respect toP and the diagonal matrix1 (of
size dimA = d + 1) if (P1)3 is a non-zero multiple of the identity. Let9 be the duality
onA defined by the matrixP in the basis{Ei , i = 0, 1, . . . ,d} (or equivalently, defined by
(16)). LetW+ = D

∑d
i=01[i, i ]Ei andW− = D−19(W+), with D2 = |X| = n.

Theorem 3.4 The following properties are equivalent for any non-zero complex number a.
(i) (P1)3 = a−1D3I .

(ii) 9(M) = D−1a tW+(tW− ◦ (W+M)) for all M in A.
(iii) 9(M) = D−1aW+(W− ◦ (tW+M)) for all M in A.
(iv) 9(M) = a tW− ◦ (W+(W− ◦ M)) for all M in A.
(v) 9(M) = aW− ◦ (tW+(tW− ◦ M)) for all M in A.

Proof: For everyA in A, let us denote byµA (respectively:µ∗A) the linear map from
A to itself defined by the equalityµA(M) = AM (respectivelyµ∗A(M) = A ◦ M) for
every M in A. Clearly D1 is the matrix of the linear mapµW+ with respect to the basis
{Ei , i = 0, 1, . . . ,d}. Hence (i) is equivalent to

(vi) (9µW+)
3 = a−1n3id.

We may rewrite (vi) successively as follows.

µW+9µW+9µW+ = a−1n39−1 = a−1n2τ9 (by (17))

9 = an−2τµW+9µW+9µW+

= an−2µτ(W+)(τ9µW+9)µW+ .
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It is easy to check thatτ9µW+9 = nµ∗τ9(W+) = nµ∗D tW− . Thus (vi) is equivalent to

9 = aD−1µtW+µ
∗
tW−µW+

and this shows the equivalence of (i) and (ii). Let us now rewrite (vi) as follows.

9µW+9µW+9µW+9 = a−1n39

9 = an−3(τ9µW+9)µW+(9µW+9τ)

= an−3(nDµ∗tW−)µW+(nDµ∗W−)
= aµ∗tW−µW+µ

∗
W− .

This shows the equivalence of (i) and (iv). Finally (ii) and (iii) correspond to each other by
multiplication byτ and replacement ofM by τ(M), and (iv) and (v) correspond to each
other in the same way. 2

We may now apply the above result to spin models (cf. [10]).

Corollary 3.5 Assume that the spin model(X,W+,W−) with loop variable D and
modulus a generates the Bose-Mesner algebraA. Let 9 be the corresponding dual-
ity on A given by Corollary3.3 and choose the indices of the Hadamard idempotents
{Ai (i = 0, 1, . . . ,d)} and ordinary idempotents{Ei (i = 0, 1, . . . ,d)} in such a way that
9(Ei ) = Ai (i = 0, 1, . . . ,d). Let P be the corresponding eigenmatrix ofA. Then
(P1)3 = a−1D3I , where the diagonal matrix1 = Diag[t0, t1, . . . , td] is determined by
one of the equivalent equations
(i) W+ =∑d

i=0 t−1
i Ai ′ .

(ii) W+ = D
∑d

i=0 ti Ei .

Proof: Define1 by Eq. (ii). ThusW+ = D
∑d

i=01[i, i ]Ei . We also haveW− = D−1

9(W+) by (36). Since (30)–(33) hold for everyM in A Theorem 3.4 gives(P1)3 =
a−1D3I . Equations (i) and (ii) are equivalent because applying9 to (ii) yields9(W+) =
D
∑d

i=0 ti Ai , i.e.,W− =∑d
i=0 ti Ai , which is equivalent to (i) via (20). 2

Thus if a spin model generates a Bose-Mesner algebra, this Bose-Mesner algebra is self-
dual, with a modular invariance property directly given by the spin model matrices. We
now look for a (partial) converse to this statement.

We consider again a self-dual Bose-Mesner algebraA on X with duality 9 given by
the eigenmatrixP in the basis{Ei (i = 0, 1, . . . ,d)}. Define the linear formsθ and
θ∗ on A by the equalitiesI ◦ A = θ(A)I and J A = θ∗(A)J for every A in A. Since
9(Ei ) = Ai (i = 0, 1, . . . ,d),9(I ) = J by (3) and (12). Letn = |X| and letA be any
element ofA. Then, by (19),J9(A) = 9(I )9(A) = n9(I ◦ A) = nθ(A)J. Hence

(40) θ∗9 = nθ.

Assume now that for some diagonal matrix1 of sized+ 1, (P1)3 is a non-zero multiple
of the identity. Note that1 is invertible and hence1[0, 0] 6= 0. Hence we may write



               
P1: KCU/PCY P2: KCU

Journal of Algebraic Combinatorics KL434-01-Bannai April 24, 1997 16:34

ON SPIN MODELS, MODULAR INVARIANCE, AND DUALITY 215

(P1)3 = 1[0, 0]λI for some non-zero complex numberλ. If D is a square root ofn, we
may multiply1 by a suitable factor to obtainλ = D3, that is,(P1)3 = 1[0, 0]D3I .

Theorem 3.6 Let1 be a diagonal matrix of size d+ 1 such that1[0, 0] = a−1 6= 0 and
(P1)3 = a−1D3I . Let W+ = D

∑d
i=01[i, i ]Ei and W− = D−19(W+). Then W+,W−

satisfy
(20) tW+ ◦W− = J .
(21) W+W− = nI .
(23) I ◦W+ = aI, I ◦W− = a−1I .
(24) J W+ = W+J = Da−1J, J W− = W−J = Da J.

and

(41) tW+(tW− ◦ (W+M)) = D tW− ◦ (W+(W− ◦ M)) for all M in A.

Proof: We have property (i) of Theorem 3.4 and hence also properties (ii)–(v). Property
(41) follows immediately. Let us apply (ii) toM = J. We obtain

nI = 9(J) = D−1a tW+(tW− ◦ θ∗(W+)J)
= D−1aθ∗(W+) tW+ tW−.

It is clear from (11) and the definition ofW+ that θ∗(W+) = D1[0, 0] = Da−1. This
yields (21). From this we haveθ∗(W+)θ∗(W−) = θ∗(W+W−) = nθ∗(I ) = n and hence
θ∗(W−) = Da. This yields (24). Applying9 to (21) gives9(W+) ◦ 9(W−) = n J and
(20) follows. Finally, by (40),θ(W+) = n−1θ∗9(W+) = n−1θ∗(DW−) = a and this
together with (20) gives (23). 2

Note that if we replace in (41) the condition “for allM in A” by the condition “for allM in
M(X)” we obtain (27), which together with (20), (21) gives (according to Proposition 2.3)
the definition of a spin model. This leads us to definea spin model at the algebraic level
in A as a pairW+,W− of elements ofA satisfying properties (20), (21), (23), (24), (41).
Thus we may interpret Theorem 3.6 as the statement that the modular invariance property
for a self-dual Bose-Mesner algebra implies the existence of a spin model at the algebraic
level in this algebra.

The above considerations indicate the following natural strategy for the construction of
spin models.

(i) Given a self-dual Bose-Mesner algebraA, enumerate its dualities.
(ii) For each duality, solve the corresponding modular invariance equation.

(iii) For each solution, check whether the corresponding spin model at the algebraic level
is an actual spin model or not.

The main interest of this approach is that steps (i) and (ii) are much easier than the study
of the general spin model Eqs. (20)–(22), and leave only a small number of cases to be
checked in step (iii). Also, any spin model which generates a Bose-Mesner algebra can be
found by this method.
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We now realize this program in the case of Bose-Mesner algebras of Abelian group
schemes.

4. Spin models on Abelian groups

1) Abelian group schemes and Bose-Mesner algebras

Let X be an Abelian group of finite ordern written additively. For eachi in X, let Ai in
M(X) be defined byAi [x, y] = δi,y−x(x, y in X). Properties (1)–(5) are immediate, with
i ′ = −i and pk

i, j = δi+ j,k (for convenience we replace the index set{0, 1, . . . ,d} by X).
Thus we have an association scheme (Ai , i ∈ X) and a corresponding Bose-Mesner algebra
A on X.

Let {Ei , i ∈ X} be the ordinary idempotents ofA, with E0 = 1
n J. Let P be the eigen-

matrix defined by

Aj =
∑
i∈X

Pi, j Ei for all j in X.

Then for all j, k in X∑
i∈X

Pi, j+k Ei = Aj+k = Aj Ak =
∑
i∈X

Pi, j Pi,k Ei

and hencePi, j+k = Pi, j Pi,k for all i in X. Hence for eachi in X, the mapj → Pi, j from
X to C is a character ofX. SinceP is invertible, each character ofX appears exactly once
as a row ofP (the row indexed by 0 corresponds to the trivial character sinceJ Ai = J for
all i in X).

The first orthogonality relation for characters states thatP tP̄ = nI . Hence the self-
duality relation P = Q̄ holds if and only ifP is symmetric, i.e.,Pi, j = χi ( j )(i, j ∈ X),
whereχi , i ∈ X are the characters ofX with indices chosen so thatχi ( j ) = χ j (i ) for all
i, j in X.

2) Spin models at the algebraic level are actual spin models

Let us compare conditions (41) and (27) whenA is the Bose-Mesner algebra of the Abelian
groupX. It is clear that forM in M(X), the column oftW+(tW− ◦ (W+M)) indexed by
a given elementx of X only depends on the column ofM indexed byx, and similarly for
D tW− ◦ (W+(W− ◦ M)). Since for everyM in M(X), there exists a matrixM ′ in A with
the same column indexed byx asM , property (41) implies property (27). This means that
every spin model at the algebraic level is an actual spin model.

Putting this together with Theorem 3.6 we obtain the following result (whereP =
(χi ( j ))i, j∈X andD2 = n).

Proposition 4.1 Let1 be a diagonal matrix indexed by X such that1[0, 0] = a−1 6= 0
and (P1)3 = a−1D3I . Let W+ = D

∑
i∈X 1[i, i ]Ei and W− = ∑

i∈X 1[i, i ] Ai . Then
(X,W+,W−) is a spin model.
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3) Reformulation of the modular invariance equation

Let1 = Diag[ti ](i∈X) be invertible. The following result generalizes Proposition 3 of [8].

Proposition 4.2 (P1)3 = t0D3I if and only if
(42) χu(v)tutv = t0tu+v for all u, v in X,

and

(43)
∑

x∈X t−1
x = Dt0.

Proof: The equation(P1)3 = t0D3I is equivalent to

(i) 1P1 = t0D3( 1
n Q)1−1( 1

n Q)

The [u, v]-entry of the left-hand side of (i) istu Pu,vtv = χu(v)tutv. The [u, v]-entry
of the right-hand side of (i) ist0D−1∑

x∈X Qu,xt−1
x Qx,v. Now Qu,x = Pu,x = χu(x) =

χx(u), Qx,v = Px,v = χx(v) and henceQu,x Qx,v = χx(u)χx(v) = χx(u+ v). Thus the
right-hand side of (i) only depends onu+ v and (42) expresses the same property for the
left-hand side. Then (i) restricted to the [u, v]-entries becomes

(ii) t0tu+v = t0D−1∑
x∈X χx(u+ v)t−1

x

which gives (43) whenu+v = 0. Conversely, assuming (42), (43), to prove (i) it is enough
to prove (ii) for allu, v with u+ v 6= 0, that is

∑
x∈X χx(u)t−1

x t−1
u = D for all u 6= 0. By

(42), the left-hand side is∑
x∈X

χx(u)χx(u)(t0tx+u)
−1 = t−1

0

∑
x∈X

(tx+u)
−1

and the result follows from (43). 2

Corollary 4.3 Let W+ = D
∑

x∈X ti Ei ,W− =
∑

x∈X ti Ai , where the ti , i ∈ X, are
non-zero complex numbers. If(42) and(43) hold, then(X,W+,W−) is a spin model.

Remarks

(i) Corollary 4.3. was proved in a different way in [17] Proposition 23.
(ii) Any solution to (42) with

∑
x∈X t−1

x 6= 0 can be normalized to give a solution of both
(42) and (43).

4) Explicit solution of the modular invariance equation

All finite groups are considered asZ-modules. LetX = X1 ⊕ X2 ⊕ · · · ⊕ Xr be a
decomposition ofX into a direct sum of cyclic groupsX1, X2, . . . , Xr . For eachi ∈
{1, 2, . . . , r } let ai be a generator andni be the order of the cyclic groupXi . Hence
|X| = n = ∏r

i=1 ni . Let x = ∑r
i=1 xi ai , y = ∑r

i=1 yi ai , wherexi , yi ∈ Z, be elements
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in X. Thenx = y in X if and only if xi ≡ yi (mod ni ) for all i ∈ {1, 2, . . . , r }. Let
di, j (= dj,i ) be the greatest common divisor ofni andnj for i, j ∈ {1, 2, . . . , r }. Then
χai (aj )

di, j = χaj (ai )
di, j = 1 for i, j ∈ {1, 2, . . . , r }. We can easily check that

(44) χx(y) = χy(x) =
∏r

i=1

∏r
j=1 χai (aj )

xi yj

for any expressionsx =∑r
i=1 xi ai andy =∑r

i=1 yi ai of x, y.
We have the following result (for the special case whereX is a cyclic group, refer to [3]).

Theorem 4.4 The Bose-Mesner algebraA on X has the modular invariance property
(P1)3 = t0D3I with an invertible diagonal matrix1 = Diag[tx](x∈X) if and only if

(45) tx = t0{
∏r

i=1 ηi
xiχai (ai )

xi (xi −1)
2 }{∏1≤l<k≤r χal (ak)

xl xk},
where x=∑r

i=1 xi ai , xi ∈ Z, ηi is a complex number satisfyingηi
ni = χai (ai )

− ni (ni −1)
2 for

i ∈ {1, 2, . . . , r }, and

(46) t2
0 = D−1∑

x=∑i xi ai∈X{
∏r

j=1 η j
−xj χaj (aj )

− x j (x j −1)

2 }{∏1≤l<k≤r χal (ak)
−xl xk}.

Proof: By Proposition 4.2, it is enough to give the complete solutions for (42) and (43).
First assume that1 satisfies (42) and (43). Lettai = ηi t0 for i = 1, 2, . . . , r . Then by (42)
and induction onj we have

(47) t jai = ηi
jχai (ai )

j ( j−1)
2 t0

for j ≥ 0 andi = 1, 2, . . . , r . Let j = ni in (47). We obtain

(48) ηni
i = χai (ai )

− ni (ni −1)
2

for i = 1, 2, . . . , r . Using (42) and (47) and induction onr we get (45). Then (46) follows
from (43). Conversely assume that1 satisfies (45) and (46). Then clearly (43) holds. Let
x =∑r

i=1 xi ai andy =∑r
i=1 yi ai . Then by (45) we obtain

tx+yt0 = t2
0

{
r∏

i=1

η
xi+yi

i χai (ai )
(xi +yi )(xi +yi −1)

2

}{ ∏
1≤l<k≤r

χal (ak)
(xl+yl )(xk+yk)

}
and

χx(y)txty = t2
0

{
r∏

l=1

r∏
k=1

χal (ak)
xl yk

}{
r∏

i=1

η
xi
i χai (ai )

xi (xi −1)
2

}{ ∏
1≤l<k≤r

χal (ak)
xl xk

}

·
{

r∏
i=1

η
yi

i χai (ai )
yi (yi −1)

2

}{ ∏
1≤l<k≤r

χal (ak)
yl yk

}

= t2
0

{
r∏

i=1

η
xi+yi

i χai (ai )
(xi +yi )(xi +yi −1)

2

}{ ∏
1≤l<k≤r

χal (ak)
(xl+yl )(xk+yk)

}
.

This implies (42). 2
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Remark If the eigenmatrixP is a tensor product of the eigenmatricesP1, P2, . . . , Pr of
the cyclic factors, thenχal (ak) = 1 wheneverl 6= k and it follows from (45) that every
solution1 to the modular invariance equation with respect toP is a tensor product of the
solutions11,12, . . . , 1r to the modular invariance equations with respect toP1, P2, . . . , Pr

respectively. However there are some eigenmatricesP which are not expressed as tensor
products of eigenmatrices of cyclic factors. We can easily check that some solutions of
modular invariance equations with respect to thoseP yield spin models which are not tensor
products of cyclic models. For instance, letX = (Z/2Z)2 and consider the eigenmatrix

P =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ,
where the columns correspond toA(0,0), A(0,1), A(1,0), A(1,1) in that order. Let1 = Diag
[1, 1, 1,−1]. Then(P1)3 = 8I . However1 does not correspond to a tensor product of
two cyclic models, since otherwise1 would be of the form Diag[t0t ′0, t0t ′1, t1t ′0, t1t ′1].

5) Relation with the Kac-Wakimoto construction of spin models

In [20] spin models are constructed using even rational lattices. More precisely, arational
lattice L is a finitely generated free Abelian group with a symmetricQ-valued bilinear form
〈, 〉. A rational latticeL is calledevenif the integral lattice

M = {α ∈ L | 〈α, β〉 ∈ Z for all β ∈ L}

is even, i.e.,〈α, α〉 ∈ 2Z for all α ∈ M . Note thatX = L/M is a finite Abelian group.
Since〈α, α〉 ≡ 〈β, β〉(mod 2Z) holds for anyα andβ ∈ L with α ≡ β(mod M), we can
define complex numbersλα(α ∈ X) andµ by

(49) λα = ε(α)eπ
√−1〈α,α〉, α ∈ X

and

(50) µ =∑α∈X λα,

whereε is a character ofX. Let χα(β) = e−2π
√−1<α,β> for α andβ ∈ X, and letP,

Q ∈ M(X) be the matrices defined byPα,β = χα(β) and Qα,β = χα(β). Lemma 2.1 in
[20] implies

∑
β∈X

e−2π
√−1〈α−γ,β〉 = nδα,γ ,
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wheren = |X|, which is equivalent to∑
β∈X

χα(β)χβ(γ ) = nδα,γ .

This implies thatP andQ(= P̄) satisfyPQ= nI and are the eigenmatrices of the Bose-
Mesner algebra of the scheme onX = L/M (with respect to some ordering of the idempo-
tents). Lemma 2.4 in [20] implies

(51) µµ̄ = n.

Let |X| = n = D2 (i.e., D is one of the square roots ofn). Fix an elementγ in X and let
t (γ )0 be one of the square roots ofDµ−1λγ , i.e.,

(52) (t (γ )0 )2 = Dµ−1λγ .

((51) shows thatµ 6= 0 and this definition is valid.) Definet (γ )α by

(53) t (γ )α = t (γ )0 λ−1
γ λγ+α for α ∈ X.

Then we have the following.

Theorem 4.5
(54) χα(β)t

(γ )
α t (γ )β = t (γ )0 t (γ )α+β for α, β ∈ X.

(55)
∑

α∈X t (γ )α = D(t (γ )0 )−1.

(56) Let W+(γ ) = D
∑

α∈X(t
(γ )
α )−1Eα and W−(γ ) =

∑
α∈X(t

(γ )
α )−1Aα. Then(X,W+(γ ),W

−
(γ ))

is a spin model with loop variable D.
(57) Let1 = Diag[(t (γ )α )−1]α∈X. Then(P1)3 = (t (γ )0 )−1D3I .

Proof: (54) and (55) are easy to check from the definitions (they are also proved in the
original Japanese version of [20]). Then (56) follows from Corollary 4.3, and the following
equality (58) follows from (20).

(58) W+(γ ) =
∑

α∈X t (γ )−α Aα.

In view of (58), (56) is essentially equivalent to Theorem 2.1 in [20]. Finally (54), (55) and
Proposition 4.2 imply (57). 2

In the following we consider the converse of the construction by Kac and Wakimoto. For
any finite Abelian groupX we construct an even latticeL in the following way. We use the
notation given in 4.4).

Sinceχai (aj )
di, j = 1, there exists a rational numberαi, j = α j,i satisfyingχai (aj ) =

e−2π
√−1αi, j . Moreover ifdi, j (= (ni , nj )) is odd, then we can chooseαi, j = ki, j /di, j with

some even integerki, j . Thereforeniαi, j ∈ 2Z if ni is odd. If ni is even, thennjαi, j ∈ Z
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andni n jαi, j ∈ 2Z. Henceni n jαi, j ∈ 2Z for all i and j in {1, 2, . . . , r }. Let L be a free
Abelian group of finite rankr generated bye1, e2, . . . ,er . Define a bilinear form onL by
〈ei , ej 〉 = αi, j for i , j ∈ {1, 2, . . . , r }. Let M = {α ∈ L|〈α, β〉 ∈ Z for all β ∈ L}. The
next proposition is essentially equivalent to Lemma 2.5 in [20].

Proposition 4.6
(i) L is an even lattice.

(ii) L/M ∼= X.

Proof: We will first show that

(59) M =∑r
i=1 Zni ei .

Since〈ni ei ,
∑r

j=1 xj ej 〉 =
∑r

j=1 xj niαi, j ∈ Z for anyi in {1, 2, . . . , r } andx1, x2, . . . , xr

in Z, we have
∑r

i=1 Zni ei jM . Conversely letxL =
∑r

j=1 xj ej ∈ M . Then〈xL , el 〉 ∈ Z
for anyl in {1, 2, . . . , r }. Let xX =

∑r
i=1 xi ai ∈ X. Then

χxX (al ) =
r∏

i=1

χai (al )
xi =

r∏
i=1

e−2π
√−1αi,l xi

= e−2π
√−1

∑r
i=1 αi,l xi = e−2π

√−1〈xL ,el 〉 = 1

for anyl in {1, 2, . . . , r }. This implies thatχxX (y) = 1 for all y in X. ThereforexX = 0 in
X andxi ≡ 0 (modni ) for i = 1, 2, . . . , r . This impliesM j

∑r
i=1 Zni ei and completes

the proof of (59). Since〈ni ei , nj ej 〉 = ni n jαi, j ∈ 2Z for all i, j in {1, 2, . . . , r }, we have
〈α, β〉 ∈ 2Z for all α andβ in M . HenceL is an even lattice. (ii) is immediate from (59).

2

From now on we identifyei andai (i = 1, 2, . . . , r ). Let us defineε by the following
equation:
For x =∑r

i=1 xi ai ∈ X,

ε(x) =
r∏

i=1

η
−xi
i e−π

√−1xi αi,i

=
r∏

i=1

η
−xi
i e−π

√−1xi 〈ai ,ai 〉.

Since(
η−1

i e−π
√−1αi,i

)ni = χai (ai )
ni (ni −1)

2 e−π
√−1ni αi,i (by (48))

= e−π
√−1n2

i αi,i = 1 (by the definition ofαi,i ),

this definition is valid andε is a character ofX. Defineλα, µ and t (γ )α for α, γ ∈ X by
(49), (50), (52) and (53). Then one easily checks that the formula (45) of the solution of
the modular invariance equation(P1)3 = t0D3I ,1 = Diag[tx]x∈X is expressed by

(60) tx = (t (0)x )−1, x ∈ X,
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provided thatt0 = (t (0)0 )−1. Finally note that formula (46), which expresses (43), becomes
(55).

Remark The Kac-Wakimoto construction essentially gives all the solutions of the mod-
ular invariance equation with respect to the given eigenmatrixP. However Theorem 4.4
shows that to obtain all the solutions it is enough to consider the caseγ = 0.

6) Dualities of Abelian group schemes

In this section we classify the dualities of Abelian group schemes. We use the same notation
as given in 4).

Define a duality ofA with the eigenmatrixP given by

(61) Px,y =
∏r

i=1 ζi
xi yi ,

wherex = ∑r
i=1 xi ai , y = ∑r

i=1 yi ai ∈ X andζi is a primitiveni th root of unity. Since
the set of all the Hadamard (or ordinary) idempotents inA is uniquely determined and an
eigenmatrixP′ corresponds to a duality if and only if it is symmetric (see Section 4.1),
there is a one to one correspondence between the set of all the dualities ofA and the set of
all the permutationsσ on X satisfying

(62) σ(0) = 0 andPx,σ (y) = Pσ(x),y for anyx andy in X.

Let σ be such a permutation and letσ(aj ) =
∑r

i=1 σi, j ai , whereσi, j ∈ Z. For anyx ∈ X,
let σ(x) = ∑r

i=1(x)i ai , with (x)i ∈ Z. Then by (62) we havePai ,σ (aj ) = Pσ(ai ),aj and
hence

(63) ζ
σi, j

i = ζ σ j,i

j

for any i, j ∈ {1, 2, . . . , r }. Then by (62)

ζ
(x) j

j = Paj ,σ (x) = Pσ(aj ),x

=
r∏

i=1

ζ
xi σi, j

i

=
r∏

i=1

ζ
xi σ j,i

j (by (63))

= ζ
∑r

i=1 xi σ j,i

j ,

that is,(x) j ≡
∑r

i=1 xiσ j,i and hence the permutationσ is given by

(64) σ(x) =∑r
j=1(

∑r
i=1 xiσ j,i )aj .
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We can easily check that (63) and (64) imply (62) and that the expression (64) determines
the permutationσ on X uniquely without depending on the choice of theσ j,i ∈ Z. Hence
we have the following result.

Theorem 4.7 The set of dualities of the Abelian group schemeA has a one to one cor-
respondence with the set of r× r nonsingular matrices(σi, j ) satisfyingσi, j ∈ Z and
ζ
σi, j

i = ζ σ j,i

j for any i and j in{1, 2, . . . , r }. (Here such a matrix is said to be nonsingular
if it induces a permutation on X.)

Corollary 4.8 Let p be a prime number. The set of dualities of the scheme of the elementary
abelian groupZ p × · · · × Z p of order pr has a one to one correspondence with the set of
nonsingular symmetric r× r matrices over the finite fieldZ p.

Remark Corollary 4.8 forp = 2 was originally proved by Yamada [33].

5. Examples

Contrary to the Abelian group case, spin models at the algebraic level generally do not give
actual spin models. In this section we give two such examples without proof.

1) Spin models on strongly regular graphs

We use the notations of [15].
Consider a strongly regular graphG with first eigenmatrix

P =
1 k n− k− 1

1 s −s− 1
1 r −r − 1


We assume thatG is formally self-dual, i.e.,P2 = nI , and this reduces to the equalities
k = r 2 + r − rs, n = (r − s)2. Let D = ε(r − s) with ε ∈ {+1,−1}. We assumen ≥ 2.
Let1 = Diag[t0, t1, t2](ti 6= 0). Then we have the following result.

Theorem 5.1 With the notation given as above the modular invariance equation(P1)3 =
t0D3I holds if and only if one of the following(1) or (2) is satisfied.
(1) t1 6= t2, t1t2 = ε, t0 = −st1+ ε(r + 1)t−1

1 and t−1
0 = −st−1

1 + ε(r + 1)t1.
(2) n = 4, D = −2ε, t1 = t2, t2

1 = ε, t0 = −t1.

Proof: First assume that the modular equivalence equation holds. Since the equation is
equivalent toP1P = t0D1−1P1−1 we have

(i)
∑2

l=0 Pi,l Pl , j tl = t0Dt−1
i t−1

j Pi, j for all i, j .
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Putting j = 0, i = 1 and j = 0, i = 2, we have

t0+ st1− (s+ 1)t2 = Dt−1
1

t0+ r t1− (r + 1)t2 = Dt−1
2 ,

respectively. Hence(s − r )t1 − (s − r )t2 = D(t−1
1 − t−1

2 ) and then(t1 − t2)(s − r +
Dt−1

1 t−1
2 ) = 0. Therefore ift1 6= t2 we havet1t2 = D(r − s)−1 = ε. It follows that

t0 = −st1+ (s+ 1)εt−1
1 + Dt−1

1 = −st1+ ε(r + 1)t−1
1 . Putting j = i = 0 in (i) we have

t0+ kt1+ (n− k− 1)t2 = Dt−1
0

and hence

t−1
0 = D−1

(−st1+ ε(r + 1)t−1
1 + kt1+ (n− k− 1)εt−1

1

)
.

Easy calculations givet−1
0 = − st−1

1 + ε(r + 1)t1 and (1) holds.
If t1 = t2, then

(ii) t0− t1 = Dt−1
1 .

Putting j = i = 0 in (i) we have

(iii) t0+ (n− 1)t1 = Dt−1
0 .

By (ii) and (iii) we havet1 + Dt−1
1 + (n− 1)t1 = D(t1 + Dt−1

1 )−1 and then(t−1
1 + Dt1)

(t1 + Dt−1
1 ) = 1. HenceD = −t2

1 − t−2
1 and (by (ii)) t0 = −t−3

1 . Next, taking j = 1 and
i = 1, i = 2 in (i), we obtain:

(iv) kt0+ s2t1− (s+ 1)r t1 = Dst0t−2
1

(v) kt0+ rst1− (r + 1)r t1 = Drt0t−2
1

The difference of these two equations givest−3
1 = (s− r )D−1t−1

0 = εt3
1 . Hence(t2

1)
3 = ε

and t2
1 ∈ {ε, e

2π
√−1
3 ε, e−

2π
√−1
3 ε}. If t2

1 6= ε, D = −ε(e2π
√−1
3 + e−

2π
√−1
3 ) = ε andn = 1,

which we have ruled out in our hypothesis. Ift2
1 = ε, thent0 = −t1, D = −2ε, n = 4 and

(2) holds.
Conversely assume thatt0, t1, andt2 satisfy the condition (1) or (2).

Let W+ = t−1
0 I + t−1

1 A1 + t−1
2 A2 andW− = t0I + t1A1 + t2A2. If 9 is the duality with

matrix P in the basis{E0, E1, E2}, its matrix in the basis{A0, A1, A2} is alsoP. We can
easily check that

P

t0
t1
t2

 = D

t−1
0
t−1
1
t−1
2
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and then9(W−) = DW+ holds. Let us denotet−1
0 by a. We have clearly (20) and (23)

and by applying9 we get (21) and (24). Using this, one easily checks that9(M) =
D−1aW+(W− ◦ (W+M)) when M = I ,M = J, or M = W−. Assuming thatt1 6= t2
(case (1)), these three matrices form a basis of the Bose-Mesner algebraA, and hence
9(M) = D−1aW+(W− ◦ (W+M)) for all M in H. It then follows from Theorem 4.4. that
(P1)3 = a−1D3I . For case (2) an explicit computation gives the modular equivalence
equation. 2

In other words,W+,W−, given in the proof of Theorem 5.1, define a spin model at the
algebraic level. However it is shown in [15] thatW+,W− will define an actual spin model
if and only if G is primitive whenn ≥ 5 andG is triply regular (i.e., both constituents with
respect to each vertex are strongly regular). Very few graphs meet this last requirement and
this yields many examples of spin models at the algebraic level which are not actual spin
models (for instance, consider Paley graphs with at least 13 vertices, or graphs associated
with bilinear forms, alternating bilinear forms or hermitian forms (see [7]).

2) Modular invariance of the association scheme on 2-Sylow subgroup of Suzuki simple
group Sz(8)

Let n ≥ 1,q = 22n+1. Let θ be a generator of the Galois group of the finite field extension
GF(q)/GF(2) defined byαθ = α2n

for α ∈ GF(q). Forα, β ∈ GF(q), let

S(α, β) =


1 0 0 0
αθ 1 0 0
β α 1 0

(α, β)1 (α, β)2 αθ 1

 ,
where(α, β)1 = α2θ+1 + αθβ + β2θ and(α, β)2 = αθ+1 + β. Let U = {S(α, β) | α, β ∈
GF(q)}. SinceS(α, β)S(γ, δ) = S(α+γ, αγ θ+β+δ)andS(γ, δ)S(γ, γ θ+1+δ) = S(0, 0)
(the identity element ofGL(4,q)), U is a subgroup ofGL(4,q) of order|U | = q2. It is
known thatU is isomorphic to the 2-Sylow subgroup of the Suzuki simple groupSz(q)(see
[29, 30]). The center ofU is given byZ(U ) = {S(0, β) | β ∈ GF(q)} which is of orderq.
For anyγ andδ in GF(q), we haveS(γ, γ θ+1+ δ)S(α, β)S(γ, δ) = S(α, β+γαθ +γ θα).
ThereforeS(α, β) and S(α1, β1) are conjugate to each other if and only ifα1 = α and
β1 = β + γαθ + γ θα with someγ ∈ GF(q). Let GF(q)∗ be the set of all the nonzero
elements inGF(q). Forα ∈ GF(q)∗, let Hα = {S(0, γ αθ + γ θα) | γ ∈ GF(q)}. ThenHα

is a subgroup ofZ(U ) of index 2. We can easily check thatS(0, αθ+1) 6∈ Hα. Therefore
S(α, 0)Hα, S(α, αθ+1)Hα, α ∈ GF(q)∗ and{S(0, α)}, α ∈ GF(q) form the complete set
of conjugate classes ofU .

Let 3 denote the following set of representatives of the conjugacy classes:3 =
{S(α, 0), S(α, αθ+1) |α ∈ GF(q)∗} ∪ {S(0, α) |α ∈ GF(q)}. Then|3| = 3q − 2. For
eachλ ∈ 3, Cλ denotes the conjugacy class containingλ, and Aλ denotes the matrix in
M(U ) defined by

Aλ[x, y] = 1 if yx−1 ∈ Cλ,

= 0 otherwise.
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Then properties (1)–(5) are satisfied (see [8] Section 2.2.). For convenience we replace
the index set{0, 1, . . . ,d} by 3. Note that A(0,0) = A0 = I , tA(0,α) = A(0,α), and
tA(α,0) = A(α,αθ+1). ThusX = (Aλ, λ ∈ 3) is an association scheme of class 3q − 3.

In the following we assumeq = 23. ThenU is of order 64. Let3 = 30 ∪ 31, where
30 = {S(0, α)|α ∈ GF(8)} ⊆ 3 and31 = {S(α, 0), S(α, αθ+1) | α ∈ GF(8)∗} ⊆ 3.
Then we can easily show thatX has self-dual structures for the orderings of the ordinary
idempotents{Eλ, λ ∈ 3}which give the matricesP defined below as the first eigen matrices
of X:

Pi,0 = 1 for all i ∈ 3.
Pi, j = 1 for i, j ∈ 30.

Pi, j = 1 for i ∈ {S(α, 0), S(α, αθ+1)}, j ∈ Hα, and α 6= 0.

Pi, j = −1 for i ∈ {S(α, 0), S(α, αθ+1)}, j 6∈ Hα, and α 6= 0.

Pi, j = Pi, j ′ = 4Pj,i = 4Pj ′,i for i ∈ 30, j ∈ 31

Pi,i = 4ε and Pi,i ′ = Pi ′,i = −4εi for i ∈ 31, whereεi = εi ′ = ±
√−1.

Pi, j = Pj,i = 0 for i, j ∈ 31 and j 6= i, j 6= i ′.

We have the following result.

Theorem 5.2 The Bose-Mesner algebra of a2-Sylow subgroup U of the Suzuki simple
group Sz(8) has the modular invariance property(P1)3 = t0D3I with an invertible
diagonal matrix1 = Diag[tλ]λ∈3 if and only if the following conditions are satisfied.
(Note that D= ±8.)

(i) tλ = t0 for λ ∈ 30.
(ii) ti + ti ′ = 0 and ti = ± 1−ε√

2
t0 for i ∈ 31.

(iii) t2
0 = D/8.

Remark

(i) The proof of Theorem 5.2 is done by straightforward but tedious computations.
(ii) By Theorem 3.6,(U,W+,W−) with W+ = D

∑
x∈3 tx Ex andW− = ∑x∈3 tx Ax is

a spin model at the algebraic level. However we have checked that it is not an actual
spin model, in spite of the fact that in a sense this scheme is very close to an Abelian
group scheme.

In the original version of this paper and somewhere else we announced that a similar
statement like the one given in Theorem 5.2 is also true for anyq = 22n+1. However this
is not true in general forn ≥ 2 as was pointed out by Hanaki and Okuyama in private
communication. Namely, the group association scheme may not be self-dual ifn ≥ 2.
(Previously, there were miscalulations of the character tables ofU .) We thank Hanaki and
Okuyama for pointing out this mistake by showing that the groups for the casen = 2 are
not self-dual.
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