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Abstract. In [3] Cameron et al. classified strongly regular graphs with strongly regular subconstituents. Here
we prove a theorem which implies that distance-regular graphs with strongly regular subconstituents are precisely
the Taylor graphs and graphs witha1 = 0 andai ∈ {0, 1} for i = 2, . . . ,d.
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1. Introduction

Let 0 be a connected graph without loops and multiple edges,d = d(0) be the diameter
of 0, V(0) be the set of vertices andv = |V(0)|. For i = 1, . . . ,d let 0i (u) be the set of
vertices at distancei from u (‘subconstituent’) andki = |0i (u)|. We use the same notation
0i (u) for the subgraph of0 induced by the vertices in0i (u). Distance between verticesu
andv in 0 will be denoted by∂(u, v).

Recall that a connected graph is said to bedistance regularif it is regular and for eachi =
1, . . . ,d the numbersai = |0i (u)∩01(v)|, bi = |0i+1(u)∩01(v)|, ci = |0i−1(u)∩01(v)|
are independent of the particular choice ofu andv with v ∈ 0i (u). It is well known that in
this case all numberspl

i, j = |0i (u) ∩ 0 j (v)| do not depend on the choice of the pairu, v
with v ∈ 0l (u). The valency of a distance regular graph isk = k1 = b0.

A regular graph is calledstrongly regularif there exist nonnegative integersλ andµ
such that|01(u) ∩ 01(v)| = λ orµ depending on whether{u, v} is an edge or a non-edge.
Connected strongly regular graph is a distance-regular graph of diameter 2; disconnected
strongly regular graph is a disjoint union of equal cliques. For a strongly regular graph we
use notation srg(v, k, λ, µ).

A distance-regular graph in whichx, y ∈ 0d(u) with x 6= y impliesx ∈ 0d(y) is called
antipodal. Distance-regular graph0 of diameter 3 such that|03(u)| = 1 is called aTaylor
graph; it is an antipodal 2-cover of a complete graph onk1+ 1 vertices. In a Taylor graph
01(u) and02(u) are two copies of a strongly regular graph1 with parametersk = 2µ
(these arek andµ of 1). Vice versa, given a strongly regular graph1 with k = 2µ one
can construct a Taylor graph with subconstituents isomorphic to1 (on Taylor graphs see
[1, 4–6]).

We prove the following theorem.
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Theorem 1.1 Let 0 be a distance-regular graph of diameter d≥ 3. Suppose that for
some vertex u for every i the subgraph0i (u) is either a disjoint union of cliques or else
all vertices of0i (u) are at distance at most2 from each other inside0 (not necessarily so
inside0i (u)).

If 01(v) is a ( possibly disconnected) strongly-regular graph for every vertexv then one
of the following holds

(i) a1 = 0 and ai ≤ 1 for i = 2, . . . ,d or

(ii) 0 is a Taylor graph.

In terms of structure constants the first part of the hypothesis says thatpi
i, j = 0 for all

j ≥ 3 whenever0i (u) is not a disjoint union of cliques.
Note that if0 is a distance-regular graph of diameter at least 3 in which for every vertex

u the subconstituents01(u), . . . , 0d(u) are strongly regular (possibly disconnected) then
0 obviously satisfies hypothesis of Theorem 1.1. In this sense our theorem is similar to the
result of Cameron et al. [3] who classified strongly regular graphs with strongly regular
subconstituents.

Note also that all graphs in (i) and (ii) clearly satisfy the assumptions. In (i) we have
all bipartite distance-regular graphs (caseai = 0 for all i ). Classification of Taylor graphs
and bipartite distance-regular graphs are well known open problems. Ifai = 1 for somei
then0i (u) is a matching. Besides odd cycles there are three such graphs in (i) known to the
author: the dodecahedron, the Coxeter graph and the Biggs-Smith graph. Their parameters
arev = 20, k = 3 and girth 5 for the dodecahedron,v = 28, k = 3 and girth 7 for the
Coxeter graph andv = 102,k = 3 and girth 9 for the Biggs-Smith graph. We were not
able to show completeness of this list nor to find other examples.

The problem was formulated for me by Andrei V. Ivanov. I am grateful to him and to
Dmitrii V. Pasechnik for his interest in my work. I am also grateful to the referee who
suggested a significant improvement of the paper.

2. Proof of Theorem 1.1

We prove Theorem 1.1 by way of contradiction. Using Proposition 2.2, Lemma 2.3 and
Lemma 2.4 we show first that if a counter-example exists it has to have parametersa1 = 0,
ai ≤ 1 for i = 2, . . . ,d − 1 andad ≥ 2. Then we eliminate this possibility with the help
of Lemma 2.5. We give complete proofs of all results for the convinience of the reader
although some of them are known or are quite easy to prove.

The following lemma is needed in the proof of Proposition 2.2.

Lemma 2.1 Let 0 be a distance-regular graph of diameter d. If pj+1
2, j = 0 for some

1≤ j < d, then a1 = aj and aj+1 = 0.

Proof: By Lemma 4.1.7 of [1]c2 pj+1
2, j = cj+1(aj + aj+1 − a1). If pj+1

2, j = 0 then
aj + aj+1 = a1. If a1 = 0 the assertion is obvious.
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On the other hand, ifa1 > 0 we can apply Proposition 5.5.1(i) of [1] which says that
2ai ≥ a1 + 1 for i = 1, . . . ,d − 1 to obtain j = d − 1. Thus we havepd

2,d−1 = 0 and
ad−1+ ad = a1.

Let u be a vertex of0 and pickv ∈ 0d(u). Sincepd
2,d−1 = 0, every vertex of01(v) ∩

0d−1(u) is adjacent to every vertex of01(v) ∩ 0d(u). If 01(v) ∩ 0d(u) is non-empty, then
complement of01(v) is disconnected. Then Lemma 1.1.7 of [1] implies that0 is complete
multipartite, in particularad = 0, a contradiction. Hence0d(u) ∩ 01(v) is empty, that is
ad = 0. Thena1 = ad−1. (Argument of this paragraph follows the proof of Proposition
5.5.1(ii) of [1].) 2

Proposition 2.2 Let0 be a distance-regular graph of diameter d. Suppose that for some
i pi

i, j = 0 for all j ≥ 3. Then one of the following holds

(i) i = 0, 1 or d,
(ii) i = d − 1 and0 is an antipodal2-cover, that is kd = 1, or

(iii) i = 2, d = 3 and0 is bipartite.

Proof: Suppose 2≤ i ≤ d−2. Letu, v andw be vertices of0 such that∂(u, w) = i +2,
∂(u, v) = i and∂(v,w) = 2. Then one can find a vertexx such that∂(v, x) = i and
∂(w, x) = i − 2. But then∂(x, v) = ∂(u, v) = i and∂(x, u) ≥ ∂(u, w) − ∂(x, w) = 4.
This contradicts the hypothesis. Hencei = 0, 1,d − 1 ord.

It remains only to consider the casei = d − 1. First we claim thatpd−1
d, j 6= 0 implies

j = 1 ord = j = 3, that is for everyu all vertices of0d(u) are at distance 1 or 3 from the
vertices of0d−1(u) and distance 3 can occur only whend = 3.

Suppose there are verticesu, v andw such that∂(u, v) = d − 1, ∂(u, w) = d and
∂(v,w) = j ≥ 2. We need to show thatj = d = 3. Pick a vertexx such that∂(v, x) = d−1
and∂(w, x) = |d − 1− j |.

If j ≤ d − 1 then∂(x, u) ≥ ∂(u, w)− ∂(x, w) = j + 1 ≥ 3, a contradiction. Ifj = d
then∂(u, x) ≥ d−1. Hence, we must haved−1≤ 2 (i.e.,d = 3) to avoid a contradiction.
Thus we have proved our claim.

Supposed ≥ 4. In this case, by the claim we just proved, ifu is a vertex of0, then all
vertices of0d(u) are at distance 1 from the vertices of0d−1(u). Letv be a vertex of0d(u).
Then0d(u) ⊆ {v} ∪ 01(v) ∪ 02(v), 0d−1(u) ⊆ 01(v), 0d−2(u) ⊆ 02(v), . . . , 01(u) ⊆
0d−1(v). Sou is the only vertex of0 at distanced from v. Hencekd = 1 and0 is an
antipodal 2-cover.

Now supposed = 3. Theni = 2. By the claim abovep3
2,2 = 0. Applying Lemma 2.1

we obtaina3 = 0 anda1 = a2.
Let u be a vertex of0 andv ∈ 0d(u). Sincep3

2,2 = 0, we have02(v) ⊆ 01(u) ∪ 03(u).
Suppose first that02(v)∩03(u) 6= ∅. Pick a vertexw ∈ 02(v)∩03(u). As a3 = 0, thisw
has no neighbours in02(v)∩ 03(u), hence no neighbours in02(v) at all. This implies that
a2 = 0 and, asa1 = a2, alsoa1 = 0. Hence0 is bipartite in this case.

If 02(v) ∩ 03(u) = ∅ then02(v) ⊆ 01(u). Since every vertex of03(v) lies at distance
1 from some vertex of02(v), we obtain03(v) ∩ 03(u) = ∅. Since01(v) ∩ 03(u) is
also empty (asa3 = 0), we have in fact03(u) = {v}. This means that0 is an antipodal
2-cover. 2
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Lemma 2.3 Let0 be a distance-regular graph of diameter d≥ 3 and suppose that for
everyv subgraph01(v) is strongly regular.

If there exists u such that02(u) is a disjoint union of at least two cliques then01(v) is a
disjoint union of cliques for everyv.

Proof: Suppose first that there is a vertexx such that01(x) is a disjoint union of cliques.
Then connectedness of0 and our assumption that01(v) is strongly regular for everyv
imply that01(v) is a disjoint union of cliques for everyv.

Assume now that01(v) is connected for everyv. We are going to show that this assump-
tion leads to a contradiction.

Let u be as in the hypothesis,v ∈ 01(u) and1 = 01(v). Since0 has diameter at
least 3, it can not be complete multipartite. Therefore Lemma 1.1.7 of [1] implies that the
complement of1, denote it8, is connected. Thus8 is a connected strongly regular graph
and we can apply to it Lemma 1.1.7 of [1] to obtain that either (1)8 is complete multipartite
(in this case1 is a disjoint union of cliques) or (2)81(u) is coconnected (in this case12(u)
is connected).

Since we know that1 is connected, (2) is the only possibility. LetS1, . . . , Sn be the
complete set of cliques of02(u) and suppose that01(v)∩ Si 6= ∅. Since12(u) = 01(v)∩
02(u) is connected, we obtain that01(v) ∩ 02(u) ⊆ Si . This shows that we can partition
01(u) into disjoint subsetsC1, . . . ,Cn such thatx ∈ Ci if and only if01(x) ∩ 02(u) ⊆ Si .
Note that everyCi is non-empty.

We claim thatC1, . . . ,Cn disconnect01(u) contrary to our assumption. Indeed, suppose
there arex ∈ Ci andy ∈ Cj , i 6= j , such that{x, y} is an edge and let6 = 01(x). As6 is
a connected strongly regular graph,62(u)∩61(y) = 02(u)∩01(y)∩01(x) is non-empty.
This contradicts our choice ofx and y. HenceC1, . . . ,Cn disconnect01(u). This is a
contradiction, since we assumed that01(v) is connected for everyv. 2

Lemma 2.4 Let0 be a distance-regular graph with a1 > 0 and suppose that for everyv
subgraph01(v) is a disjoint union of cliques. Let r be the index such that(1= c1,a1, b1) =
· · · = (cr ,ar , br ) 6= (cr+1,ar+1, br+1). Then01(v), . . . , 0r (v) are disjoint unions of
cliques and0r+1(v) is not a disjoint union of cliques for everyv.

Proof: Let v be any vertex of0. We use induction to show that01(v), . . . , 0r (v) are dis-
joint unions of cliques. The statement is obvious ifi = 1. So assume that01(v), . . . , 0n(v)

are disjoint unions of cliques and pickx ∈ 0n+1(v). Let y ∈ 01(x) ∩ 0n(v), z ∈
01(y) ∩ 0n−1(v) and S = 01(y) ∩ 0n(v). Sincea1 > 0, subgraph01(y) consists of
cliques of cardinality at least 2. Thereforez andS must form a clique of01(y). All other
cliques of01(y) have to lie entirely in0n+1(v). In particularx lies in such a cliqueT .
Since|T | = a1 + 1 andan+1 = a1, we obtain thatT is in fact a connected component of
0n+1(v). Sincex was arbitrary vertex of0n+1(v), we have proved that0n+1(v) is a disjoint
union of cliques.

We need to show now that0r+1(v) is not a disjoint union of cliques. Assume the contrary
and letx ∈ 0r+1(v) and y ∈ 01(x) ∩ 0r (v). Same argument as above shows thatx lies
inside a complete subgraphT ⊆ 01(y) ∩ 0r+1(v), |T | = a1 + 1. Sincea1 > 0, we
can findx′ ∈ T such thatx′ 6= x. Then01(x) ∩ 01(x′) ⊇ {y} ∪ (T − {x, x′}). Since
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|01(x)∩01(x′)| = a1 and|{y} ∪ (T −{x, x′})| = a1, we obtain thatT is in fact a maximal
clique of0r+1(v). This impliesar+1 = a1.

Let now y′ be any vertex of01(x) ∩ 0r (v). Then again same argument as in the first
paragraph shows thaty′ is adjacent to all ofT . If y′ were different fromy then the number
of triangles on the edge{x, x′}would be at least|{y}∪ {y′} ∪ (T −{x, x′})| = a1+1 which
is impossible. Hencey′ = y. Thuscr+1 = 1 = c1. Thenbr+1 = k1 − cr+1 − ar+1 =
k1 − c1 − a1 = b1, i.e., we obtain that(cr+1,ar+1, br+1) = (c1,a1, b1) contrary to the
choice ofr . Hence0r+1(v) is not a disjoint union of cliques. 2

Lemma 2.5 Let0 be a distance-regular graph and suppose that there is an index i such
that ai = 0 but ai+1 6= 0. Then ci+1 ≤ ai+1.

Proof: Pick verticesu, v andv′ such thatv, v′ ∈ 0i+1(u)andv′ ∈ 01(v). Letu′ be a vertex
in 01(u)∩0i (v

′). The distance betweenu′ andv is not greater than∂(u′, v′)+ ∂(v′, v) =
i + 1 but not less thani , asu′ ∈ 01(u) andv ∈ 0i+1(u). If ∂(u′, v) werei then bothv and
v′ would lie in0i (u′) in contradiction withai = 0. Hence∂(u′, v) = i + 1.

Thus we have01(u) ∩ 0i (v
′) ⊆ 0i+1(v). This is equivalent to01(u) ∩ 0i (v

′) ⊆
01(u) ∩ 0i+1(v). Since∂(v′, u) = ∂(v, u) = i + 1 the cardinality of the set on the left is
ci+1 and cardinality of the set on the right isai+1. Henceci+1 ≤ ai+1. 2

Proof of Theorem 1.1: Let0 be a counter-example. Throughout the proof vertexu is as
in the hypothesis.

First observe that02(u) is a disjoint union of cliques. Indeed, if02(u)were not a disjoint
union of more than one clique, then Proposition 2.2(ii) or (iii) would hold for0 and in either
case0 would not be a counter-example. Lemma 2.3 implies now that for everyv subgraph
01(v) is a disjoint union of cliques.

Next we are going to show thata1 = 0. Assume the contrary, that is assumea1 > 0.
Then, as01(v) is a disjoint union of cliques for everyv, we can apply Lemma 2.4 to obtain
thatc1 = c2 = · · · = cr = 1, subgraphs01(v), . . . , 0r (v) are disjoint unions of cliques of
sizea1+ 1 and0r+1(v) is not a disjoint union of cliques (herer is as in Lemma 2.4). Note
that this holds for everyv and that by the above paragraphr ≥ 2.

Pick three verticesx, y andz in0r+1(u) such thatz ∈ 02(x) andy ∈ 01(x)∩01(z). Such
a triple exists, as0r+1(u) is not a disjoint union of cliques. By hypothesis of the theorem
0r+1(u) ⊆ {x} ∪ 01(x) ∪ 02(x). Recall that01(x) and02(x) are both disjoint unions of
cliques and, moreover, all neighbours ofz in 01(x)∪02(x) lie in the clique throughz and
y (c.f. proof of Lemma 2.4). This implies that01(z)∩0r+1(u)−{y}⊆01(y)∩0r+1(u)
−{z}. Sincex is adjacent toy but not toz the inclusion is proper, contradiction with
regularity of0r+1(u). Hencea1 = 0.

Thus we have shown thata1 = 0. In this caseai ≤ 0 whenever0i (u) is a disjoint union
of cliques. So, if all0i (u), i = 1, . . . ,d, were disjoint unions of cliques, then part (i) of
the theorem would hold for0. Therefore, as0 is a counter-example, there must be some
i such that0i (u) is not a disjoint union of cliques. By Proposition 2.2i = 1, d or d − 1.
We proved at the very beginning thati 6= 1, 2. If i = d − 1, i > 2, then, by Proposition
2.2,0 is an antipodal 2-cover andad−1 = a1. This is a contradiction, sincea1 = 0 forces
0d−1(u) to be a disjoint union of cliques. Hencei = d.
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Thus the only possibility for a counter-example isa1 = 0, ai ≤ 1 for i = 2, . . . ,d − 1
andad ≥ 2. We are going to show now that in factad = 2.

Let v andw be vertices such that∂(u, v) = ∂(u, w) = d and ∂(v,w) = 2. Since
pd

d,3 = 0, we obtainad = |01(w)∩0d(u)| = |01(w)∩0d(u)∩01(v)|+ |01(w)∩0d(u)∩
02(v)| ≤ c2+ a2. Thusad ≤ c2+ a2.

We have two possibilities,a2 = 0 or a2 = 1. If a2 = 0, thenad ≤ c2 which implies
c2 ≥ 2. Let r be the first index such thatar 6= 0. Then by Lemma 2.5 we have 2≤
c2 ≤ cr ≤ ar (the sequencec1, . . . , cd is non-decreasing for every distance-regular graph).
Hencer = d. Combiningc2 ≤ cd ≤ ad andad ≤ c2 we obtaincd = c2. This is impossible,
ascd must be strictly greater thanc2 oncec2 > 1 (see Theorem 5.4.1 of [1]).

Thusa2 = 1. An application of Lemma 2.5 givesc2 = a2 = 1. Thenad = 2.
We have shown thatc2 = a2 = 1 andad = 2. In this case0d(u) is a disjoint union of

circuits. Pickx ∈ 0d(u) and letC be the unique circuit of0d(u) throughx. Sincepd
d, j = 0

wheneverj ≥ 3, we have0d(u) ⊆ {x} ∪ 01(x) ∪ 02(x). Thereforec2 = a2 = 1 implies
thatC is a pentagon. Moreover, ifC′ 6= C were another circuit in0d(u), it would have to
lie entirely in02(x) in contradiction witha2 = 1. Hence0d(u) = C is a pentagon.

Counting in two ways all triples of vertices with distances{d, d, 1} and {d, d, 2} we
obtaink1 p1

d,d = kd pd
1,d = 10 andk2 p2

d,d = kd pd
2,d = 10. This means that bothk1 andk2

divide 10. Sincec2 = 1 anda1 = 0, we obtaink2 = k1(k1 − 1). This leaves the only
possibility,k1 = k2 = 2. In this case0 is a circuit and cannot havead = 2. 2
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